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These lectures are meant as an informal introduction to some of the 
techniques used in proving existence of solutions of nonlinear problems of the 
form 

F(u) = y. (1) 

Here F is a continuous (and usually smooth) mapping from one topological 
space X to another Y, and the spaces are usually infinite dimensional. The 
model to keep in mind is one in which these spaces are function spaces 
defined in domains on finite-dimensional manifolds, and F is a system of 
nonlinear partial differential operators-or integral operators. 

A number of special topics will be presented-in three parts: 
I. Global methods: homotopy, in particular topological degree theory, and 

extensions. Applications to nonlinear boundary value problems. 
II. Variational methods, in which a solution is a stationary point of some 

functional. Applications. 
III. Local study, perturbation about a solution. 
An important analytic aspect of all these problems is that of finding a 

priori estimates for the solutions. How one does that varies from problem to 
problem and I will barely touch on these technical aspects. I will try, rather, 
to avoid technicalities and stress the topological and variational ideas. 

The lectures are not addressed to the experts in these fields-for them there 
will be little new. They are given with the hope of attracting others to the 
subject. Up to now, the topological and abstract ideas used are rather 
primitive, and I am confident that there will be enormous further develop­
ment-involving more and more sophisticated topology. 

A condensed version of some of this material was presented in [48]. 
Here is a more specific list of the topics treated. 
1.1 Some classical things. Continuity method. Degree theory. 
1.2 Some recent extensions of Leray-Schauder degree theory. 
1.3 Extension of degree theory to Fredholm maps by Elworthy and 

Tromba. 
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1.4 Fredholm maps with positive index. 
1.5 Modifications of degree associated to invariant orbits of ordinary 

differential equations. 
II. 1 The Palais-Smale condition (PS) and an elliptic boundary Value 

problem. 
11.2 The mountain pass lemma. Solution of the boundary value problem. 
11.3 Generalizations and variants of the mountain pass lemma. 
11.4 A theorem of P. Rabinowitz on periodic solutions for a Hamiltonian 

system. 
11.5 Periodic solutions of a nonlinear string equation. 
111.1 Remarks on bifurcation theory for Fredholm operators. 
111.2 The Nash-Moser Implicit Function technique. 
111.3 Klainerman's result on the existence of smooth solutions for all time 

of a nonlinear hyperbolic initial value problem. 

I. Global topological methods 

For convenience we will assume that the spaces X, Y are Banach spaces 
and that F is a smooth mapping. We begin with some very classical things. 

1.1 A standard, but still very useful, method, is to try to show that 
(i) Range of F is open, 
(ii) Range of F is closed. 

For (i), a natural tool is the implicit function theorem. If y = F(t/0), in order 
to show that a neighbourhood of y0 is contained in the image of one of w0, 
one looks at the continuous linear operator A = F'(u0): X-* Y. If A is 
bijective the desired result follows from the implicit function theorem (IFT). 
It suffices, in fact, that A be surjective. 

We shall make use of the following 

DEFINITION. If A = F'(w0) is bijective, the point u0 is called a regular point 
of F. 

To establish (ii) one usually tries to show that the map F is proper, i.e., the 
preimage of every compact set is compact. It is here that a priori estimates for 
solutions of the equation enter in a crucial way. This is usually where the 
hard work comes in. 

A variant of this approach is the 
CONTINUITY METHOD. The operator F is continuously connected by a 

one-parameter family of operators Fr 0 < t < 1, Fx = F, to an operator F0 

for which it is known that a solution of (1) exists. Then one tries to prove 
(i') the set of t for which a solution exists is open. 
(ii') the set of t for which a solution exists is closed. 

Again one leans on the implicit function theory and on a priori estimates. 
A word of caution: For a nonlinear partial differential operator F these 

methods usually fail-unless the operator is elliptic (to be explained later for a 
special case). The reason is that the implicit function theorem may not be 
applicable. There are of course different ways in which it may fail: (a) The 
linear operator A = F'(u0) may be injective, and so invertible on its range, 
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but the range may not be the whole space Y. For example the range may be 
dense but not closed in Y. This may happen in the following way. It may be 
that one can solve (in some sense) Au = y for every y G 7, but the "solution" 
x doesn't lie in the space X, but in some larger space. For example, X and Y 
may be spaces of functions with some given degrees of smoothness-defined 
on some bounded domain in Rn. It may be that we can solve Au = y, 
V>> G Y, but u does not have the desired smoothness, i.e. we "lose 
derivatives". This is typical for nonelliptic differential operators. In such cases 
one tries to use the generalized implicit function theorems, such as the 
Nash-Moser method. This will be taken up in part III. 

(b) The IFT may fail in a simpler way. One may have 

ker F\u0) ^ 0 

but 

Range F'{u^) is a closed subspace of Y. 

In such a situation the local problem is usually called a bifurcation problem 
(splitting of solutions may occur). The cases that have received the most 
intensive study are those in which 

dim ker F'(u^ = d < oo 

and 

codim Range F'{u^) = d' < oo 

i.e. Y may be decomposed as Range F'(u0) 0 Y2, dim Y2 = d'. If F has this 
property at u0 we say that F is a Fredholm operator there, and its index is 
d- d'. 

Using well-known properties of linear Fredholm operators (see for example 
[56]) one finds that F is Fredholm everywhere in a neighbourhood of u0 and 
its index is constant there. 

Turning to topological methods, recall that homotopy theory began with 
attempts to find conditions on maps F to guarantee that (1) has a solution. 
Consider a continuous map F from the closed unit ball B in Rn into Rk for 
which one wishes to solve the equation 

F(u) = 0. 

Let <j> be the restriction of F to dB and assume <j>: dB -> Rk \ {0}. Homotopy 
theory yields a sufficient condition on <j> so that every continuous extension F 
of <j> to the inside of B has, necessarily, a solution of F(u) — 0. Namely, the 
homotopy class of <j>: Sn~l -> Rk \ {0} should be nontrivial. An equivalent 
formulation, for the normalized map 

is that xp: S"~l -» Sk~l should be homo topically nontrivial. In case k = n 
this is equivalent to the assertion that the degree of the map i// = the degree of 
the map F at the origin, is nonzero. For generic^ with F: dB -^ R" \ {y}9 the 
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degree of the map F at y, 

deg(F, B, y) = v, an integer. 

v represents the number of times y is covered, i.e. the number of preimages of 
y with each preimage counted with + or -1 according as, locally, F preserves 
or reverses orientation there. 

