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taken up in the exercises and historical notes. The notes are up to date. M. L. 
Wage's recent example of a normal space Z with Ind Z = 0, Z X Z normal, 
and Ind(Z X Z) > 0 is mentioned as well as J. Walsh's infinite-dimensional 
compact metric space with no finite-dimensional subsets. (This is an improve­
ment of D. Henderson's example which had no closed finite-dimensional 
subsets.) 

From this book the student gets a good idea where dimension theory stands 
today. The lack of research questions indicates that this area may have passed 
its most fruitful period of research. The few remaining questions don't hold 
much prospect of giving us significantly new insights. New theorems and 
interesting examples will continue to appear, but it is unlikely that anything 
will arise to alter our basic perceptions of this theory. As with most theories 
which reach this state of maturity new ideas simply cannot find a place in the 
old theory. They must begin their life as a new theory and require a new 
classification. 

Dimension theory is an excellent text giving us traditional dimension theory 
as it stands today. It presents all the essential features of interest to the 
general topologist without being compulsive. We have here a text that will 
probably be up to date for a considerable time. 

JAMES KEESLING 
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The finite Chevalley groups are, roughly, the groups that arise when the 
real or complex parameters in a simple Lie group or, more generally, in a 
reductive one, are suitably replaced by the elements of a finite field. They 
include most of the finite simple groups, all except the alternating groups and 
the 26 "sporadic" groups, according to the classification which has just been 
completed. They thus occupy a central position in finite group theory. One of 
the important problems concerning them is the determination of their com­
plex irreducible representations and characters. The first contribution here 
was made in 1896 by Frobenius [1] who determined the characters of the 
group G = SL2(k) over a finite field k. He first found the conjugacy classes 
of G, which is quite easy, and then built up the character table (a square 
matrix with rows indexed by conjugacy classes and columns by irreducible 
characters) by calculations not using much more than the orthogonality 
relations that this table was known to have. In 1907 Schur [2] redid 
Frobenius' work in a more conceptual way, obtaining many of the characters 
via concrete representations induced from one-dimensional representations of 
B, the group of upper-triangular matrices in G; but for those irreducible 
representations they cannot be obtained in this way, he, like Frobenius, could 
determine only the characters. This deficiency was soon noticed by others, 
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since, e.g., the missing representations enter significantly into the work of 
Hecke [3] on automorphic forms, but was not overcome until many years 
later. 

The situation then lay dormant until the 1940's when the characters of a 
handful of groups S£3, GL3, SU3,. . . were found, mainly by the methods of 
Frobenius and Schur. Then in 1955 two major papers appeared. In the first, J. 
A. Green [4] determined the characters of the finite group G = GLn(k\ 
introducing several ideas of great importance. First he showed that one could 
construct characters of G over C in terms of those over k, such as those 
coming from the defining n-dimensional representation of G and its various 
exterior and symmetric powers and the like, by simply lifting the characteris­
tic values of all matrices involved to suitable roots of 1 in C. Not all complex 
characters can be obtained in this way, however, since, e.g., those obtained do 
not distinguish between unipotent classes whereas the set of all characters is 
known to do so. To compensate for this, Green inductively defined a set of 
polynomials in \k\ (now called Green polynomials), which, roughly, could be 
used to express the values of characters at arbitrary elements in terms of those 
at the semisimple (i.e. diagonalizable) ones. In the second major paper of 
1955 Chevalley [5] introduced what are now called the Chevalley groups and 
developed their most important properties centering around the double coset 
decomposition relative to a Borel subgroup (described in more detail below). 
Soon after this, variations of Chevalley's construction were found yielding 
"twisted" Chevalley groups. The complete list of groups mentioned at the 
beginning was now in place as was a common framework for their further 
study, new even for the classical groups (GLn, SLn> SOn9 SUn,. . . ), which 
had, of course, already been studied for a long time. 

