
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 5, Number 1, July 1981 

SYMPLECTIC GEOMETRY 

BY ALAN WEINSTEIN 

0. Introduction. Classical mechanics in the time of Huygens (1629-1695) 
and Newton (1642-1727) was very geometrical. Although Newton invented 
the calculus in order to formulate and solve physical problems, many of his 
arguments made heavy use of euclidean geometry. After Newton, there came 
a period of "mécanique analytique," during which Lagrange (1736-1813) 
could boast that his treatise on mechanics contained no pictures.1 Following 
the path of Euler (1707-1783) and Lagrange, Jacobi (1804-1851) and Hamil­
ton (1805-1865) continued the development of analytic techniques for the 
explicit solution of the differential equations describing mechanical systems. 
Finally, geometry has taken a new role in mechanics through the contribu­
tions of Poincaré (1854-1912) and Birkhoff (1884-1944). Now, though, the 
geometry is the more flexible geometry of canonical (in particular, area 
preserving) transformations instead of the rigid geometry of Euclid; accord­
ingly, the conclusions of the geometrical arguments are often qualitative 
rather than quantitative. 

In this lecture (and paper), I would like to explain what symplectic 
geometry is and to describe its role in contemporary mathematics. I think it is 
not unfair to say that symplectic geometry is of interest today, not so much as 
a theory in itself, but rather because of a series of remarkable "transforms" 
which connect it with various areas of analysis.2 

The lagrangian submanifolds play an especially important part in symplectic 
geometry and its applications. In §3 of this lecture, I will outline an approach 
to symplectic geometry in terms of a "category" in which the morphisms are 
exactly the lagrangian submanifolds; this approach suggests some interesting 

Presented at the Symposium on the Mathematical Heritage of Henri Poincaré in April, 1980; 
received by the editors November 15, 1980. 

1980 Mathematics Subject Classification. Primary 58F05. 
1 Poinsot (1777-1859) reacted strongly against this analytical tradition. Referring to "l'illustre 

Lagrange" in his famous study of rigid body rotation, Poinsot wrote that in Lagrange's treatment 
of the subject, "on ne voit guère que des calculs, sans aucune image nette de la rotation du 
corps." (I would like to thank J. J. Duistermaat for calling my attention to Poinsot's vivid critique 
of analytical mechanics, as well as for his comments on this manuscript.) 

2 G. D. Birkhoff's "disturbing secret fear that geometry may ultimately turn out to be no more 
than the glittering intuitional trappings of analysis" [BI] may be especially appropriate when 
applied to symplectic geometry. I learned of Birkhoff s statement from Chern [C], who tends to 
dismiss the fear on the grounds that Birkhoff was an analyst. The recent success of symplectic 
geometric methods in linear partial differential equations (see §5 for an example) suggests that 
one might need the glitter to find the gold. This opinion is also expressed by Poinsot (see 
previous footnote) who suggests that calculations are merely a tool in the service of geometrical 
and mechanical reasoning. 
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2 ALAN WEINSTEIN 

new problems as well as unifying previous results. Some of the ideas in this 
section were developed independently by Guillemin and Sternberg, implicitly 
in [G-Sl] and explicitly in §§9 and 10 of [G-S2]. 

1. Symplectic spaces and manifolds. The model space for symplectic geome­
try is the 2«-dimensional cartesian space R2w with symplectic structure pro­
vided by the differential form ün = S " . ^ , A dpt in coordinates 
(av • • • > Qn>Pv • • • >Pn)- Eventually, we shall consider differentiable transfor­
mations preserving this structure, but for a moment let us look at the linear 
ones, from which the name "symplectic" comes. 

The planes (through the origin) in R2w on which Qn vanishes (as a bilinear 
form) form a hypersurface G in the Grassmann manifold G2)2w(R). The 
Grassmann manifold may be identified with the space of lines in RP2n~l, 
and a hypersurface in this space of lines is called a line complex in projective 
geometry. These complexes were studied extensively by Plücker (1801-1868) 
and others in the 19th century. The complex Q is called a linear complex, 
since it is defined by linear equations on the exterior product R2w A R2n> s o 

the group of projective transformations leaving 6 invariant (equal to the 
projectivization of the linear group leaving Ün invariant) was called the linear 
complex group. In 1946, Hermann Weyl [WL] decided that the terminology 
was too confusing to perpetuate, so he took the Latin roots in com-plex 
(meaning "plaited together") and replaced them by the Greek roots sym­
plectic.3 The name symplectic group is now universally used for the group of 
linear transformations preserving Qn. 