The most frequently used topological tool in attacking global nonlinear 
problems is the Leray, Schauder [38] extension of degree theory to infinite 
dimensions. In Banach space X it applies to operators F: X —> X of a special 
form 

F= I - K (2) 
where / = Identity operator and A' is a compact operator (i.e. the closure of 
the image under K of any bounded set is compact). If K is smooth then F is a 
Fredholm map everywhere with index = 0. 

Let us consider equation (1) for such F defined in the closure of a bounded 
domain 12 in X, mapping into X. Assume 

y £ F(312). (3) 

Then the degree of the map F in 12 at the pointy is defined: 

deg(i% 12, y) = v — integer. 

It_is obtained from finite-dimensional degree by approximating K (within e 
on 12) by a map Ke into a finite-dimensional subspace Xe containing y. One 
then defines deg(F, 12, y) as the finite-dimensional degree 

d e g ( ( / - A ; ) , O n *.,>>). 
To verify that this is independent of c, for small e, one uses the fact that 
degree does not change under suspension of a map F9 i.e. by extension of the 
map to a product space with another space by taking the product of F with 
the identity map in the other space. 

We list a few important properties: 
(a) If v = deg(F, Q,y) ^ 0 then F(u) = y has a solution in 12. For F = I, 

v = L 

(b) If 12 = U °li 12,, 12/ open, nonoverlapping and>> £ ^(312,), Vi, then 

deg(F,!2,>0 = 2 deg(F,Q„>0. 
i 

(c) The degree v is invariant under homotopy_of the map Ft = I — Kn 

0 < t < 1, in our class, i.e., provided {Kt(x)\x E: 12, 0 < t < 1} has compact 
closure and 

y « F,(912), Vt. 

(d) Suppose that a solution u of F(u) — u — K(u) = y is a regular point of 
F. (By IFT it is an isolated solution.) Then the local degree (index) of F at u 
is defined as ind(w) = loc deg F at u = deg(F, e-ball about u; y). It is 
independent of e for e small, and equals +1 or -1 according as the sum of the 
algebraic multiplicities of the negative eigenvalues of F\u) is even or odd. 

Presentations of degree theory and derivations on these properties may be 
found in [37], [57], [39], [47], [51] and many other places. 
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Degree theory is often used in the following way: To show that (1) has a 
solution with F as in (2), try to show that all solutions He inside some 
bounded domain 12-that is, obtain a priori estimates for all solutions. Then, 
to prove v = deg(F, 12, y) ^= 0, construct a deformation of F, Ft = I — Kt 

belonging to our class, and such that>> £ Ft(d$l), deforming F = Fx to F0, for 
which one knows deg(ir

0, 12, y) ¥^ 0. For F0 = /, we find v = 1. 
Property (d) is sometimes useful in trying to determine the number of 

solutions of (1). Sometimes one can show that F~l(y) consists of a finite 
number of regular points in 12, all having the same local degrees, say ± 1. If 
deg(F, 12, y) = k it follows that there are exactly |A:| solutions in 12. 

This completes the classical things and we now take up some recent 
extensions. 

1.2 Considering, still, mappings of the form (2) and satisfying (3) we will 
describe two results related to (d). 

The set of regular points 12r in 12, of F9 is open (by IFT). Let 6 be a 
connected component of 12r. For any u E 6, define for small e 

ind(w) = (deg F, e-ball about u, F(u)) = ± 1 . 

It is easy to see that this is a constant in Q and so may be considered as 
ind(G). In [7] Ambrosetti and Mancini showed (in a Hubert space, though it 
works as well in a Banach space), that this index necessarily changes as we 
cross from one component of 12r to another-in a particular generic circum­
stance. They then applied this to prove that certain equations in Hubert space 
have exactly three solutions. Their generic condition is easy to describe: 

Let w0 E 12 be a nonregular point of F and assume that 
(i) ker F'(u0) is spanned by a vector v. Consequently Range F'(u0) is a 

closed linear subspace Xl of X, of codimension one. Consider next the second 
derivative (Hessian) F"(u0) of F. This is a symmetric bilinear map of 
X X X ->X. Assume 

(ii) there is a vector w such that 

F"(w0)(t;,w) is n o t i n g . 

In this case it is easy to see (Theorem 3.7.2 in [47]) that in a neighbourhood of 
w0, the set 12r has two components which are separated by a smooth hyper-
surface. Their result is that under conditions (i), (ii), the indices of these two 
components are different. 

We turn now to a recent generalization of (d). In bifurcation theory one 
sometimes encounters a finite-dimensional manifold of solutions of (1). Let us 
suppose that a connected component of F~l(y) consists of a compact 
finite-dimensional manifold M without boundary. It is natural to try to 
determine ind(M) = the local degree at y of F in a neighbourhood of 
M-assuming F is "regular" on M, i.e., assuming: 

REGULARITY. 

ker F'{u) = TUM, Vw E M. 

Here TUM is the tangent space to M at u. 
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Assuming M is orientable, and F is regular on M, Sylvester [58] proved the 
following 

THEOREM. If dim M is odd then ind M = 0. If dim M is even then 

ind(M) = ±x(E) 

= ± Euler characteristic of a vector bundle E over M, 

where for u G M, the fibre 

Eu = X/ (Range F'(u)). 

In particular, if TUM n Range F\u) = 0, Va G M, then 

ind(M) = ±x(^)-
Furthermore one has + or — according as the sum of algebraic multiplicities of 
negative eigenvalues of F'{u) is even or odd, for u G M. 

So far no application has been made of the result. _ 
Degree theory extends to set-valued maps of the form (2): For u G Q, K(u) 

is assumed to be a compact convex set which is upper semicontinuous in u. 
Furthermore (J M(Eâ K(u) has compact closure. One wishes to solve 

y G u - K(u). (10 

If Vw on 9Œ, u — y & K(u), then deg(i% £2, y) can be defined as before, with 
similar properties. A treatment of this may be found in the book of Lloyd 
[39]. 

Recently this has been used effectively by K. C. Chang [18] to solve several 
problems: (a) plasma problems, (b) an obstacle problem, in which one wishes 
to find solutions of an elliptic partial differential equation satisfying a side 
condition: it is to lie above a given obstacle. 