To describe the situation in more detail we use the theory of algebraic 
groups which was developed at about the same time and has been an essential 
tool in_our subject ever since. Let G be a connected reductive algebraic group 
over k, the algebraic closure of a finite field k of q elements and of 
characteristic p. (We retain this notation throughout the review.) Thus G is a 
subgroup for some GLn(k) defined by polynomial relations on the matrix 
entries (e.g., SLn: det = 1), connected in the Zariski topology, and with its 
maximal connected unipotent normal subgroup (unipotent radical) trivial. Let 
F be an endomorphism of G such that GF, the group of fixed points, is finite. 
The groups GF that arise this_way are, roughly, the Chevalley groups. The 
simplest example is G = GLn(k) with F the Frobenius morphism raising each 
matrix entry to its qth power. Then GF = GLn{k). This group is not simple, 
but it becomes so, with a few exceptions, if we form the derived group and 
divide by the center. For SUn(k) one starts with G = SLn(k) and takes F to 
be the Frobenius composed with the inverse transpose map. Returning to our 
original group G, let B be a Borel subgroup (maximal connected solvable 
subgroup), T a maximal torus therein (isomorphic to GL[ for some r), N the 
normalizer of T9 and W = N/ T the corresponding "Weyl group", a finite 
group about which a good deal is known. The essence of the Chevalley 
double coset decomposition referred to above is that a system of representa­
tives for W is also one for B \ G/B\ and the same holds for GF in terms of 
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BF and WF if B and T are chosen to be invariant under F, as is always 
possible. For G = GLn or SLn the standard choices are: B is the group of 
upper-triangular matrices, T the diagonal subgroup; then N consists of the 
monomial matrices (one nonzero entry in each row) and N/T is naturally 
isomorphic to Sn, the symmetric group of degree n. Also of importance in 
what follows is the notion of parabolic subgroup, one containing B (or a 
conjugate of such), and similarly for BF. In GLW, for example, there are 2n~l 

such, one for each ordered partition n = nx + n2 + • • • , consisting of those 
elements of G that are upper-triangular in the corresponding block form. The 
resulting group P is not reductive, but it has the semidirect product decom­
position P = LV in which L ~ GLni X GL X • • • , consisting of the diago­
nal blocks, is reductive and V, the kernel of projection on L, is the unipotent 
radical. This suggests an inductive procedure, used by Schur and by Green in 
their work, for determining the representations of GF: for each proper 
parabolic subgroup P fixed by F choose L to be fixed by F, pull the 
representations of LF (known since LF is smaller than GF) up to PF, then 
induce to GF and decompose the results into their irreducible components; 
finally, find those representations ("discrete series") not coming from any P 
in this way. Of course, in the first step only the discrete series of LF need be 
used since the other representations of LF would come from its own proper 
parabolic subgroups. This process was made formal by Harish-Chandra in 
the late 1960's and applies also to reductive Lie groups and their representa­
tions. 

But by then a good deal of work had already been done on the first 
problem, especially when P — B, and more especially when also the starting 
representation of LF, hence also of BF, is the trivial one, which we would like 
at least to mention in passing. Here the problem of decomposing the induced 
representation, R, into its irreducible components is, in principle, the same as 
that for A(q), the commuting algebra of R. This "Hecke algebra" has, in 
terms of the basis consisting of the characteristic functions of the (BF, BF) 
double cosets of GF, a multiplication table which is a deformed version of 
that of Q[ W\ depending on a parameter q (the number of elements of k in 
case F is the Frobenius). The study of the algebras A(q) and their representa­
tions has been very fruitful not only in connection with the decomposition 
problem above and with representations of Weyl groups, but also in connec­
tion with representations of GF in characteristic p and with infinite-dimen­
sional representation of corresponding Lie groups (see [6] for some of the 
later developments). 

We come now to the most important contribution to our subject so far, the 
great 1976 paper of P. Deligne and G. Lusztig [7]. Their idea is to realize the 
representations of GF in suitable cohomology groups (or spaces) as has been 
done for Lie groups for many years. They use the /-adic cohomology with 
compact support. This attaches to each algebraic variety V in characteristic 
p T̂  0 groups Hl{V) with coefficients in Qt (/ a prime different from/?) or in 
some twisted version of this. This cohomology has many of the usual 
functorial properties, and these have entered into the solution of the Weil 
conjectures. The principal construction of Deligne-Lusztig is as follows. Let T 
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be a maximal torus of G fixed by F. (Such exist and are finite in number up 
to GF-conjugacy; they correspond in case WF = W, e.g., in case GF =• 
GLn(k) or SLn(k), to the conjugacy classes of W.) Let 5 = TU (U = 
unipotent radical) be a Borel subgroup containing T, and L~l(U) the set of 
all x e G such that x " *(Fx) e £/, a closed subset of G covering U since by a 
theorem of Lang as extended by the reviewer every element of G has the form 
x~l(Fx). Even though L~l(U) need not be F-invariant (since B and U need 
not) the group GF X TF acts on it via (g, / )* = g*f_1 and hence also on its 
alternating cohomology 2(-l) , / / l(^~1(^))- The components of the latter, 
called RT(0), according to the action of TF by its various characters 0, 
provide the virtual representations of GF that are the principal objects of 
study of Deligne-Lusztig. The notation is justified since it turns out that, as 
G^-module, RT(0) is independent of the choice of B above. 