The mathematical point to be retained from this linguistic digression is that 
the symplectic structure is essentially determined by the subspaces on which 
it vanishes. In addition to the planes in R2w on which Qn vanishes, we may 
consider larger subspaces with this property, called isotropic. The maximal 
isotropic subspaces have dimension n and are called lagrangian (following 
Maslov [MAS]). 

A submanifold L of R2n is called lagrangian if its tangent space at each 
point is lagrangian, i.e. if L is w-dimensional, and the pullback of Q>n to L 
vanishes. If L projects diffeomorphically onto the subspace 
{(#!, . . . , qn, 0, . . . , 0)}, so that L is defined by equations of the form 
Pi = 0/(tfi> • • • > #«)> t n e n ^ is easY t o verify that L is lagrangian if and only if 
dOt/dqj = dOj/dq; on Rn, i.e. if and only if there is a function S(ql9 . . . , qn) 
such that Bi — dS/dqt. Such a function S is called a generating function for the 
lagrangian submanifold L. One of the most important recent developments in 
the applications of symplectic geometry is the discovery that, if we identify 
this L with the function eiS

9 then we can extend this identification so that 
more general lagrangian submanifolds (not necessarily projecting diffeomor­
phically onto R2n) correspond to generalized functions on Rn. (See [G-Sl] for 
a detailed account of this correspondence.) In a sense, we may think of the 

3 According to the Oxford English Dictionary, the only use of "symplectic** in English is with 
reference to a certain bone in the head of fish. The dictionary gives a citation from Todd*s 
Cyclopedia of Anatomy (1839-47). A picture of the symplectic bone may be found on p. 61 of 
[BO]; it appears that the bone is quite small, but that it may serve to hold things together. 
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lagrangian submanifolds themselves as being a generalization of functions. 
The symplectic group is too rigid for many purposes. The class of 

lagrangian submanifolds, for instance, is invariant under the group of all 
diffeomorphisms ƒ: R2w -*R2n for which f*tin = tin. More generally, we may 
consider dif f eomorphisms between open subsets of R2w which preserve 12rt; 
these diffeomorphisms are called canonical transformations, symplectic dif-
feomorphisms, or (following Souriau [SO]), symplectomorphisms. We may 
define a symplectic manifold to be a differentiable manifold with an atlas for 
which the coordinate changes are symplectomorphisms. Alternately, we may 
define a symplectic structure on a manifold P as a^closed 2-form Ü which is 
nondegenerate in the sense that the bundle map Û: TP-+ T*P defined by 
[Œ(t>)](w) = £2(t>, w) is an isomorphism. It is a theorem of Darboux that, near 
any point in a manifold with a symplectic structure, there are local coordi­
nates (qv . . . , qn9 pv . . . 9pn) for which Œ = 2,- dqt A dpi9 so the two defini­
tions are equivalent. 

An important class of symplectic manifolds consists of the cotangent 
bundles T*X. Every local coordinate system (ql9 . . . , qn) on X gives rise to 
local coordinates (ql9 . . . , qn9pï9 . . . ,pn) on T*X9 and the form 2 dqx A dpt 

is independent of the choice of such coordinates; we denote the symplectic 
structure on T*X by iïx. The image of a section a: X -> T*X is a lagrangian 
submanifold of (T*X9 iïx) if and only if da = 0; if a = dS9 S is called a 
generating function for a(X). 

2. Symplectic geometry as Lagrange did it. The first symplectic manifold 
was introduced by Lagrange [LAI] in 1808.4 In studying the motion of the 
planets under the influence of their mutual gravitational interaction, he took 
as a starting point the elliptical motion of a single planet around the sun. 
(Actually, the focus of the ellipse is the center of the mass of the sun-planet 
system, but we will ignore this point here.) This ellipse was then considered to 
"drift" under the disturbing influence of the other planets. The drift was 
described by a system of differential equations, and Lagrange sought to put 
these equations in the simplest possible form. 

