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DECIDABLE VARIETIES WITH 

MODULAR CONGRUENCE LATTICES 

BY S. BURRIS1 AND R. McKENZIE2 

ABSTRACT. For a large collection of varieties we show that if the first-order 
theory of such a variety is decidable then the variety decomposes into the prod­
uct of two well-known highly specialized varieties. For many varieties the deci­
dability question then reduces to a decidability question about modules. 

A variety is a class of (abstract) algebras (belonging to some language) closed 
under the formation of direct products, subalgebras and homomorphic images. A 
variety 1/ is locally finite if every finitely-generated member of (/ is finite. A 
class of algebras K generates a variety 1/ if 1/ is the smallest variety containing 
K—then we say that \J is generated by K, written 1/ = V{K). A variety is finitely 
generated if it is generated by finitely many finite algebras, or equivalently by a 
single finite algebra. The kernel of a homomorphism is called a congruence, and 
the congruences of any algebra form a lattice. A variety is congruence modular, 
or we prefer to say just modular, if the lattice of congruences of every algebra in 
the variety satisfies the modular law. (Most of the well-studied varieties are mo­
dular; for example varieties of groups, rings, modules and lattices are modular. 
However,the variety of semigroups is not modular.) 

A variety \] is a product of two subvarieties | / j , |/2 ifl / j U l/2 generates 
(/ and there is a term b(x, y) such that M x \= b{x, y) = x, l/2 |= b(x, y) = y. 
If this is so we write 1/ = 1/ x <£) 1/ 2 , and then for every algebra A in 1/ there are 
(up to isomorphism) unique algebras Ax G (/p A2 G (/2 such that A = Ax x A2. 
A class K of first-order structures has a decidable theory if there is an effective 
procedure to determine precisely which first-order sentences are true of every 
member of K. 

A variety 1/ is a discriminator variety if it is generated by a set K for which 
there exists a ternary term t(xf y, z) such that K satisfies t(x, yy z) = x if x =£ y\ 
= z if x — y. In everyday mathematics such varieties appear only as highly spec­
ialized varieties of rings, or varieties associated with algebraic logics. 
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The center ZA of an algebra A is the binary relation defined by 

(a, b) e ZA iff WtVu\/v[t(uf a) = t(v, a) <-+ t&, b) = t(pf b)], 

where t denotes an m + 1-ary term and u, v' are m-ary sequences of variables, 
for any m < co. ZA is actually a congruence on A. An algebra is abelian if V(A) 

is modular and ZA = A x A. Given any modular variety M the abelian algebras 
in M form a sub variety M ab. 

Let BP1 denote the class of structures (B, B0, V, A, ', 0, 1) where 
(B, V , A, ', 0, 1) is an atomic Boolean algebra and (BQ9 V, A, ', 0, 1) is a 
subalgebra containing all the atoms of B. 

THEOREM 1. The theory of BP1 is undecidable. 

PROOF. The class of finite graphs can be interpreted in BP1 along the lines 
of a construction introduced by M. Rubin [6]. • 

THEOREM 2. If 1/ is a locally finite modular variety such that every reduct 
of M to a finite language has a decidable theory-, then V has a subvariety Vds 

which is a discriminator variety and 1/ = Vds® \lab. 

PROOF. We focus our attention on three special kinds of finite algebras. 
(Type I) A is subdirectly irreducible and there is a subalgebra B of A and a 

congruence 0 of B such that ZA n (B x B) < d < B x B. 
(Type II) A is subdirectly irreducible nonabelian with ZA = 0, and there is 

an abelian subalgebra B of A with |2?| > 1. 
(Type III) A is directly indecomposable but not simple and V(A) is con­

gruence distributive (i.e. every algebra in V(A) has a lattice of congruences which 
satisfies the distributive law). 

If (/ contains an algebra A of Type I or III then, using a modification of the 
Boolean power construction, we can interpret BP1 into the class of subdirect 
powers of A. If 1/ contains an algebra A of Type II then, extending a technique 
pioneered by Zamjatin [8] for the study of groups, finite bipartite graphs can be 
interpreted into the class of subdirect powers of A. 

It follows that no finite member of (/ can be of Type I, II or III. Then 
using A. Pixley's characterization [5] of finitely-generated discriminator varieties 
plus the modular commutator introduced by J. Hagemann, C. Herrmann and J. D. 
H. Smith [3], [4], [7] and two results of R. Freese and R. McKenzie [2], [2a], 
one can prove that 1/ has the desired decomposition. D 

THEOREM 3. The question of 'which modular varieties V(A), generated by 
a finite algebra A belonging to a finite language, have a decidable theory' effec­
tively reduces to the question of 'which finite rings R are such that the class of 
unitary left R-modules has a decidable theory'. 
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PROOF. Given a finite algebra^ of finite type one can effectively deter­
mine if V(A) is modular, and also if V(A) is of the form Vds ® 1/ab where (/ds 

is a discriminator variety and Mah is abelian. H. Werner (see [1]), extending re­
sults of S. Comer, proved that every finitely-generated discriminator variety be­
longing to a finite language has a decidable theory. If V(A) = \Jds ® \]ah then 
one can effectively construct a finite ring R, given A, such that a decision proce­
dure for the theory of \]ah yields a decision procedure for the theory of unitary 
left /?-modules, and vice-versa. D 
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