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Recently three closely guarded secrets of modern mathematics and science 
have been revealed. They are 

(i) the understanding of genuine nonlinear phenomena lies at the heart of 
many important problems in diverse areas of knowledge; 

(ii) these nonlinear phenomena can often be adequately described by 
studying systems of nonlinear differential equations; 

(iii) there are simple systematic mathematical ideas and techniques that are 
adequate to treat broad classes of these nonlinear systems. Moreover, when 
such ideas do not exist, they are being keenly pursued world-wide by many 
researchers, young and old. 

Thus, each day seems to bring additional insights and significant mathe­
matical results connecting the three facts mentioned above. These results are 
attained not only by professional mathematicians, but also by mathematically 
trained scientists and engineers whose work forces them to solve these 
problems. 

All those who love mathematics have cause to rejoice since many modern 
mathematical areas developed until now for their own sake (e.g. homotopy 
groups of spheres and simple Lie groups, abelian functions, singularity 
theory, and the differential geometry of connections) are absolutely essential 
for the understanding of key nonlinear problems of science. These problems 
in turn spawn new fruitful directions of depth and subtlety for mathematics 
and science. Hidden links between diverse mathematical areas are being 
revealed. In short, we are witnessing the making of a new mathematical and 
scientific revolution. 

The book under review explains some known (functional analysis) methods 
for certain classes of boundary value problems for certain nonlinear differen­
tial equations. The authors limit themselves to nonlinear elliptic equations 
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and are thus able to treat ordinary and partial differential equations from a 
unified point of view. Before discussing the text, I believe it is prudent to 
discuss the background and contemporary developments of the subject. 

I. Background. As mentioned previously, the present exciting state of affairs 
in nonlinear differential equations is due to the slow, discontinuous but 
combined efforts of many skillful investigators in many different lands. Its 
slow evolution in the twentieth century can be traced to many factors. First 
there is the hypnotic effect of the immensely successful linear (and lineariz-
able) theories of Maxwell (electromagnetism and optics), Bohr-Schrodinger 
(quantum mechanics), Hodge-Kodaira (harmonic integrals), Dirac-Feymann 
(quantum electrodynamics), Schwartz (distributions), Hormander (linear par­
tial differential equations), Oka-Cartan-Kohn (several complex variables) and 
Atiyah-Singer (index theory and elliptic topology) to mention only a few. As 
a rebellious student I once asked an emminent and eloquent spokesman of 
linear analysis if he were interested in nonlinear problems. "No, linear 
problems are hard enough," was the reply. 

Secondly, books and survey articles were, and continue to be, written with 
a linear bias. With notable exceptions, most otherwise excellent books on 
functional analysis and partial differential equations not only stress exclu­
sively linear problems but also neglect to mention the nonlinear aspects of 
their subject. The principle of superposition reigned supreme in physics, and 
where it didn't, that former great fountain of deep mathematical problems 
seemed to degenerate into jargonese. Only in the field of ordinary differential 
equations did books and articles contain systematic and deep nonlinear 
results. However, apart from celestial mechanics, these discussions were 
generally limited to problems involving phase plane techniques. 

The cruel events of modern history also played a role in retarding the 
systematic study of nonlinear problems of analysis. For example, beginning in 
and continuing through the 1930's, the great Polish school of functional 
analysis led by Banach, Mazur, and Schauder carried out important research 
on nonlinear operators and nonlinear partial differential equations which was 
to culminate in a research monograph. What an influential sequel to Banach's 
Théorie des Opérations Linéaires this might have been! However, the book 
never appeared due to the destruction loosed by the Second World War. On a 
recent trip to Warsaw I inquired after the book but, sad to say, to no avail. 

What then brought about this recent "nonlinear revolution", given all the 
forces working against it? The search for a greater, less restrictive vision of 
truth? Possibly. The search for a new unity and simplicity? Certainly. Rather 
than elaborate these basic abstract facts, I would also like to point to the 
recent solution of outstanding fundamental problems that have been not only 
spectacular and significant but also have opened promising developments for 
future research directions. 