Let & be the set of possible elliptical motions of a planet. A member of & 
may be described by six real numbers, called elements of the orbital motion. 
For instance, one may take the major axis and eccentricity of the ellipse, two 
variables describing the orientation of the plane containing the ellipse, one 
variable giving the orientation of the ellipse within this plane, and a final 
variable specifying the time at which the planet passes a designated point on 
the ellipse. In modern terms, we may say that ë is a six-dimensional 
manifold, with the elements forming a local coordinate system. (Chapter 9 of 
[A-M] contains a nice discussion of various systems of elements.) 

Let al9 . . . , a6 be a system of elements. The problem faced by Lagrange 
and his contemporaries, and solved by them in many different ways, was to 
write down a system of first-order differential equations for the a/s. Finally, 
in 1808, Lagrange came up with a formulation of these equations which was 

4 In this section, we take the symposium title "Mathematical Heritage of Poincaré" to refer to 
what Poincaré inherited, rather than what he left for us. 
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much simpler than any which had been found before. He first constructed, 
for any system of elements, and each pair of indices with 1 < i, j < 6, a 
"bracket" [ai9 Oj] which, like each of the at% is a function on S. The bracket 
expressions (now called Lagrange brackets) satisfy the antisymmetry condition 

[ai>aA =- [>;> a / ] - 0 ) 
Lagrange also constructed a real valued function $ o n ê , called the disturb­
ing function, which depends on the perturbing forces but is independent of the 
choice of elements, such that the drift caused by the perturbation satisfies the 
equations: 

30 JL da; 

f^St**]^- (2) 
The matrix of brackets satisfies the nondegeneracy condition 

det ( [a , ,o , ] )*0 (3) 

so there is an inverse matrix (6y), and the equations (2) become 

"* ,?>3^ (4) 

in which the derivatives of the elements are expressed in terms of one 
function instead of six. At the time of Lagrange, this advance was of 
advantage largely because it shortened by a factor of six some rather 
complicated computations. The theoretical properties of equations of the 
form (4) were yet to be explored, beyond the following further results due to 
Lagrange. 

The antisymmetry of the matrix (btj) implies that the total derivative of $ 
with respect of time along a solution of (4) is zero; i.e. the disturbing function 
O is a conserved quantity for the drift motion. This conservation law could be 
used to check computations, as well as in discussions of stability. 

Lagrange also found another invariant for the solutions of (4), which we 
may describe as follows. Let ft: & -» & be the mapping which associates to 
each elliptical orbit e the elliptical orbit ft(e) to which the planet will have 
drifted from e after the perturbing forces have acted for t units of time. For 
any value of t, the six functions at ° ft are a new set of elements, and the 
brackets [a, ° ƒ„ Oj ° ft] may be formed. Lagrange's last invariance principle 
states that the functional form of the expression of [at ° ƒ„ aj ° ƒ,] in terms of 
the at ° / / s is independent of time, i.e. 

[<*i ° ft* "j ° ft] =[ai°aA °fr (5) 
Finally, in [LA2], Lagrange found special elements (ql9 q2, q^^P\>P2^P^ for 

which [qi9 qt] = [pi9 pj] = 0 and [pi9 qj\ = ô/y. In terms of these elements, the 
equations (4) become 

dqjdt = dQ/dpi9 dpjdt - -3*/9ft (6) 

which are known today as Hamilton's equations. 
In modern differential geometric terms, we may identify the Lagrange 

brackets [ai9 aj\ as the coefficients Q(d/daJ9 d/dat) of a differential 2-form S2. 
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Condition (1) means that Ü is a skew-symmetric form, while condition (3) 
means that £2 is nondegenerate in the sense defined in §1. Equation (2) is now 
expressed in the form d& = Û ° £, where £ is the vector field describing the 
drift motion, and equation (4) becomes £ = Q"1 ° d$. With ƒ, defined as the 
map at time t of the flow generated by £, equation (5) states that^*S2 = Œ, i.e. 
Q, is invariant under the flow. It turns out that this invariance condition (for 
all functions $) is equivalent to the form Ü being closed, i.e. dû « 0. Note 
that if 2 is any 2-cycle in S , then ƒ2fl = ƒ/(2>0. The invariance principle in 
this form was discovered by Poincaré, who called ti an integral invariant. 
Finally, in terms of the special elements (qv q2, q^P\,P2>P^ Œ is equal to 
2 , dqt A dPi, as in the conclusion of Darboux's theorem. 