1.3 Attempts have been made to extend degree theory to mappings F which 
do not have the form (2). Elworthy and Tromba [27], [28] have developed 
degree theory for smooth Fredholm mappings between Banach manifolds. (A 
Banach manifold modeled on a Banach space X is an infinite-dimensional 
manifold for which each point has a distinguished neighbourhood U and a 
chart map <j>: U onto X.) For an overlapping neighbourhood V, with chart 
map \p: F-> X, it is required that on \p(U n V)9 <J> ° i//"1 have the form (2). 
For convenience, we will consider only Fredholm maps between Banach 
spaces, F: X —» Y with F defined on the closure Œ of a bounded domain Q in 
X. F is assumed to be proper. 

Using suitable orientations on X and Y, in terms of the admissible chart 
mappings, they defined for Fredholm maps F of index zero, an oriented 
degree 

deg(F, ü,y) = v, v an integer, 

in casej> £ F(3S2). 
They proved that this has the properties (a)-(d) above except that (c) holds 

in a weaker form. Namely, under a suitably restricted class of deformations, 
the degree v is not necessarily invariant, but \v\\%. 

Their theory makes use of the Sard-Smale lemma. This has been redone in 
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a somewhat simpler way, via more systematic use of transversality, by 
Borisovich, Zvyagin and Sapronov. See their useful expository article [12]. 
Furthermore they extend the Elworthy-Tromba theory to maps of the form 
F = Fx + K where Fx is a smooth Fredholm map of index zero and K is a 
continuous compact map. 

This generalized degree has not received much application but I believe it 
will prove useful. As an indication of its use in a situation where the 
Leray-Schauder degree does not apply let us consider a second order quasilin-
ear elliptic equation for a real function u{x) defined in a bounded domain G 
'mRn with smooth boundary-under the boundary condition u = 0 on 9G. 

2 aij(x, u, grad w)w^ + f(x, w, grad u) = 0 on G. 

Ellipticity means that the quadratic form 

aiJ(x, w, gradw)£,£, 

is always positive definite. We try to find a solution u as a fixed point of the 
map K: u i-> v, where v is the solution of 

2 aiJ(x, w, grad u)vxx + f(x, u, grad u) = 0 in G, v = 0 on 8G. 

Thus we assume we know how to solve linear elliptic boundary value 
problems. In appropriate function spaces, the map A' is a smoothing operator 
and therefore compact. For example if u belongs to the Sobolev space Hs of 
functions having square integrable derivatives in G up to order s, for s large 
then v belongs to Hs+l. 

So we wish to solve 

F(u) = u - K(u) = 0. 

Suppose we can establish a priori estimates for solutions together with 
derivatives-guaranteeing that the solutions all lie inside some big ball B in 
our function space. Then deg(F, B, 0) is defined, and we may try to prove it 
is not zero. 

In place of the quasilinear equation above let us consider a general 
nonlinear elliptic equation 

A[ w] = A(x, M, grad w, uxx) = y(x) in G, u = 0 on 3G. 

Ellipticity means the quadratic forms 

are all positive definite. It appears that the Leray-Schauder theory is not 
applicable since it does not seem possible to recast this in the form (1), (2). 
However in the space of functions in HS(G), s large, vanishing on the 
boundary, the Elworthy-Tromba theory of Fredholm maps may be applicable 
provided we have a priori bounds in Hs for all solutions. Their degree 

deg(^4, B,y) = v 

is then defined, and v ^ 0 ensures the existence of a solution. It seems 
surprising that up to now this method has not been employed. 
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1.4 El worthy and Tromba have also treated Fredholm maps F with positive 
index. The corresponding degree is no longer an integer but a Pontrjagin 
framed cobordism class (see [27], [28], [46], [12], [11] which also contain 
further references). This is however difficult to work with. In some situations 
one may use stable homotopy or cohomotopy; in [46] some application to 
elliptic boundary value problems has been made. But so far no natural 
example has arisen in which these methods have been used. I am confident 
that some will occur. 

To conclude the discussion of topological methods for (1), it should be 
mentioned that many mathematicians have made important contributions in 
this field. To mention a few: M. A. Krasnoselskii, F. Browder, R. Nussbaum, 
W. Petryshyn, and for more general use of homotopy theory K. Geba and A. 
Granas. See [11], [31], [47] for some useful references to recent developments. 

1.5 In the study of periodic solutions of systems of ordinary differential 
equations much work has been done to find invariants associated with closed 
orbits, or isolated families of closed orbits, i.e., which are invariant under 
perturbation of the system. This is to guarantee that the perturbed equations 
also possess closed orbits near the original ones. 

Let us recall the simplest situation. Consider a system of ordinary differen­
tial equations for a vector x in Rn. 

* - • § - ƒ ( * ) . (4) 

Suppose we have a nonconstant closed (i.e. periodic) orbit x0(t). Through a 
point y0 on the orbit consider a hyperplane P perpendicular to the orbit at y0. 
On it, near y0 consider the Poincaré map F of P —> P defined as follows. 
From any point y e P near y0 follow the solution curve of the system until it 
strikes P again for the first time near j>0-it is easily seen that it must. Let z be 
the point where it first strikes P. The map y H> Z is called the Poincaré map. 
Clearly y0 is a fixed point of this map. 

Suppose y0 is an isolated fixed point, set F(y) = y — z(y). Then for a small 
ball B in P centered at j>0 t

n e degree 

deg(F, B, 0) = v 

is well defined. If v ^ 0 we may then infer that any slight perturbation of the 
system (4) has a periodic solution lying close to x0(t) (and in fact its period 
will be close to that of x0(t)). 

In [30] Fuller introduced a more general notion, now called the Fuller 
index, attached to a closed orbit of (4). This has proved very useful; 
Mallet-Paret and Yorke [40] modified this to study global connected sets of 
orbits in case ƒ depends on a parameter. The reader may also find many 
useful references here. 

Conley [21] has introduced a very interesting generalization of the Morse 
index for any isolated set which is invariant under the flow of (4), i.e. the 
maximal invariant set in some neighbourhood of itself. In Morse theory, one 
studies Morse functions: real functions ƒ on «-dimensional manifolds having 
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nondegenerate stationary points, i.e. at a stationary point the Hessian matrix 
of second derivatives 

fxx is nonsingular. 