II. Contemporary developments. Samples of such interrelated developmnts 
connecting modern science and nonlinear differential equations include: 

(A) The determination of Einstein metrics on compact Kàhler manifolds. 
Nonlinear elliptic partial differential equations can be used quite effectively 
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to deform given geometric structures on smooth compact manifolds, MN, to 
simpler structures provided MN is not too positively curved. One simply 
writes down a nonlinear partial differential equation (or system of equations) 
for the given deformation, taking care to introduce all the relevant geometry 
needed to simplify and restrict the problem. Then one attempts to find by 
analytic means a globally defined smooth solution for this equation, which in 
turn yields the desired deformation. Thus if N = 2, we can always conform-
ally deform a given Riemannian metric, g, on M2 to a Riemannian metric of 
constant Gaussian curvature, k, by solving a modified form of the nonlinear 
elliptic Liouville equation (if M2 is simply connected, k > 0 and the partial 
differential equation problem is (I believe) still open). This leads to a new 
proof of the uniformization theorem for Riemann surfaces that is indepen­
dent of certain covering space arguments. Progress in solving the higher-
dimensional problem has not been easy due to the analytic difficulty of 
determining a priori estimates. However in recent years the combined efforts 
of E. Calabi, T. Aubin, and S. T. Yau have shown that for Kâhler manifolds 
(M2w, g) that are sufficiently negatively curved (so that their first Chern class 
is nonpositive) success can be achieved by solving nonlinear elliptic complex 
Monge-Ampère equations. In this work, the linear Laplace-Beltrami operator 
of the Liouville equation is simply replaced by the nonlinear complex 
Monge-Ampère operator. In fact if the first Chern class of M vanishes, the 
deformation preserves the cohomology class of g and yields an Einstein 
metric whose Ricci curvature vanishes identically. Similarly if the first Chern 
class of M is negative, the deformation yields an Einstein metric with scalar 
curvature - 1 . Yau went on to find new important applications of this work in 
algebraic geometry (the uniformization of certain algebraic surfaces and the 
result that every compact surface that is homotopic to CP2 is biholomorphic 
to CP2), Results on positive curvature cases pose a difficult problem since 
nonuniqueness and bifurcation phenomena must be overcome. 

Science enters the picture because Einstein metrics are crucial for general 
relativity. Physicists generally attempt to find cleverly devised coordinate 
systems so that explicit solutions of Einstein equations can be written down 
(e.g., Schwartzschild and Kerr metrics). Modern science appears through 
quantum gravity and Euclidean gravity in which the nonlinear hyperbolic 
Einstein equations are analytically continued in the time variable to their 
elliptic analogues. 

Thus we have the exciting convergence of two strands of knowledge. 
Without doubt this link promises an exciting and fruitful future. 

For recent surveys and references for this research direction we refer 
readers to the articles of S. T. Yau and R. Penrose both appearing in Volume 
1 of Proc. Internat. Congr. Math. (Helsinki, 1978), Acad. Sci. Fenn, Helsinki, 
1980. 

(B) The complete integrability of nonlinear differential equations. It is always 
important to find and solve special nonlinear differential equations as ex­
plicitly as possible using methods that are capable of generalization. One such 
approach is the classic method of Liouville (and its generalization due to V. 
Arnold) for Hamiltonian systems of finite dimension, 2N9 which involves 
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finding N independent conserved integrals in involution. This leads to a 
global linearization (and explicit formulae for solutions) of the problem after 
appropriate canonical coordinate changes. Classic examples include geodesies 
on an ellipsoid (Jacobi), harmonic oscillators restricted to the sphere (Neu­
mann), and motion of a top about a fixed point (Kowalevskaya). It is thus 
remarkable that recently this approach has not only yielded new finite-
dimensional examples (e.g. Toda lattice), but has also been the fertile source 
of certain infinite-dimensional cases (i.e. two-dimensional completely integra-
ble partial differential equations of Hamiltonian type). Notable partial dif­
ferential equations are the Korteweg-de Vries equation, the sine-Gordon 
equation, and Boussinesq equations. All these possess soliton and multisoliton 
solutions (i.e. travelling wave solutions of permanent form moving with 
constant velocity). The complete integrability of such systems can be studied 
by Lie-theoretic techniques or inverse-scattering theory and in the case of 
periodic boundary conditions via the geometry of algebraic curves of finite 
and infinite genus. For full references to these researches, see the recent 
survey articles of McKean (Proc. ICM (Helsinki, 1978), vol. 2) Novikov (ibid, 
vol. 1) Lax (SIAM Review 18 (1976), 351-375) and Moser (Dynamical 
Systems, Birkhâuser, 1980). 

Of course, the three nonlinear partial differential equations mentioned 
previously arise from different areas of nonlinear science. The remarkable 
prevalence and explicitness of soliton and multisoliton behaviour has excited 
almost all scientists interested in nonlinear phenomena and led to the dis­
covery of soliton-like behaviour of other fields as well as to a study of the 
statistical mechanics and quantization of solitons for such systems. 