Since the time of Lagrange, the general form (4) of the equations of drift 
(or motion) seems largely to have been abandoned in favor of the "canonical" 
form (6). Recently, inspired by the geometric point of view, R. Littlejohn [LI] 
has found that the use of (6) is well suited to some computations concerning 
the stability of motion of a charged particle in a magnetic field, a problem of 
interest in the physics of accelerators, plasmas, and the earth's atmosphere. 
This application of geometrically based ideas to a concrete physical problem 
is very much in the spirit of Poincaré's work in classical mechanics. 

3. The symplectic "category". The constructions described in the last 
section can be carried out on any symplectic manifold (P, Œ). If £ is a vector 
field on P, then the flow of £ leaves 12 invariant if and only if Ü ° £ is closed 
1-form. As we saw in §1, (Q <> £)(P) is a lagrangian submanifold of T*P, so 
we have a correspondence between infinitesimal symplectomorphisms of P 
and certain lagrangian submanifolds of T*P. The correspondence is an 
illustration of what I might call the "symplectic creed": 

I EVERYTHING IS A LAGRANGIAN SUBMANIFOLD I 

In practice, the symplectic creed means that one should try to express 
objects and constructions in symplectic geometry in terms of lagrangian 
submanifolds. This approach, which lends a certain unity to symplectic 
geometry, is particularly fruitful in view of the transforms of Hörmander 
[HR], Maslov [MAS], and Sato [S-K-K] which assign classes of generalized 
functions to lagrangian submanifolds of cotangent bundles. 

After the images of closed 1-forms, the next most important lagrangian 
submanifolds are the graphs of symplectomorphisms. If (Pv Öj) and (P2, ^ 
are symplectic manifolds, the product Px X P2 may be given the symplectic 
structure ^rfQx — 7r£fl2> where iry. Px X P2~* Pj are the cartesian projections. 
Now a diffeomorphism ƒ: P2 -» Pj is a symplectomorphism if and only if its 
graph is lagrangian in (i^ X P2, irfill — 7r£S22)- Since a symplectomorphism 
is also called a canonical transformation, and an arbitrary subset of Px X P2 

is a relation, the lagrangian submanifolds of (Px X P2, irfQl — ir*®^ have 
been named by Hörmander [HR] canonical relations from P2 to Pv (They 
were also studied by Sniatycki and Tulczejew [SN-T], who called them 
symplectic relations.) It was proven by Hörmander that the set-theoretic 
composition of canonical relations is again a canonical relation, provided that 
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a transversality condition is satisfied. (A weaker form of the transversality 
condition was found to be sufficient by Guillemin [G] and the author [WEI].) 

To systematize the application of the symplectic creed, we may define the 
symplectic "category" S, in which the objects are symplectic manifolds, the 
morphisms are canonical relations, and composition of morphisms is set-theo­
retic composition of relations. S is not a true category, since not all composi­
tions are morphisms in S, but we can still use the language of category theory 
to study canonical relations from this point of view.5 

A point in a category is an object which has only one endomorphism; in S, 
any point is isomorphic to the zero-dimensional manifold R°; the only 2-form 
on R° is 0, but this is a symplectic structure. Now we may define the elements 
of an object in a category to be the morphisms from a point to the object. In 
S, the elements of (P, 12) are the lagrangian submanifolds of (P X R°, TT*12 — 
TT*0), which is naturally isomorphic to (P, 12); i.e. the elements of (P, 12) are 
its lagrangian submanifolds. 

The symplectic manifold (Px X P2, Trffij + 12*TT2) plays the role in S of the 
product (Pl9 12j) X (P2, 122); a pair of morphisms from (Pj9 12j) to (PJ9 Qj) 
(J = 1, 2) gives rise to a morphism from (P(, 12i) X (P2, Ü2)-±(PX9 8|) X 
(P2, 82) (note that the projections are not in S). The disjoint union of (Pl9 12j) 
and (P2, 82) acts as a sum. 

