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The general philosophy behind the idea of operator models as a tool for 
studying a bounded linear operator on a Hilbert space is to associate with 



358 BOOK REVIEWS 

each operator some simpler objects which form a complete set of unitary 
invariants for the operator; next, one wants to give a recipe for constructing 
in a canonical way an operator on some concrete Hubert space having the 
given invariants. Thus, for example, the first spectacular success for this 
approach was the spectral theorem for normal operators, due originally to 
von Neumann, which tells one how to build any normal operator (up to 
unitary equivalence) from its scalar spectral measure and its multiplicity 
function. 

In the early 1950's, Livsic and his colleagues [6], [7], [18] began developing 
such a structure theory for non-self-adjoint operators. The starting point was 
to embed the operator in an object called an operator colligation or more 
simply a colligation (sometimes translated in the older literature as node from 
the Russian original which literally means knot). The colligation by definition 
is a commutative diagram of linear maps and spaces which couples the 
original space H to an auxiliary space E which carries the metric (possibly 
indefinite) induced by the imaginary part of the original operator A (called 
the principal operator of the colligation). They described how invariant sub-
spaces and extensions of the principal operator give rise to notions of 
factorization and prolongation for the colligation. They then introduced an 
analytic function of a complex variable, called the characteristic function of 
the colligation; the values of this function are operators on the auxiliary space 
E and are defined by a simple formula which involves transferring the 
resolvent of the principal operator to the auxiliary space via the maps of the 
colligation. This adds a complex-variables object to the formalism, which up 
to this point has been completely algebraic, and enables one to use techniques 
from complex variables to analyze colligations. Thus these early workers 
showed that the (algebraic) factorization of a colligation mentioned above 
corresponds to a factorization of the characteristic function (in the usual 
sense for functions). Standard representation theorems for Pick-class analytic 
functions and their operator-valued analogs then led to a spectral analysis for 
non-self-adjoint operators with trace-class imaginary part. Conversely, with 
the help of triangular models (both discrete and continuous versions) they 
were able to construct a completely non-self-adjoint operator as the principal 
operator of a colligation having a prescribed operator-valued function of the 
appropriate type as its characteristic function. Thus the characteristic func­
tion was the invariant from which one could recover the colligation; what 
developed here was really a model theory in the sense described above for the 
colligation rather than for the operator itself. All these developments are 
reviewed in the book of Livsic and Yantsevich (hereafter referred to as [LY]) 
with referrals to the original sources for proofs. 

In the early 1960's the theme of characteristic functions appeared again but 
in a different way in the work of Sz.-Nagy and Foias (see [22] and the 
references there) and deBranges and Rovnyak [4], [5]. Sz.-Nagy and Foias 
came upon their characteristic function for a contraction operator by study­
ing the geometry of the unitary dilation space. They showed how to build a 
functional model which recovered the contraction operator and its unitary 
dilation space from the characteristic function, how regular factorizations of 
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the characteristic function parametrized the invariant subspaces of the con­
traction operator, and how to describe the commutant via the lifting theorem. 
deBranges and Rovnyak developed a roughly equivalent model theory, but 
with the reproducing kernel function as the starting point. One could say that 
the Livsic and Sz.-Nagy-Foias theories gave a spectral theory for non-self-ad­
joint and contraction operators analogous to that achieved by von Neumann 
for normal operators. However, despite all this progress, none of these 
approaches (by those already mentioned as well as others, such as Helson 
[11]) was able to solve completely a basic structural problem: does a bounded 
linear operator on a separable Hubert space have a nontrivial invariant 
subspace? Only recently Kriete [16] identified the completely non-self-adjoint 
part of Livsic's triangular model, and thus was able to read off that any 
dissipative operator with a trace-class imaginary part has a nontrivial in­
variant subspace, a result obtained in the meantime by other methods. 

Thus, from the point of view of pure operator theory, the so-called operator 
"model theory" seemed to be an elaborate machine which was unable to 
solve any real problems. However, in the meantime the theory was branching 
out and making contact with engineering and physics. Livsic's two books [19], 
[LY] applied the colligation concept to engineering situations and nonsta-
tionary stochastic processes but remained relatively unknown in this country. 
Adamjan and Arov [1] discovered that the Lax-Phillips scattering theory [17] 
and the Sz-Nagy-Foias model had the same mathematical core, just with 
different points of view. Helton [12], [13] identified strong mathematical 
similarities between elements of systems theory (including scattering), electri­
cal networks and operator models. Thus, as a few examples out of the many 
possible, the following are worth mentioning: such independently existing 
objects from physics and engineering as the scattering function and the 
frequency response function are really characteristic functions in disguised 
form, the whole Sz.-Nagy-Foias model theory can be reinterpreted as a 
treatise on infinite-dimensional discrete-time linear systems, and the Sz.-
Nagy-Foias formula for the characteristic function of a contraction operator 
is really a special instance of cascade coupling of two electric circuits. All 
these developments have served to enrich the old model theory and suggest 
new directions and generalizations where the old single-operator point of view 
has pretty much been obliterated (see for example [3], [14]). 

As suggested above, [LY] was one of the forerunners of this broadening of 
the ideas and techniques of "operator model theory" to diverse areas of 
applications. I shall limit the specific discussion of [LY] to three main themes: 
1) open systems; 2) nonstationary stochastic processes; and 3) refinements of 
colligations and their characteristic functions. 