The number k of negative eigenvalues of the Hessian is called the index of the 
stationary point. The global structure of the (compact) manifold is tied to the 
number of critical points of ƒ with various indices. 

Conley's generalized Morse index assigned to a compact isolated invariant 
set S is the homotopy type of a pointed topological space, i.e. a space with a 
distinguished point in it. Very roughly, it is defined in the following way. Let 
N be a neighbourhood containing S compactly in its interior. An index pair 
(Nv N2} is a pair Nv N2 of compact subsets of N satisfying several 
conditions: 

(i) relative to N they are invariant under forward flow i.e. for i = 1, 2, 
V*0 G Nt and \/t > 0, the point x(t, x0) (i.e. the point on the orbit starting at 
JC0, after time t has elapsed) is either in Nt or is not in N, 

(ii) S c int[tf, \ (Nx n N2)l 
(Hi) N2 is roughly the set of points through which orbits eventually leave N 

under the flow, i.e. if some point x in Nx eventually (its orbit) flows out of N 
then it first passes through N2. 

The generalized Morse index of S is the homotopy class 

h(S)=[Nl/{NlnN2)]. 

(Recall that two spaces A and B are homotopy equivalent if there exist two 
continuous mappings <j>: A —> B and \p: B —> A such that </><>;// and \p ° <f> are 
homotopic to the identity in B and A respectively.) 

One of the main properties is 

THEOREM. h(S) is independent of the choice of Nx and N2 and also of the 
neighbourhood S. Furthermore suppose N c N', and for N' we have an index 
pair (N[, N2}, and suppose 

[N,/ (JV, n N2)] #[j\r, '/ (N[ DNQ]. 

Then N' must contain some other invariant set besides S. 

Recently Amann and Zehnder [4] have applied this theorem to prove the 
existence of solutions of some nonlinear partial differential equations. They 
use the result in a rather special situation-which we now describe in the 
simplest case. Consider a real smooth f unction ƒ defined on all of Rn, which, 
near the origin, is equal to a nondegenerate (i.e. having no zero eigenvalues) 
homogeneous quadratic having k negative eigenvalues. Near infinity ƒ is also 
assumed to be a nondegenerate homogeneous quadratic having k' negative 
eigenvalues. 

LEMMA. If k' ^k then f must have a nontrivial critical point. 

REMARK. In case k' — k is odd the result is easily proved using degree 
theory. Set F = grad ƒ. The local degree of F near the origin, 

d e g ( F , | x | < e , 0 ) - ( - l ) * 
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as is easily seen. On the other hand for R large 

deg(F, | x | < * , 0 ) = ( - l f . 

Thus if these numbers are different, F has to vanish at some point on 
e < \x\ < R. This proof does not require that F be a gradient map in 
e < | JC| < R. On the other hand if F is not a gradient map and k! — k is even, 
the result need not hold. This argument also shows that if we just assume the 
condition on ƒ near infinity, then it follows that ƒ must have a stationary 
point. 

Let us see how the Conley index is used to prove the lemma. We may 
suppose that near the origin, 

/="i%2- s xi 
1 a>n-k 

Consider the gradient flow x = grad ƒ. The origin is an isolated invariant set 
S. Let us take JV = {|x| < R}, k large, Nx = \x\ < e small and the set 
generated by its flow in N, and N2 = Nx n {R — I < \x\ < R}. In this case 
one finds 

[Nl/(NlnN^]~[S"-k
9x0] 

where x0 is a fixed point on Sn~k. 
On the other hand if we take N[ to be a large ball \x\ < R/2 and the set 

generated by its flow in N and take N2 correspondingly, using the behaviour 
near infinity we find 

[N{/(N'inNi)]=[S'-k',x0}. 

Since the homotopy classes are different, for k ^ k\ we conclude from 
Conley's theorem that the region 

e <\x\<R 

must contain another invariant set under the gradient flow. However, since it 
is a gradient flow, we see that ƒ increases on a flow line. It follows easily that 
this other invariant set must consist of invariant points, i.e. stationary points 
of/. 

K. C. Chang [19] has found a proof of the lemma which uses only Morse 
theory. It makes use of the Morse inequalities for a Morse function defined 
on a domain with boundary, and having suitable behaviour on the boundary. 

We are coming closer to our second topic, variational methods, concerned 
with finding stationary points of real functions. To conclude this section, we 
mention one more useful result which is due to Castro and Lazer [17]. Though 
the result seems intuitively clear, I do not know an elementary proof of it. 

THEOREM. Let f be a smooth function defined on R" having only a finite 
number of critical points and such that f(x) —> + oo as \x\ —» oo. Then for R 
large 

deg(grad/,^,0)= 1. 
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They use this to prove the existence of more than one critical point: 

LEMMA. Let f be a smooth function in Rn with / (x)-» + oo as \x\ —> oo. 
Assume the origin is a nondegenerate critical point and that ƒ achieves its 
minimum at a point x0 =£ 0. Then ƒ has at least three stationary points. 

This follows easily from the preceding theorem, using degree theory. 

II. Variational methods 
In the 1960's classical Morse theory was extended to real functions defined 

on infinite-dimensional spaces, such as Banach manifolds, by Palais, Smale 
and others-including the Morse inequalities. This material can be found in 
several sources, see for example [57], [49] and [50], and will not be taken up in 
these lectures. 

We will discuss arguments for proving the existence of stationary points of 
real functions ƒ defined on a Banach space X. In case the function ƒ is 
bounded from above or below it is reasonable to try to show that it attains a 
maximum or minimum. For convex functions, a classical result in this 
direction is 

THEOREM. Let f be a lower-semi-continuous convex function, bounded from 
below, defined on a reflexive Banach space, such that f(x) —» oo as x -» oo. Then 
ƒ attains its minimum. 

Results on existence of stationary points make use of some kind of 
compactness. In the theorem just quoted the compactness is hidden. The 
proof uses the fact that a closed bounded convex set in a reflexive Banach 
space is compact in the weak topology. Here is the proof of the theorem. Let 
xn be a minimizing sequence, i.e. ƒ(.*„)—>inf/. Clearly the \xn\ are bounded, 
and so a subsequence which we still denote by xn converges weakly to some 
x. By Mazur's lemma there is a sequence of convex combinations yf of 
(xv . . ., Xj), i = 1 , 2 , . . . , converging to x strongly. From the convexity of ƒ 
we see that f(yt) —» inf ƒ, and from the lower-semi-continuity we conclude that 
f(x) = inf ƒ. See [25] for variational problems for convex functions. 