A reflexive duality in S is given by the contravariant functor which assigns 
to each (P, 12) the manifold (P, 12)* = (P, -12) and to each canonical relation 
its inverse. Notice that the morphisms from (P2,122) to (Pl9 12j) are precisely 
the elements of (Pl9 Qx) X (P2, 82)*; it is reasonable, therefore, to denote the 
latter product by Hom((P2, 122), (Pl9 Qx)). (Compare this with the isomor­
phism Hom(F2, Vx) ^ Vx ® V% in the category of vector spaces.) 

For any object (P, 12) in S, the object Hom((P, 12), (P, 12)), which we 
denote by End(P, ü)9 has the structure of a ""-algebra" in the category S. 
Namely, we have: 

(i) A multiplication morphism from End(P, 8) X End(P, 12) to End(P, 12), 
i.e. from (P, 12) X (P, 12)* X (P, 12) X (P, 12)* to (P, 12) X (P, 12)*, given by 

{(PI>P2>P3>PA»P5>P6) e p6\Pi -PVPI-PVPA^PS}'* 

(ii) An identity element of End(P, 12) given by the diagonal in P X P; 
(iii) An involution from End(P, 12) to its dual given by 

{(Pl>P2>Ps>P4)\Pl =P4>P2 = P 3 } ' 
Another important example of a *-algebra in S is given by (T*G, 12G), 

where G is a Lie group; the operations are: 
(i) the multiplication morphism 

M Ç (T*G, QG) X (T*G9 - 0 o ) X (r*G, -12G) 

given by {((gl9 yx)9 (g2 , y2)9 (g3 , Y3))IY, ^ T*G9 gx = g2g39 y2 - r*3yv y3 -
Igji), where /ƒ and r* are the puUbacks by left and right translation by g in 

5 A subcategory of S, consisting of linear symplectic spaces and lagrangian subspaces, was 
introduced (and quantized) by Guillemin and Sternberg in [G-S2]. Thus, they must have had the 
idea of § in mind, although they did not develop it in the way described here. 
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G. M may also be described as the normal bundle in T*(G X G X G) of the 
graph {(gv g2, g3)|g! * g2g3) Q G X G X G, with the sign of the last two 
covectors reversed; analytically, M is the wavefront set (see [HR]) of the 
convolution operator on the group algebra of G. 

(ii) The identity element given by the cotangent space at the identity 
T*G C r*G. 

(iii) The involution from (T*G,QG) to its dual given by {((gi, Yi), 
(#2> Ï2))l£i = Sïl> Yi = -inv* Ï2)> where inv: G-» G is the inversion map­
ping. 

For every manifold X, the symplectic manifold (T*X, üx) is a commuta­
tive *-algebra in S, the operations being: 

(i) The multiplication morphism {(xv £x), (x2, £2), (*3> £3)1*1 ~ *2 = x3> 
£1 = £2 + £3}» which is the wavefront set of the ordinary multiplication 
operator for functions on X. 

(ii) The identity element given by the zero section in T*X. 
(iii) The involution from (T*X9 tix) to its dual given by {((*,, ix)9 

(x2> tj)\xx = x2, | j = - £ 2 } . 
Now we may consider homomorphisms between *-algebras in S, i.e. 

morphisms which are compatible with the three parts of the *-algebra 
structure. A simple example is given by the "Fourier transform", as follows. 
Let G = X = R", considered first as a Lie group and then as a manifold, so 
that T*Rn is a *-algebra in two different ways. A homomorphism from the 
"convolution" to the "multiplication" structure is given by 

» - {((*, É), (g, y))\x 6 R f l , g E R", £ E (R")*,y 6E (R«)*, 
Y - Ax, £ - -£g} , 

where B: R" -» Rw* is any symmetric linear transformation. (A need not be 
invertible for $ to be a canonical relation, but only for B invertible is % a 
homomorphism from the multiplication to the convolution structure.) 

