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ON THE HOPF INDEX THEOREM 

AND THE HOPF INVARIANT1 

BY KUO-TSAI CHEN 

Let ƒ: N —• M be a C°° map of oriented compact manifolds, and let L be 
an oriented closed submanifold of codimension q > 1 in M. If w is a closed form 
Poincaré dual to L, we show that f~xL, with multiplicities counted, is Poincaré 
dual to ƒ *w in N and is even meaningful on a "secondary" level. This leads to 
generalized versions of the Hopf invariant, the Hopf index theorem and the 
Bezout theorem. 

We assume that the connected components Tl9 . . . , Tz of f~xL are sub-
manifolds of codimension q in N. Let ord 1̂ . be the intersection number of L 
and ƒ \Bt where B is a qr-dimensional submanifold meeting r,. transversally at a 
single point. A proper choice of orientations makes ord T( > 0. 

THEOREM 1. The cycle 2(ord T^Tt is Poincaré dual to ƒ *w.2 

This assertion improves a known theorem, which requires that ƒ is transver­
sal to L and, consequently, ord I"1; = 1. 

THEOREM 2. Let w' be an integral closed q'-form on M with q 4- q' - 1 
> dim M. If both f *w and f *w' are exact with ƒ *w' = du onN and if o is 
a closed p-form on N with p + q + q' = dim Nf then 

$Nf*™ A w A a = £ ( o r d I \ )J u A a. 

COROLLARY. Let f.N —> M be an arbitrary C°° map (without any condi­
tion on f~lL). Ifr is the least positive integer making rHq+q'_l(N; Z) free 
abelian, then the cohomology class ofrf*wA u is integral 

A sketched proof of Theorem 1 runs as follows. There exists a (q - 1)-
form v onM - L with dv = w\M - L. Let a be a closed p-form onN such that 
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p + q = dim N, Then, onN-T, d(f*v A a) = ƒ *w A a. Let ^.(e) be the e-
tubular neighborhood about i y Then 

JW*w A a = - £ hm / a r l ( e ) /*» A a. 

The theorem will follow from the formula 

lim f f*v A a = -(ord I\) r . a . ( 0 

This formula is verified by using, in essence, the approach described below. The 
integration over dT((e) is first performed over fibers and then over T(. Since o 
is defined everywhere on N, its contribution during the integration over fibers 
can be ignored as e —• 0. The fiber of the e-tubular neighborhood Tt(e) is a q~ 
dimensional submanifold B(e) transversal to Tt. We show that ord Tt = 
- lime_„0 fdB(e)f*v and thus (1). 

In order to prove Theorem 2, we take note that u A w ' = 0onAf-Z, and 
that d(f *v A u) = ƒ *w A u on N - T. The theorem follows from the Stokes 
theorem and the formula 

lim JbTiie) / * ü A w A a = -(ord IV) J r . u A a. 

Realizing that w' can be modified so that w' vanishes on a neighborhood of L, 
we can verify this formula in the same way as for (1). 

EXAMPLE 1. Let M be the ^-sphere bundle obtained by compactifying a 
C°° vector bundle of fiber dimension q over an oriented compact manifold of 
dimension <q-\. Let LQ and L be respectively the zero and the "infinity" 
sections of At Let ƒ : N = S2q~l - * M be a C°° map such that both f~lL0 

and ƒ ~lL are smooth and of codimension q iaK Let ƒ *w = c/w and let 
2(ord r , ) ^ = 3Z in TV. According to Theorem 2, 

fs2q-if*w*u=f2f*w (2) 

= the algebraic linking number of f~iL and f~~1L0. 

The Whitehead integral formula for the Hopf invariant [3] is thus valid in this 
generalized situation. 

EXAMPLE 2. Let M be the fiber bundle obtained from a C°° complex (or 
quaternion) vector bundle by replacing each fiber with its complex (or quaternion) 
projective compactification. Let L0 be the zero section and let L be the union 
of the hyperplanes at infinity of the fibers. Theorem 1 implies that, under rea­
sonable conditions, the homology class of the poles of a C°° section of M does 
not depend on the choice of the section. 
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EXAMPLE 3. Let M = G(kf Cn) be the Grassmannian of complex fc-planes 
in Cn, n > k. Let L = G(k, C 2 " 1 ) . Then the fcth Chern form w of Mis 
Poincaré dual to L. Set w' = wn~k. It can be verified that, if TV is the associated 
(2k - l)-sphere bundle of the universal vector bundle of M and if ƒ: N —• M is 
the bundle map, then ƒ*w' = du and fNf*w A u = 1. 

Let E —* N be a C°° complex fc-plane bundle and let s: TV —> # be a C°° 
section having A as its zero set whose connected components are A t , . . . , Av 

We assume that each A. is smooth and of codimension 2k in TV. The index of s 
along Ai is the integer index5 A., which is the usual index of the restriction of s 
to a 2/>dimensional submanifold meeting A. transversally at a single point under 
a suitable choice of orientations. Theorem 1 leads to a generalized Hopf index 
theorem for complex vector bundles. 

THEOREM 3. The homology class of S (indexs AI.)A/ is Poincaré dual to 
the kth Chern class of E. 

The main feature of this result is that the classical notion of index con­
tinues to provide multiplicities of the zero set A. Under certain generic condi­
tions, there is a theorem of Griffiths [2] (see also [3, p. 413]) on Poincaré duals 
of all Chern classes of E. Theorem 3 extends a part of Griffiths' theorem to 
zero-sets with multiplicities. 

Using Theorem 3, we point out a proof of a generalized version of the 
classical Bezout theorem. Let z = (zl, . . . , zn) be the coordinates of Cn

f and 
let gt(z)9 . . . , gr(z) be polynomials of respective degrees dl9 . . . 9dr>r <n. We 
assume that the common zero set A of gt, . . . , gr in CF1 is smooth and of pure 
codimension r. Let H be the hyperplane line bundle of CF1. Then (gt, . . . , gr) 
is a section of and so is (zx

 l , . . . , zr
 r). Hence, with multi­

plicity counted, A must be homologous to dt . . . c?r(Ciyi""r)-
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