If ƒ is not convex it need not achieve its infimum. However the following 
result of Ekeland [23] shows the existence of points which are almost points 
of minimum. 

THEOREM. Let X be a complete metric space and f a real lower semicontinu-
ous function defined on X and bounded from below. Then there exists some x0 in 
X such that 

f(x) > f(xo) ~ dist(x, x0) for all x E X, x ^ x0. 

II. 1 A compactness-kind of condition that is usually employed in proving 
the existence of stationary points is the condition C of Palais and Smale, now 
called the (PS) condition, for a function ƒ Œ Cl. 

(PS) Any sequence {xj} E X such that \f(xj)\ < M and f\xf) 
—> 0 in norm in X* (the dual space) has a strongly convergent 
subsequence. 
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Here ƒ '(x) represents the derivative of ƒ at JC, and is an element of the dual 
space X* of continuous linear functional on X. Such a function always takes 
on its infimum: 

LEMMA. Let f be a real Cl function on a Banach space satisfing (PS) and 
bounded from below. Then f achieves a minimum at some point. 

REMARKS. 1. In practice, given a function ƒ for which we seek solutions of 

F(x) =ƒ '(*) = 0, 

the exact topological space on which one should work is not given to us. It 
should be chosen sufficiently small so that ƒ is smooth, say in C1. On the 
other hand it cannot be taken too small for then the condition (PS) will not 
hold. One has to strike just the right balance. 

2. It is natural to ask how verification of (PS) differs from the usual task of 
obtaining a priori estimates, i.e., showing that the map F(x) = f\x) is proper. 
There is one additional useful item here; the fact that the f(xj) are all 
bounded. 

Let us illustrate these remarks by discussing a simple semilinear boundary 
value problem for a real function u{x) defined in a bounded domain G in Rn 

with smooth boundary dG. 

Au + g(x, u) = 0 in G, u = 0 on dG; (5) 

(here A = 2 d2/dxf is the Laplace operator). We seek a positive solution u 
assuming 

g is smooth and g(x, u) > 0 for u > 0, x e £2, 
g(x, u) = o(u) as u -^ 0 uniformly in x, (6) 

[g(x, u) = a(x)u°, a(x) > 0 in G, o > 1, for u large. 

If a < (n 4- 2)/(« — 2), (5) has a positive solution w(x)-as we will see. The 
solution will be obtained as a stationary point of the functional 

I - ] g r a d w | 2 - G(x9 u(x)) dx (7) 

where G(x, u) = ƒ£ g(x, s) ds. Since we are looking for a positive solution 
there is no loss of generality in changing g for u < 0 and assuming that 
g(x, u) > 0 for u = 0 and 

g(u) = a(.x;)|w|a for \u\ large. 

For such a g, any nontrivial solution of (5) will automatically be positive, by 
the maximum principle, and so a solution of our original equation. 

What space of functions should we work in? and will condition (PS) hold? 
We wish ƒ to be of class Cl in the space. From the form of ƒ it seems 

reasonable to work in a space contained in HQ, i.e. the space of functions in 
the Sobolev space H1 which vanish on the boundary dG. According to the 
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Sobolev embedding theorem, 

the injection map H0
l -> Lp(G),p > 1, is 

2« ^ 2« (8) 
continuous <=>/? < , and compact <*=>/?< . 

Now 

_, . a(x)wa+1 . , 
G(x, u) ~ ———;— for w large, 

a + 1 

so for ƒ to be well defined on H0
l we should require a + 1 < 2n/(n — 2), i.e. 

a < (n + 2)/(« — 2) = a0. In case a > a0, one might be tempted to work in, 
say, Hs n //J f° r some s > 1. But after a little reflection, one concludes that 
control on ƒ cannot yield control on the Hs norm, so that (PS) cannot hold. 
Thus it seems sensible to work in the space X = H0

l and to require a < a0. 
We may then take | |i*| |^ = fG |grad w|2. But then does (PS) hold? 

LEMMA. Condition (PS) holds <=*o <o0. 

SKETCH OF PROOF OF <=. We leave the other part as an exercise. Let {w,} be 
a sequence in H0

l such that 

\f(uj)\ < M, f'(uj) -> 0 in norm. 

The last condition means that 

f grad uj grad f - g(x, i*,)£ = o{\) • | |n*«, Vf e H*. (9), 

Inserting f = wy we find, setting \\Uj\\Hi = cy, 

1 f |grad uj\2 - ujg(x, uj) -> 0. (10) 

Since fG \ |grad wy|
2 - G(x, Uj) is bounded and 

C 1 
ƒ G(x, w.) — w.g(x, w.) is bounded 

J J a + 1 J J 
we find 

ƒ —r—|grad Uj\2 - Ujg(x, Uj) is bounded. (11) 

CLAIM. The norms Cj = | | ^ | | ^ are bounded. If not, for a suitable subse­
quence, we may suppose cy -> oo. Combining (10) and (11) we find 

- a contradiction since a > 1 ; the claim is proved. 
We may select a subsequence, still denoted by uj9 which converges weakly 

to u in A", and converges strongly to w in L^, for some /? in a 4- 1 < /? < a0 + 
1. This is possible in view of the Sobolev embedding theorem quoted above. 
One then finds easily that g(x, Uj(x)) converges to g(x, u(x)) in L°0+l. It 

is bounded 
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follows easily, considering (9)j-(9)k9 with ? = wy — uk, that 

IIUJ ~ M^"*0 as^ k-*°° 
and the lemma is proved. 

So for o < (n + 2)/(n — 2), our functional ƒ given in (7) satisfies (PS). 
Next we will see how one finds nontrivial stationary points. 

II.2 We shall present several arguments for finding stationary points of a 
functional ƒ which is unbounded from above and below-leading us to look 
for saddle points. These are found by some min max argument. One considers 
a certain class A of sets 2 and forms 

max f(u) 

for any 2 in A and then 

c = inf max f(u), 

and tries to show that the number c is a stationary value of/, i.e., is a value of 
ƒ at some stationary point. 