Before considering these representations in general we look at the construc­
tion in case G — SL2 and F is the usual Frobenius. Here there are two classes 
of maximal tori. The first is represented by T, the subgroup of diagonal 
matrices. Here B consists of the matrices that are uppertriangular and U of 
those that are also unipotent, and both are fixed by F. By Lang's theorem 
applied to U9 we have L~l(U) = GFU, a union of \G /UF\ affine lines 
(copies of U), and GF permutes these lines exactly as it does the elements of 
QFJ JJF Y\ follows that R^iO) is the ^-component of the representation of GF 

induced by the trivial representation of UF, i.e., is the representation of GF 

induced by the representation 9 of TF pulled up to BF. This case thus realizes 
Schur's first step, and for it no cohomological construction is really necessary. 
Consider, however, the second possibility Tl = gTg~l (all maximal tori in G 
are conjugate) with g chosen so that g~lF(g), call it H>, is in the normalizer of 
T, to make T7, F-stable, but is not in T, to avoid the first case. We choose 
Ux = gUg~l accordingly, and then L~x(U^)g consists of all x E G such that 
(xg~l)~lF(xg~l) G gUg~x, i.e., x~lF(x) E. Uw. If w, with its rows written 
out, is [0, 1; - 1 , 0] and x is [a, b; c, d], the last condition works out to a = bq, 
c = dq

y whence bqd — bdq = 1 since det(x) = 1. Thus the discrete series 
representations of SL2(k) which had eluded Frobenius, Schur and others for 
many years are here realized in the cohomology of this curve. Actually in the 
case of SL2 the construction was first made by Drinfeld and this provided the 
insight into the general case. 

We turn now to the general case. The principal tool used by Deligne-Lusz­
tig to study the R^(0)9s is the following result. Let X be an algebraic variety 
or scheme over Tc (as above), g an automorphism of X, and £(g, X) = 
2 ( - l ) ' Tr(g, H\X)) the corresponding Lefschetz number. Then (a) £(g, X) 
is an integer independent of /. (b) If g is of finite order and s and u are its 
semisimple and unipotent parts (a //-element and a /^-element, respectively), 
then £(g, X) = £(«, Xs). This, as well as the other nice properties that 
Lefschetz numbers tend to have, explains the use of alternating sums rather 
than individual cohomology groups in the original construction. The follow­
ing results then flow, (c) The definition of the Green functions: Qj (u) — 
Tr(w, RTW) (W unipotent). (d) A character formula expressing Tr(g, RT(0)) 
as a linear combination of values of B at conjugates of s with coefficients that 
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are values of Green functions of the connected centralizer of s. (e) Ortho­
gonality relations: RT(0) and Rfi(9') are disjoint unless (T, 9) and (T\ 9') 
are G-conjugate; their scalar product is 0 unless the pairs are GF-conjugate in 
which case it is equal to the number of elements of W{T)F fixing 9; thus 
RT(9) is irreducible if this number is 1. (f) Orthogonality relations for the 
Green functions, (g) A formula for dim R^(9). (h) Completeness: a certain, 
relatively simple, rational linear combination of the R$(9)9s equals the 
regular representation of GF. (i) Connection with the Harish-Chandra pro­
gram: If (*) T is contained in a proper parabolic subgroup P — LV fixed by 
F, then R?{9) equals R£(9) lifted to PF and then induced to GF. The 
irreducible representation R of GF is in the discrete series if and only if it is 
disjoint from all R^(9)9s with T as in (*). In subsequent papers, Lusztig and 
others have carried these ideas forward, but the principal problem, that of 
decomposing the R^(9)9s into their irreducible components, remains open in 
general. 

Another approach to these results, at the character level, was initiated by T. 
Springer and completed by D. Kazhdan [8], also in the 1970's. Here the 
Green functions are defined first, in terms of trigonometric sums on the Lie 
algebra of G; then certain class functions are defined by the character 
formula mentioned in (d) above, shown to be characters on GF, and finally 
identified with the characteers of the R^(9)9s. This development also uses the 
/-adic cohomology and requires/? to be sufficiently large. 

We come finally to the book under review. The author's purpose in writing 
it is to give a survey of the main recent developments in the subject, those 
that we have been discussing above, and to present an introduction to the 
/-adic cohomology which is palatable to finite group theorists. In the 
reviewer's opinion, she has succeeded admirably. In the book there is back­
ground material on algebraic groups, maximal tori, action of Frobenius and 
the like, and there are chapters on all of the topics that we have mentioned 
above as well as on some additional ones. In the chapter on the /-adic 
cohomology the author does the sensible thing by presenting the principal 
results axiomatically, but with full definitions, explanations and examples to 
make them intuitively plausible. In view of the new ideas and great activity in 
this area, the book is a timely one and the author is to be commended for 
bringing together all of the major threads of the subject in a very readable 
account. 
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