Another important class of homomorphisms in S arises from actions of Lie 
groups on symplectic manifolds. Whenever a Lie group G acts differentiably 
by symplectomorphisms on a symplectic manifold (P, £2), there is an induced 
Lie algebra homomorphism a from the Lie algebra g of G to the Lie algebra 
E(P, fi) of infinitesimal symplectomorphisms of (P, S2). It is known that, for 
purposes of quantization, some extra structure should be brought in; namely, 
the homomorphism a should be lifted to a homomorphism ft: g -» C00(i>, 12); 
here, C°°(P> fi) has the Lie algebra structure given by the Poisson bracket 
operation {®l9 $2} = Qfê^, £^), where £# = Ö"1 ° d®. (The Jacobi identity 
for this operation is equivalent to the equation dQ, = 0.) Another way to look 
at the homomorphism 0 is as a map p: P->g* defined by [n(p)](v) = 
[ P(v)](p), f or /? e P and v G g. If G is connected, the map /*, called a 
momentum map for the action, is equivariant with respect to the coadjoint 
representation of G on g*; for general G, this equivariance must be taken as 
an additional condition. 

All this extra structure associated with a group action becomes quite 
natural from the point of view of the symplectic category. Given an action of 
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G on P and a mapping jr. P -» g*, we may define a mapping A : P X G-* 
P X P X T*G by the formula 

^(/>>g) = (gp,pJgMp))-

It turns out (see p. 21 of [WE3], or [WE4]) that L = A{P X (?) is a 
homomorphism from (T*G, 2G) to End(P, Q) if and only if fi is an equiv-
ariant momentum mapping coming from a Lie algebra homomorphism Q -» 
C°°(P, Q); the action of G on P, as well as JU, can then be recovered from L. 
In terms of S, therefore, L w the action; it is an action of the symplectic 
•-algebra T*G on P and contains all the extra structure which is usually 
obtained from quantization theory. 

4. Quantization. The mathematical quantization problem arises from the 
physical problem of assigning quantum-mechanical observables (self-adjoint 
operators on a Hubert space) to corresponding classical-mechanical ones (real 
valued functions on R2w). If one requires that Poisson brackets go over to (a 
multiple of) commutator brackets, then the quantization problem has no 
solution. (Van Hove's theorem; see [A-M].) One way to make progress on the 
quantization problem is to make it simultaneously harder and easier. We 
enlarge the class of classical objects which are to be quantized, but we relax 
the requirements by which the quantum and classical objects are to corre­
spond. 

The first step in enlarging the problem is to replace the observables by the 
groups of which they are the infinitesimal generators. Our basic classical 
objects are then symplectomorphisms, which should be represented by 
unitary operators on quantum Hubert spaces. This idea was introduced 
already by Weyl and von Neumann as a way of avoiding some of the 
analytical difficulties connected with unbounded operators. 

The category S suggests an approach to the quantization problem by a still 
further extension. First of all, to every symplectic manifold (P, Œ) we try to 
assign a Hubert space H(P, Q). This should be done in such a way that 
H(P, -Q) is the dual of H(P, Œ), and H[(PV fij) X (P2, QJ\ is a tensor 
product of H(PV 12t) and H(P2, Œ2). Now, for every lagrangian submanifold 
L C (P, Ö), we should try to assign an element of H(P, S2). In particular, for 
every morphism in S from (P2, Œ2) to (Pv Œj), we will get an operator from 
H(P2, Œ2)

 t o H(P\> Oi). Simple examples show that it may take more data 
than just L to specify an element of H ; furthermore, the analytic object 
constructed from L may be in some extension of H (e.g. a distribution rather 
than an L2 function). Nevertheless, the general idea outlined here has proven 
extremely fruitful when complemented by hard analysis in specific situations. 

An excellent example of the quantization procedure just outlined is the 
theory of Fourier integral operators. (See the lecture of Leray in this sym­
posium for another example.) Here the symplectic manifolds considered are 
all obtained from cotangent bundles with their zero sections deleted by taking 
duals and products; the Hubert space assigned to (TX, tix) is the space \X\1^2 