In case ƒ is an even function, ƒ(«) = ƒ( — w), there is the well-developed 
category theory of Liusternik-Schnirelman and the related notion of genus to 
find solutions (often infinitely many). In this approach one takes for A the 
class of all sets 2 of category > some number. An excellent presentation of 
this theory may be found in [50], and we will not discuss this method. 
Analogous theories in case other group actions are present have been devel­
oped by various authors (see Benci [8], [9]). 

The methods we will take up here are all variations on a basic result known 
to everyone who has done any walking in the hills: the mountain pass lemma. 

Let us first describe this for a real function f(x), defined on the plane-rep­
resenting the height of the land above sea level over the point x E R2. 
Suppose the origin lies in a valley surrounded by a ring of mountains, i.e. 
there is an open neighbourhood Œ of the origin such that 

f(x) > c0 >ƒ(()) for* e 8S2. 

Suppose that there is some point x0 outside, i.e., x0 £ 12, such that f(x0) < c0. 
We wish to walk from x0 to 0 climbing as little as possible, i.e. keeping ƒ as 
low as possible. Naturally the way to do this is to take a path crossing the 
mountain over the lowest mountain pass. The top of the mountain pass 
corresponds to a stationary point of ƒ and there the value of ƒ, i.e. the 
stationary value, equals 

c = inf max fix) > c0. 
P X Ê P 

Here P represents any continuous path from x0 to 0 and inf is taken with 
respect to all such paths. Clearly every such path has to intersect 8S2, and so 
maxp ƒ > c0. This is the assertion of the mountain pass lemma-that the 
number c so defined is a stationary value of ƒ. Note that c will, in general, be 
less than sup ƒ. 

This formulation is not quite correct since the plane is not compact, and 
one should add a compactness condition, for example, (PS). The lemma is 
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then true and holds even in Banach space. In this form it is due to Ambrosetti 
and Rabinowitz [6], though similar arguments had been employed many years 
ago in proving the existence, in special situations, of several minimal surfaces 
spanning some curve. 

MOUNTAIN PASS LEMMA [6]. Let f be a C1 real function defined on a Banach 
space X and satisfying (PS). Assume there is an open neighbourhood Q, of 0 and 
a point x0 £ ti such that 

f(0),f(xo)<co<mff. 
all 

Then the following number is a critical value off, 

c = inf max f > cn p p J ° 

where P represents any continuous path from x0 to 0. 

In recent years extensions and variations of this lemma have proved very 
useful and we will present several in the next section. But first we show, with 
its aid, how to obtain a positive solution of (5) for o < o0 = (n + 2)/(n — 2). 

THEOREM. For g satisfying (6) with o < o0 there exists a positive solution of 
(5). 

PROOF. Consider the functional (7) in X = if J. We have shown that it 
satisfies (PS) and, for g smooth, one verifies that it is of class C1. Note that 
/(O) = 0. To find a nontrivial solution via the mountain pass lemma we will 
show that for some r > 0, c0 > 0 we have 

f(u)>c0 if M * . - r . (18) 

Furthermore for some w0, Hwoll//1 > r> f(uo) ^ 0- From the mountain pass 
lemma it will follow that there is a stationary point u G HQ of ƒ, with 
ƒ(«) > c0 > 0. Thus u¥=0. 

The function u is a generalized solution of (5) but by a standard boot strap 
argument one shows that it is smooth, and then, by the maximum principle, is 
positive. 

To prove (11) we now make use of (6) from which we may infer that for 
any e > 0 

G(x, u) < e\u\2 + ce|w|a+1. 

Thus for ||u\\Hx = r, 

ƒ G(x, u(x)) < ƒ eu2 + C > | 0 + 1 

< C(er2 + Cer
a+ *), C independent of e, 

by (8). Consequently for \\u\\H\ = r, 

f(u) = {r2-f G(x, u)>\r2- C(er2 + C8r*+l) 

and (12) follows for e and then r, chosen small. 
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Finally we have to choose u0 so that 

II"oil/fJ >r a n d f(uo) < 0. 

Simply take u0 = \v, for t? a fixed smooth positive function vanishing on the 
boundary, and X sufficiently large. The existence theorem is proved. 

REMARKS. Suppose we consider in place of (5) the boundary value problem 

Lu + g(x, ü) = 0in G, « = 0onG, (5') 

with g satisfying (6) and L a linear elliptic operator with smooth coefficients 

Lu = aij{x)uXiXj + a\x)uXi + a(x)u9 

with aij{x)iiij positive definite, and a(x) < 0. If L is not formally self adjoint 
the problem cannot be formulated as a variational one. In [13] Brézis and 
Turner solved this (permitting g to depend also on grad u) in case a < 
n/(n — 2). In this case they were able to obtain the appropriate a priori 
estimates for all positive solutions of (5'). In case L = A the corresponding a 
priori estimates for the general case a < ( « + 2)/(« - 2) have recently been 
established by De Figueiredo, Lions and Nussbaum [22], and for general L 
by Gidas and Spruck [32]. 

For a = a0 = (n + 2)/(n — 2) a nonzero solution of (5) need not exist, as 
was shown by Pokhozhaev for g = ua° in a star-shaped domain (see [32]). On 
the other hand in a ring shaped domain rx < \x\ < r2, and g = u°°9 there is a 
positive solution. 

Several problems of current interest are just on the borderline where (PS) 
fails. Among these are the Yang-Mills equations of Physics, and the Yamabe 
problem in Differential Geometry. In the latter, one is given a compact 
Riemannian manifold without boundary and wishes to find a new metric on 
it which is conformally equivalent to the given one, and having constant 
scalar curvature. 

II.3 We now take up some extensions of the mountain pass lemma. The 
following is due to Rabinowitz [52]; we shall present a more general form due 
to Ni [45]. Let us first describe it for a function ƒ defined in R3, of class C l 

and satisfying (PS). 
GENERALIZATION. Assume there are two disjoint simple closed curves T0, T, 

in R 3 which link each other and such that the values of ƒ on one are bounded 
away from its values on the other, i.e., 

f(x) <c0<Cl< f{y\ Vx e T0, Vy e T,. 

Then the following number is a critical value of/. 

c = inf max fix) > c, 

where 2 represents any surface spanning the curve T0 and inf is taken over all 
such 2. 