1. Open systems. In classical physics, the state of a physical system at any 
point in time is described by a state vector in a linear space, the energy is 
given by a quadratic form on the state space, and energy is conserved as the 
system evolves in time. Completion of the state space in the energy norm 
gives rise to a Hubert space, and the evolution of the system in time is 
described by a one parameter group of operators acting on the state space; 
since energy is conserved, this group is unitary, and then by Stone's theorem, 
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is generated by a self-adjoint operator. This explains the importance of 
self-adjoint operators in classical physics. The authors call such energy 
conserving systems closed systems, since they do not interact with the outside 
world. However, in practice many systems, especially those arising in en­
gineering contexts, are not energy-conserving. The authors propose open 
systems (an idea also prominent in [19]) as a model for such systems. The 
state operator for an open system is now a non-self-adjoint operator; when 
one embeds it in a colligation, the auxiliary space of the colligation represents 
the "external world" which houses inputs and outputs which interact with the 
internal states coming from the original system. With the appropriate 
quadratic form on the external space, an energy conservation law is recovered 
for the enlarged more complicated system. The old spectral analysis for 
operator colligations described above then enables one to analyze how to 
decompose a given system into simpler systems, among other things. 

2. Nonstationary stochastic processes. A stochastic process is simply a 
complex-valued measurable function z = z(t, w): R X ti -+ C where R is the 
real line and (£2, JU) is a probability measure space. Thus z(t) = z(t, •) is a 
random variable in probabilistic language; the prediction problem is to 
estimate z(t + T) from a knowledge of (z(,s)|.s < /} . If the process is sta­
tionary, that is, the correlation function v(t, s) = E{z(f) • z(s)} = 
<z(/), z ^ ) ) ^ ^ depends only on the difference of the arguments (v(t, s) = 
v(t — s)), then the operator UT: z(/)—»z(/ + T) extends by linearity and 
continuity to a unitary operator on the Hubert space L2(JU). If one assumes 
that the process is linearly representable, one can get a concrete Hubert space 
model for the original process which then makes problems such as prediction 
tractable via function theory techniques. This has led to the highly successful 
theory of stationary stochastic processes of the last four decades. In their 
book the authors are interested in developing an analogous machinery for 
nonstationary processes. In this case the generator of the group Ur above is 
non-self-adjoint, and the older methods for studying non-self-adjoint opera­
tors via colligations can be brought in to play a role. They introduce the 
infinitesimal correlation function 

Wit, X) = -—V{t + T, S + r) 
or 

where v(t, s) is the correlation function, and then define the nonstationariness 
rank of the process to be the maximal rank r (0 < r < oo) of all quadratic 
forms 

2 w(tj, tk)£k (_oo < tx < t2 < • • • < /„, n = 1, 2, . . . ). 
j,k-\ 

The form of the correlation function is found and spectral resolutions are 
obtained for various classes of linearly representable dissipative processes of 
given rank r; the techniques come from the theory of characteristic functions 
and triangular models discussed above. The material in the book per se does 
not solve any problems (such as prediction) but appears ready to be milked 
for future applications as it becomes better known. 
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3. Refinements. The reader will also find interspersed throughout the book 
various refinements of the original notion of colligation. Thus for example, a 
colligation is defined for an «-tuple of non-self-adjoint operators (rather than 
for a single operator); the corresponding characteristic function becomes a 
function of several variables. These notions can then be applied to multi­
variate stochastic processes (parametrized by Rn rather than R). In recent 
work Livsic [20] and Kravitsky [15] have established some connections 
between characteristic functions for commutative colligations and algebraic 
geometry, and Livsic [21] has obtained a triangular model for any two 
commuting finite-dimensional operators. This last result I think is rather 
impressive in view of how attempts to generalize the Sz.-Nagy-Foias theory to 
several variables always seem to get bogged down in pathologies of the 
function theory on the polydisk [2], [8]-[10], [23]. Also the authors give a 
notion of colligation involving Riemannian differential geometry and discuss 
colligations invariant with respect to a group of transformations. 

The style is rather formal and the going a little heavy at times with strings 
of definitions and theorems; also the list of references would leave one quite 
unaware that there was much activity in American operator theory, but these 
are minor points. I think the book is well worth the attention of researchers in 
operator and systems theory, probability and statistics; what's more, by 
today's standards, the price is quite reasonable. 
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Nonlinear differential equations, by S. Fucik and A. Kufner, Studies in 
Applied Mechanics, vol. 2, Elsevier, New York, 1980, 359 pp., $83.00. 

Recently three closely guarded secrets of modern mathematics and science 
have been revealed. They are 

(i) the understanding of genuine nonlinear phenomena lies at the heart of 
many important problems in diverse areas of knowledge; 

(ii) these nonlinear phenomena can often be adequately described by 
studying systems of nonlinear differential equations; 

(iii) there are simple systematic mathematical ideas and techniques that are 
adequate to treat broad classes of these nonlinear systems. Moreover, when 
such ideas do not exist, they are being keenly pursued world-wide by many 
researchers, young and old. 

Thus, each day seems to bring additional insights and significant mathe­
matical results connecting the three facts mentioned above. These results are 
attained not only by professional mathematicians, but also by mathematically 
trained scientists and engineers whose work forces them to solve these 
problems. 

All those who love mathematics have cause to rejoice since many modern 
mathematical areas developed until now for their own sake (e.g. homotopy 
groups of spheres and simple Lie groups, abelian functions, singularity 
theory, and the differential geometry of connections) are absolutely essential 
for the understanding of key nonlinear problems of science. These problems 
in turn spawn new fruitful directions of depth and subtlety for mathematics 
and science. Hidden links between diverse mathematical areas are being 
revealed. In short, we are witnessing the making of a new mathematical and 
scientific revolution. 

The book under review explains some known (functional analysis) methods 
for certain classes of boundary value problems for certain nonlinear differen­
tial equations. The authors limit themselves to nonlinear elliptic equations 