of L2 half-densities on X; the lagrangian submanifolds quantized are those 
which are invariant under multiplication by real positive scalars. If Tf is the 
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graph of a homogeneous symplectomorphism ƒ: t*X -» f*Y9 then Tf is 
quantized by a whole class Cf of operators from l^l^2 to |y |1 / 2 . Barring a 
possible obstruction of Fredholm index type (see [WE2]) one can choose a 
unitary operator Uf in Cf. Ideally, one would like to choose the U/s such that 
Ufg is always equal to UfUg, but such a choice is probably impossible. (A 
rigorous proof of this impossibility may not have been published anywhere, 
but the ideas behind van Hove's theorem should apply.) Instead, one finds 
that Ufg — UfUg is generally a nonzero pseudodifferential operator of order 
- 1 . It is unknown to what extent (for specific sets or groups of/'s) the error 
terms Ufg — UfUg can be made to have lower order, or be smoothing 
operators, or be zero. One result in the positive direction is that any compact 
group of homogeneous symplectomorphisms can be represented homomor-
phically by unitary Fourier integral operators. This was proven by the author 
(unpublished) by interpreting the operator-theoretic constructions of [H-K] in 
terms of S, and by Boutet de Monvel with the aid of his abstract Toeplitz 
structures [BU]. 

The theory of Fourier integral operators illustrates an important feature of 
quantization, which is also stated quite explicitly by Maslov [MAS]. The 
Hubert spaces associated to symplectic manifolds usually carry some sort of 
filtration, and the quantization is only "correct" to within a certain degree of 
accuracy as measured by the filtrations. It is only in special situations that 
approximate or asymptotic correspondences can be made into exact ones, 
and in those cases there are usually some ideas from outside of symplectic 
geometry which are brought into play (e.g. representation theory in [AU-K], 
and the theory of hyperbolic equations in [D-H]). 

To close this section, we shall briefly describe the "geometric quantization" 
scheme of Kostant [KOI] and Souriau [SO], motivated by earlier work of 
Segal [SE] and Kirillov [KI1], To quantize a symplectic manifold (P, fi) by 
this scheme, one begins by finding a principal circle bundle Q-* P whose 
curvature form is Œ. One then defines H(P, Ü) to be, roughly, a space of 
sections of the associated complex line bundle which are covariant constant 
along the leaves of a foliation by lagrangian manifolds; such a foliation is 
called a polarization. We highly recommend the recent monograph by Snia-
tycki [SN] for a thorough discussion of this quantization theory. 

The category S might prove useful in geometric quantization; here are a 
few suggestions. First of all, the circle bundle and polarization constructions 
can be interpreted in S. Instead of looking at the space Q, which with the 
connection form <$> is a contact manifold, we may consider its "symplectifica-
tion" Q = {r$(q) E r*Q|# E 0, r > 0} with the symplectic structure in­
duced by the embedding in (T*Q9 QQ). There is a natural action of the 
symplectic algebra r * ^ 1 on Q, coming from a symplectic action of S1 on Q, 
and one of the corresponding reduced manifolds (see [AR], [MA-W], or 
[MEY] for the theory of reduction) is (P, Œ). The other reduced manifolds are 
the manifolds (P, rïï) for r > 0; since one can now let r-»oo, the circle 
bundle construction introduces asymptotics into the situation. (Some of the 
ideas expressed here are borrowed from Boutet de Monvel and Guillemin 
[BU-G], who develop a quantization procedure for contact manifolds which 
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leads to a remarkable unification of spectral theory with the theory of the 
Hubert polynomial in algebraic geometry.) 

Polarizations can be interpreted in §, too. If £ is a foliation of (P, 12) by 
lagrangian submanifolds, we consider the submanifold CtQ P X P defined 
a s {(Pi> Pi)\P\ a n d P2 a r e m the same leaf of £} . This is an immersed 
coisotropic submanifold of End(P, 12). Now every coisotropic submanifold C 
of a symplectic manifold (Pl9 12 j) carries the characteristic foliation by 
lagrangian submanifolds, and we may define an immersed lagrangian sub­
manifold L(C) ç End(i>

1, 12^ by 

L(C) = {(cvc2)\cl ÇEC,c2Œ C, 

cx and c2 are in the same leaf of the characteristic foliation}. 

L(C), considered as a morphism from End(i>
1, 12^ to itself, is idempotent, so 

it is like a projection operator in S. (This fact may be "quantized" in Fourier 
integral operator theory; see [G-S2]. L(C) has also been used in [MO].) 
Putting together the two observations above, we find that a polarization of 
(P, 12) leads to a "projection operator" on End(P, 12) and thus corresponds to 
a subspace (subalgebra?) of "operators" on (P, 12). 