The linking of the two curves is simply to ensure that any surface 2 
spanning T0 necessarily intersects r1? so that max2 ƒ > cv This result seems 
much less intuitive than the preceding. Here is the general form. 



VARIATIONAL AND TOPOLOGICAL METHODS 2 8 3 

GENERALIZED MPL. Let f be a Cl real function defined on RN satisfying 
(PS). Let <j> and \p be continuous mappings of spheres Sk and sN~k~l into RN 

whose images are disjoint and have nontrivial linking. Assume that 

Mix)) < c0 < cx < fifty)), V* e sk, Vy E S»-*'1. 

Then 

c = inf max f{h{x)) > cx 
h x(EBk + l 

is a critical value off. Here h represents any continuous extension of <j> inside the 
unit ball Bk+l in Rk+l

9 and the inf is taken over all such h. 

REMARKS. If we reverse the roles of <j> and i// we see that there is also a 
critical value < c0. The condition on linking is simply to ensure that for every 
extension h, h(Bk+l) necessarily intersects the image \p{SN~k~l). In fact the 
theorem holds if the set \p{SN~k~l)9 on which ƒ is assumed to be > cv is any 
set with the property that it intersects every image h{Bk+l). Furthermore, in 
place of RN we may have an JV-dimensional manifold, and in place of Sk, the 
boundary of a compact (k + l)-dimensional manifold. The original mountain 
pass lemma corresponds essentially to the case k = 0. See [45] for an 
infinite-dimensional version and [54], [10] and [8] for related results. 

Here is still another variant of these ideas due to A. Castro [16]. 

THEOREM. Let f be a Cl real function defined on a Banach space X satisfying 
(PS). Assume X has a direct sum decomposition 

X = Xx 0 X2, dim Xx = k < oo. 

Let SX(BX) be the unit sphere {ball) in Xl9 and S2 a sphere \\x\\ = R in X2. 
Assume for some constants p < a; c0 < cl9 

f{x) <c0 forxEXv\\x\\ < 1, 

f(x) < p for x E Xl9 \\x\\ = 1 i.e. x E Sl9 

fix) >a for x £ X29 \\x\\ < R9 

f{x) > cx for x E X2, \\x\\ = R i.e. x E S2. 

Then the following is a critical value off: 

c = inf max f{x) > a. 

Here 2 is any k-dimensional surface in X spanning Sx and homotopic to Bx in 
X \ S29 and the inf is taken with respect to all such 2. 

The mountain pass lemma and all the extensions given here, as well as the 
lemma near the beginning of §11.2, are proved in the same way by a 
well-known procedure which is presented in a systematic way in Palais [49]. 
We will indicate it by sketching the proof of the Generalized MPL. To avoid 
some technicalities let us consider the case that A" is a Hilbert space and 
fee2. 

PROOF. Assume that the number c defined there is not a critical value. 
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Then f or 0 < e small, it follows from (PS) that for some a > 0 

|| / ' 0 ) | | > a > 0 if c - e < f(x) < c + e. 

We may take e < cx — c0. Choose an extension h of <|> inside Bk+l with 

f(h(x)) < c + 4> VxeZ?* + 1 

2 ' 
We shall make use of a modification of the gradient flow associated to —ƒ. 

Let -q(u) be a locally Lipschitz function satisfying 

„ = ! o n r . ( c _ £ ) C + !); 

TJ = 0 outside ƒ _1(c — e, c + e). 

Consider the flow associated with the differential equation in X: 

dt ll/'WII2 

and denote the solution, which exists locally, by x(t) = x(t, y). Note that on a 
solution curve x{t) we have 

j ; f(x(t)) =-r,(x(t)) < 0. 

Thus within a time interval e, every point x in the region 

/ " ' ( c - e / i c + e / l ) , 

where 17 = 1, flows into the region where ƒ < c — e/2. In particular, since ƒ 
decreases under the flow, it follows that the image 

h(y) = x(e, h{y)\ y e Bk+\ 

lies in the region where ƒ < c — e/2. However, for.y G Sk = 32?*+1, we have 
/(<K>0) < co < ci "~ e < c ~ e- Hence Tj(.y) = 0 and the point y does not 
move under the flow. Consequently 

h(y) = h(y) = <j>(y) for y e 5*, 

and h is an admissible map in our competition. But then h(Bk+l) cannot lie 
in the region where ƒ < c — e/2. Contradiction! 

II.4 This section will be devoted to two results of Rabinowitz [53] on 
periodic solutions for a Hamiltonian system-as illustration of the use of some 
of the results in the preceding section. 

A Hamiltonian system is a system of ordinary differential equations for a 
pair of vectors/?, q in Rn, depending on time 

. dp „ . dp' dH 
p = -Ç- = -ƒ/„, i.e., -~- = , 
F dt *' dt dqt' 

. dq „ . dql dH 
H dt p9 dt tyi 

Here the Hamiltonian H(p, q) is a given real function defined on R2n. The 
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problem is to prove the existence of nontrivial, i.e. nonconstant, time periodic 
solutions. 

It is trivial to verify that on any solution curve p(t), q(t), the Hamiltonian 
H(p(t), q(t)) is constant. Thus it makes sense to look for a periodic solution 
on a given level surface of H. The first result of Rabinowitz is the following 
(for convenience we take H to be smooth). 

THEOREM A. Assume that grad H =£ 0 on the level set 2 where H = 1 (so 
that 2 is a regular hypersurface). Assume that 2 is compact and strictly star 
shaped about the origin, i.e., any ray from the origin hits 2 at just one point and 
nontangentially. Then there is a nontrivial periodic solution of (13) on 2. 

This is a beautiful result and we will give, essentially, a complete proof of 
it. There are earlier perturbation results about the existence of nontrivial 
periodic solutions near a trivial one, and also a global result by Weinstein in 
case H is convex-by quite different methods. (See [53] for references.) It is 
natural to ask whether the result is true if 2 is merely diffeomorphic to a 
sphere. This problem is open. 

First a useful 
REMARK. If grad if ^ 0 on a level set 2 of H, then the set of integral 

curves of (13) on 2 depend only on the hypersurface 2-they are otherwise 
independent of H. 