Future directions for this work consist of (i) determining higher-
dimensional partial differential equations of Hamiltonian type that are com­
pletely integrable and (ii) studying the stability of completely integrable 
systems under perturbations by new methods that do not break down when 
perturbed. There are some subtle points connected with (i) since generally 
such higher-dimensional physical problems possess at most a finite number of 
independent conserved integrals. What corresponds to solitons in these cases? 
For ideal fluids, steady vortex motions have been suggested by Zabusky and 
others. 

Recently, for nonlinear elliptic problems, two other approaches to complete 
integrability might be mentioned, (i) Berger and Church showed that certain 
nonlinear Dirichlet problems defined over bounded domains fi of arbitrary 
finite dimension are "globally conjugate" after canonical coordinate changes 
to an infinite-dimensional Whitney fold. This yields a new notion of complete 
integrability that provides stability results under perturbation and connects 
complete integrability with singularity theory. 

(ii) Atiyah, Hitchin, Singer, Ward, Drinfeld, and Manin have shown that 
all absolute minima of the Euclidean Yang-Mills functional S(A), otherwise 
known as instantons (see (C)), defined on S4 can be obtained explicitly by 
interesting algebraic procedures, a remarkable achievement since the associa­
ted Euler-Lagrange equations of S(A) appear as a formidable nonlinear 
elliptic system. 
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(C) Nonlinear gauge theories. How does one make the highly successful 
linear Maxwell equations of electromagnetism into an equally successful 
genuinely nonlinear theory? There are numerous interesting answers to this 
question, but the one I shall now describe appears to many mathematicians to 
be of particular depth, attractiveness, and challenge, viz., EucUdean quantum 
field theory with nonabelian gauge group G. Such theories can be understood 
by combining the Feynmann path integral approach to quantization, 
Schwinger's ideas concerning Euclidean field theory, and the notion of 
semiclassical approximation of the associated path intgegral. The result of all 
this from the point of view of nonlinear differential equations is the necessity 
of determining the smooth critical points of a nonquadratic action functional 
S (A) defined on R4 that has invariant properties with respect to a given 
compact Lie group G (called its gauge group). The associated Euler-Lagrange 
equations are nonlinear and can be chosen to be elliptic. The physical 
justification for the choice of "Euclidean" instead of the more obvious 
"Minkowskian" field theory takes considerable physical insight and is well 
described in recent Erice lecture notes of S. Adler, where the nonabelian 
nature of the gauge group G is strongly utilized. The actual gauge invariant 
form of S (A) (without considering external sources) can be determined from 
standard functionals by a well-known "gauge principle". In the simplest case 
S (A) can be interpreted differential geometrically as the L2 norm of the 
curvature of a connection A associated with the group G. However, when we 
consider the boundary conditions for the differential forms A, we find 
important topological effects entering the problem (in the physics literature 
these effects are termed "nonperturbative" since they cannot be obtained by 
standard linearization arguments). To my knowledge these effects appeared 
first in the important work of Abrikosov of 1957 on vortices in Type II 
superconductivity where the term "flux quantization" is used. The simple case 
of S(A) is usually referred to as pure Yang-Mills theory with G = SU(2). The 
absolute minima of this functional known as "instantons" were discussed 
briefly in (B) and have been explicitly determined after extremely interesting 
preliminary work by Atiyah, Singer, Hitchin, Schwartz, Jackiw, and Poly-
akov, to mention only a few. Nonabsolute minima of S(A)> even in the simple 
cases, still form an enigma. (See recent work of Atiyah-Bott.) Such saddle 
points are often crucial in nonlinear problems. 

However we cannot expect theoretical physics to conform to strict differen­
tial geometry. New boundary conditions, radiative corrections, external 
sources, alternative forms of the action functional S(A) involving critical 
parameter dependence, will undoubtedly play a crucial role in future develop­
ments. The actual solution of fixed physical problems and prediction of new 
verifiable effects hopefully should involve joint efforts of mathematicians and 
physicists. A good example is the still unsolved "quark confinement" prob­
lem. 

Recent surveys and references can be found in Atiyah (Proc. ICM 
(Helsinki, 1978), vol. 1) and Jaffe (ibid). 

For lack of space I will not discuss the remarkable recent researches on (to 
mention only a few) 
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(D) Periodic solutions (local and global) of nonlinear conservative and 
nonconservative dynamical systems for both ordinary and partial differential 
equations. 

(E) Global elliptic free boundary problems. 
(F) Bifurcation phenomena. 
(G) Nonlinear differential equations and geometric measure theory. 
Suffice it to say that the results obtained so far have been far beyond 

expectations (resulting in the solution of many classic problems often by very 
beautiful and powerful new techniques). 