Finally, we propose the following synthesis of geometric quantization and 
Fourier integral operator theory. Given a symplectic manifold (P, 12) together 
with circle bundle and polarization, and a lagrangian submanifold L C 
(P, 12), construct an element or class of elements of H(P, 12). Use of the fact, 
clear from Fourier integral operator theory, that some extra data besides L 
may be necessary might help to resolve some of the nonunitarity problems 
described in [G-Sl] and [SN]. 

5. Some applications of symplectic geometry. In this section, I shall describe 
very briefly a (by no means complete) sample of the recent applications of 
symplectic geometry. In each case, the application begins with a "transform" 
which brings symplectic geometry into the area of interest. 

A. Conservative mechanics. The law of motion of a system of bodies is 
commonly given as a system of first order differential equations in the 
positions and velocities of the bodies. The Legendre transform replaces the 
velocities by momenta and puts the equations in hamiltonian form. Methods 
of symplectic geometry such as the Birkhoff normal form, the Kolmogorov-
Arnold-Moser theorem on the persistence of invariant tori, the intersection 
theory of lagrangian submanifolds, and the classification of group actions on 
symplectic manifolds may now be applied to study questions of stability, 
periodicity, and symmetry in conservative mechanics. (A good general refer­
ence in this area is [AR]. Also see [A-M], [G-Sl], [SO], and [ST].) 

B. Completely integratie systems. The nice structure of the solutions of the 
Korteweg-de Vries partial differential equation ut = -uxxx + 6uux originally 
discovered by Gardner, Green, Kruskal and Miura is now explained neatly in 
terms of the Faddeev-Zaharov symplectic structure [F-Z] on the space of 
functions on R, which makes the KdV equation into an infinite-dimensional 
hamiltonian system. A closely related finite dimensional system is the Toda 
lattice; this example has been studied and generalized by, among many 
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others, Kostant [K02], who uses as a basic tool the technique of reduction of 
symplectic manifolds with symmetry (see [K-K-S], [M], [MA-W], [MEY]). 
Another application of reduction to completely integrable systems is given by 
Mishchenko and Fomenko in [MI-F]. 

C. Representation theory. The geometric quantization scheme of Segal-Kiril-
lov-Kostant-Souriau (see §4) leads to a correspondence between irreducible 
unitary representations of a Lie group G and transitive symplectic actions of 
these groups. The correspondence is essentially bijective for nilpotent, com­
pact, and certain solvable groups. Although there are examples where the 
correspondence fails (see [R-W]), the symplectic viewpoint, often called the 
orbit method, since the homogeneous symplectic manifolds are coadjoint 
orbits, is at least a useful heuristic tool for investigating the representations of 
more general groups. The most extensive discussion available of the orbit 
method can be found in [KI2]. The nilpotent case is also treated in detail in 
[WA]. The coadjoint orbits have also appeared recently in the work of Simon 
[SI] on the statistical mechanics of representations of compact groups. 

D. Linear partial differential equations. The relevant "transforms" here are 
the Fourier integral operator calculus of Hörmander [HR], the canonical 
operator of Maslov [MAS], and the quantized contact transformation theory of 
Sato [S-K-K]. In each case, when a differential operator on a manifold X is 
represented by a function on T*X (its principal symbol), a symplectomor-
phism which simplifies the function may be realized as a conjugation which 
simplifies the operator. Problems for general operators may thereby be 
reduced to certain model cases. See [D] for a survey through 1974. A more 
recent example of this is contained in the work of R. Melrose. In [MEL1], he 
finds a normal form under symplectomorphisms for pairs of hypersurfaces 
which are tangent to one another at a point in a certain "nondegenerate" 
way. This theorem in symplectic geometry can then be applied to the problem 
of diffraction by a convex obstacle, in which the obstacle is represented by 
the first hypersurface and a family of light rays by the second. Among the 
results of this work is a theorem to the effect that, when a ray of light meets 
an obstacle in a "glancing" way (i.e. tangent to the obstacle at a convex 
point), the ray continues as if the obstacle were not there-here, a ray 
represents a path along with the solution is not C00. (See also [T].) This is in 
contrast with the situation for the propagation of analyticity where a ray, 
after grazing an obstacle, produces supplementary rays which "creep" around 
the boundary of the obstacle and then fly off into space once again at any 
moment they like. Melrose's approach also leads to very refined results in 
scattering theory (see [MEL2].) 
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