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LINEAR GROUPS OF 
FINITE COHOMOLOGICAL DIMENSION 
BY ROGER C. ALPERIN1 AND PETER B. SHALEN1 

Our main result provides necessary and sufficient conditions for a finitely-
generated subgroup of GLn(C), n > 0, to have finite virtual cohomological dimen­
sion. A group has finite virtual cohomological dimension (VCD) if it has a sub­
group of finite index which has finite cohomological dimension; this dimension is, 
in fact, the same for all torsion-free subgroups of finite index. It is, of course, 
necessary for a group r with VCD(T) < °° to have torsion-free subgroups of fi­
nite index; this is guaranteed in the case of finitely-generated linear groups by a 
well-known result of Selberg which extends ideas of Minkowski. 

A subgroup of GLn(C) is called unipotent if it is contained in a conjugate 
of the group of upper triangular matrices with all diagonal entries equal to one. 
Any unipotent subgroup is nilpotent; hence, a finitely-generated unipotent sub­
group is poly cyclic and torsion-free. It is well known that a poly cyclic group has 
finite cohomological dimension if and only if it is torsion-free; moreover, the 
cohomological dimension is the same as the Hirsch rank. For a solvable group T 
with solvable series, 1 = Tn < Fn_l < • • • < I \ = T, the Hirsch rank, h(T) = 
Sĵ Tj1 dimQ(ryr /+1 <8> Q), is independent of the choice of solvable series; thus, 
for a polycyclic group r, h(T) is the number of infinite factors in a normal series 
with cyclic quotients. 

We announce our main result. 

THEOREM. Let A be a finitely-generated integral domain of characteristic 
zero. A group T C GLn(A), n > 0, has finite VCD if and only if there is a finite 
upper bound on the Hirsch ranks of its finitely-generated unipotent subgroups. 

We obtain easily the following curious corollary. 

COROLLARY 1. Every finitely-generated subgroup of the unitary group 
Un(C), n > 0, has finite virtual cohomological dimension. 

The following result is immediate; it, however, was original motivation for 
our Theorem. 
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COROLLARY 2 (SERRE [3, THÉORÈME 5]). Every finitely-generated sub­
group ofGLn(Q), n > 0, has finite virtual cohomological dimension. 

Ralph Strebel has suggested, as a consequence of our Theorem, that we 
generalize certain results of Bieri. Before mentioning that generalization, we re­
quire the following corollary. 

COROLLARY 3. Let F denote a field of characteristic zero. If F is a 
finitely-generated subgroup of GLn(F), n > 0, with center Z then F has finite 
VCD if and only if Z and T/Z have finite VCD. 

A group T is said to be of type FP if the trivial T-module Z has a finite re­
solution by finitely-generated projective ZF modules. Combining our Corollary 3 
with the methods of Bieri [2] we obtain the following as an immediate conse­
quence. 

COROLLARY 4. If F is of type FP and has a faithful linear representation 
over a field of characteristic zero then the center of F is finitely generated. 

The proof of our main theorem involves the action of linear groups on the 
Tits' buildings for discretely-valued fields. This ingredient already occurs in 
Serre [3]. Serre's application to groups of type FA [4, Proposition 2] was 
carried further by Bass [1, Theorem 6.5] in describing finitely-generated subgroups 
of GL2(C). Inspired by this we have shown that (with the notation of the 
Theorem) there are finitely many valuations vx,..., vm of the quotient field of A 
such that A O $ n • • • O 0V is the ring of integers in a number field K. This 
is used to produce an action of T on a contractible cell complex which is a pro­
duct of finitely many Tits' buildings, such that the stabilizer of each cell consists 
of matrices whose characteristic roots are algebraic integers in an extension of K 
having bounded degree. Under the hypothesis of the Theorem, one can bound 
the virtual cohomological dimensions of these stabilizers by representing them as 
discrete subgroups of Lie groups. 

A result due to Quillen [3, Proposition 2] then implies that F has finite 
VCD. The details of proof will appear elsewhere; the techniques can be further 
refined to give a theory of hierarchies for matrix groups which is analogous to 
the Haken-Waldhausen theory for 3-manifolds. 

We would like to thank Hyman Bass and Ken Brown for their encouragement 
throughout the stages of development of these results. 
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