References for many of the topics mentioned previously can be found in 
the Proceedings of the ICM (Helsinki, 1978), in particular the articles of 
Almgren, Rabinowitz, Clarke, Bona, and Raviart (all appearing in volume 2) 
and the books of Sattinger {Group theoretic methods in bifurcation theory, 
Lecture Notes in Math., vol. 762, Springer-Verlag, Berlin and New York, 
1979), Nirenberg, Nonlinear functional analysis (Courant Institute Lecture 
Notes, 1974) and the reviewer, Nonlinearity and functional analysis, Academic 
Press, New York, 1981 (3rd reprinting with supplements). 

III. The book. The book by Fucik and Kufner is intended for a broad class 
of readers, nonspecialist mathematicians and engineers, and thus requires 
only a modest mathematical background. (Elementary functional analysis 
including the Lebesgue integration would suffice.) The authors are not fussy 
about giving details of proof, systematic treatment of the material, or of the 
detailed applications to physical problems. The text introduces mathematical 
background facts as needed, but runs into the usual difficulties, that is, 
central elementary facts such as the implicit function theorem are introduced 
only toward the end of the book. 

The book is well printed and makes pleasant reading. The text begins with 
nonlinear elliptic boundary value problem examples from engineering and 
discusses Sobolev spaces and weak solutions of nonlinear differential equa­
tions with numerous examples. Minimization methods utilizing the direct 
method of the calculus of variations based on Sobolev spaces and the 
Leray-Schauder degree are the basic methods of solution discussed. There is 
also a discussion of the regularity of weak solutions. The last two chapters are 
more novel. Chapter 6 treats noncoercive boundary value problems for 
semilinear second order elliptic partial differential equations (a case in which 
the usual methods break down). A rudimentary classification and a nonlinear 
Fredholm alternative is attempted. The text ends with a nice exposition of 
variational inequalities and their applications. All in all, this is a good 
introductory discussion of nonlinear elliptic problems with numerous exam­
ples included. For deeper mathematical ideas and directions for future 
developments such as those described previously, the reader will, however, 
have to look elsewhere. 

To the authors' credit, incorrect statements are rare (exceptions include the 
discussion of weak solutions of semilinear nonlinear problems with exponen­
tial growth, page 146). Of course a book written at this level cannot cover all 
of the basic important topics. The reader should note that bifurcation theory, 
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nonlinear eigenvalue problems, notions of Fredholm operators, periodic solu­
tions of Hamiltonian systems, saddle points of nonquadratic functional are 
among the important topics not discussed. 

The mathematical community owes a debt of thanks to Fucik and Kufner, 
the two Czech authors of this book. They have produced a readable account 
of important contemporary topics in nonlinear analysis. These days, so much 
important research of our best people is dribbled out of them, piecemeal, in 
the form of imperfectly developed journal articles and conference proceed­
ings. Let us hope that in the near future, other highly talented mathematicians 
of nonlinear science will be afforded the opportunity and leisure to share with 
us their finest conceptions in the form of systematically developed books, 
accessible to a wide mathematically educated audience. 
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The thesis of this review may be summarized in three propositions. First, 
numerical analysis is a science with mathematical, empirical, and engineering 
components. Second, a conventional mathematical education does not equip 
one to deal with the last two components. Third, the book under review is a 
good place for a mature mathematician to get an appreciation of all three 
aspects of the subject. 

At the outset I would like to correct a possible misapprehension. For most 
of this essay, I am going to focus on the nonmathematical aspects of 
numerical analysis. This does not mean that I wish to minimize the role of 
mathematics in numerical analysis; on the contrary, it is hard to overstate its 
importance. But the pure mathematician coming to the field for the first time 
will find much that is strange, and I hope this review will provide a brief 
guide to this extra-mathematical territory. 

The mathematical component of numerical analysis scarcely needs arguing. 
The subject derives its analytic tools from many branches of mathematics. Its 
journals usually present results in the form of theorems, the coin by which 
mathematical productivity is currently measured. Nor are these theorems 
more trivial or less rigorously established than those of other branches of 
mathematics. Finally, most numerical analysis courses are listed in mathe­
matics departments, perhaps jointly with a computer science department. 

The empirical component of numerical analysis derives from the fact that 
numerical analysis is a branch of applied mathematics, and its results are 
therefore subject to outside verification. In general, an applied mathematician 
must look on a piece of experimental apparatus with a mixture of hope and 
trepidation, since it can confirm or deny his researches with unarguable 