This is easily proved. Suppose H' is another Hamiltonian having 2 as level 
set and with grad H' =̂ 0 on 2. Then 

grad H' — ƒ grad H on 2, 

with ƒ a positive function on 2. Suppose p(t), q(t) is an integral curve for H' 
on 2, i.e. 

p = -H^ = -fHq, q = H;=fHp. 

If we reparametrize this curve by a new variable s with ds = ƒ dt, we see that 

dp/ds = -Hq, dq/ds = Hp 

on the curve, and the remark is proved. 
Theorem A is a simple consequence of a very general result in [53]: 

THEOREM B. Consider a Cx Hamiltonian H satisfying 
(i) H > 0 and H(p, q) = o(\p\2 + \q\2) near the origin, 
(ii) 0<H<0(j>-Hp + q-Hq)90<9<±for \p\2 + \q\2 large. 

Then for this H, and any given T > 0, there exists a nontrivial periodic solution 
o/(13) with period T. 

REMARK. By integrating condition (ii) we find 

H > C(\p\2 + \q\2)l/2° near infinity, C > 0, (ii') 

i.e. H grows faster than quadratically near infinity. 

DERIVATION OF THEOREM A. By the remark, we may replace the given 
Hamiltonian by any other provided the set where it equals 1 is 2. Choose 
such a new H to be positive homogeneous of degree 4. The existence of such 
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an H follows immediately from the strict star-shaped property, and in fact it 
is only here that the property is used. 

Applying Theorem B with T = 1 to this new H we infer that there is a 
nontrivial solution p(t), q(f) with period 1. It lies on some level surface H = c, 
but not necessarily the desired one 2 : c = 1. To obtain such a solution we 
simply perform a suitable scaling (stretching) using the homogeneity of H, 
and the theorem is proved. 

We are going to sketch some of the main points in the proof of Theorem B. 
By a stretching of the time variable, and of H, we may suppose that T = 2m. 
In the space of 2m periodic functionsp(t), q(t), consider the functional 

F(P,«)-£W[p-%-H(p{i)9q(t)) dt. 

It is readily verified that a stationary point (a pair of 2m periodic functions 
P(0> #(0) of F is a solution of (13). That is, (13) is the corresponding Euler 
equation. The pair p(t) = q(t) = 0 is such a trivial solution but we seek a 
nontrivial one. Since H grows faster than quadratically at infinity we see, on 
taking p = q = large constant vectors, that F is unbounded from below. 
Taking bounded and highly oscillatory functions p, q, we see that F is also 
unbounded from above. We wish, therefore, to find a saddle point of F-other 
than the trivial one. 

The procedure in [53] is the following: (a) approximate the space by a 
suitable finite-dimensional one; (b) in the finite-dimensional space, prove the 
existence of a nontrivial stationary point; (c) go to the limit in the approxima­
tion. The last part is rather technical. In particular, in going to the limit, one 
has to make sure that the stationary point obtained in step (b) does not run 
off to infinity nor to the origin. 

The finite-dimensional approximation is the following: Let us consider the 
space of 27T-periodic functions (p(t), q(t)) in L2. Then the action integral 

2TT dq 

«,.«)-ƒ V f dt 

is a quadratic form and associated with it are its eigenvalues X, which are 
integers, and eigenvectors spanned by finite Fourier series. Take as approxi­
mating space, the space RN spanned by the eigenfunctions associated with 
the eigenvalues in |X| < M for large M. Restricting F to this space we will 
show how to obtain a nontrivial stationary point-using just some simple 
properties of F. First decompose RN = Ex® E2 where Ex is the subspace 
spanned by all eigenvectors of Q having nonpositive eigenvalues, E2 is the 
subspace spanned by the eigenvectors with positive eigenvalues. These spaces 
are mutually orthogonal in L2. From the fast growth property (ii') we see that 
outside a large ball of radius R (we are using the L2 norm), the term H in the 
integrand of F dominates the other term, which has quadratic growth. Thus 
F < 0 outside a ball of radius R. (This is true only in finite dimensions; the 
reasoning would be false in infinite-dimensional space.) In fact, we see that 
F —» - oo as we go to infinity, so F satisfies (PS) in R N. 

Since H > 0 we see that F < 0 on Ex. Consider the behaviour of F on E2, 
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on which Q > Xx(\p\2 + \q\2) for some Xx > 0. From property (i) of H we see 
that for small e > 0, 

F(p,q)>cx>0 on \\(p, q)\\Li = e. 

For convenience we will denote the pair (p, q) by z. 
From these simple properties we will now derive the existence of a 

nontrivial stationary point of F on RN. The point where F achieves its 
maximum is of course such a point. But it is useless. For as we go to the limit 
on the approximation, the maximum of F on RN will go to + oo. 

Instead we may apply the Generalized MPL of the last section. For the 
sphere sN~k~x and the map \p we take the e sphere about the origin in E2 

and the injection map. For the image of the sphere Sk, <t>(Sk% we take the 
plane Ex. One will naturally object that this is not topologically a sphere. 
Well, just make it one by wrapping it around, i.e., closing it off, near infinity 
outside the ball of radius .R. It is intuitively clear (and easy to prove, using 
degree theory) that these two spheres really link. Hence by the Generalized 
MPL the following number is a stationary value of F. 

c = inf max F(h(x)) > cx > 0. 
h x<=Bk+l 

This may be much lower than the maximum of F, in fact we will see that it 
is bounded from above by a constant independent of M. 

When closing off Ex near infinity, let us do this in such a way that the 
resulting "sphere" lies in the space E\ spanned by Ex and a fixed unit 
eigenvector <j> = (p0, q0) corresponding to the lowest positive eigenvalue of Q. 
We may take for Bk+l the "ball" in E[ bounded by the "sphere". 

First we will obtain an upper bound for c independent of M. If we take for 
h, in the definition of c, the identity (i.e., injection) map, then 

0 < c < max ( o - ƒ H], (14) 

This maximum is taken on at some point z = (p(t), q(t)) of the form 

z = a<j> + Zj , Zj G Ex 

and ||z||2 = a2 + \\zx\\
2. Since H > 0 we see, by our choice of El9 that 

c < Q(z) = a2Xx + Q(zx) < a2Xx < Xx\\z\\2. 

Furthermore we see from (14) that 

ƒ H(z) < Q(z) < Xx\\z\\2. 

Using (ii'), recall that 0 < \, we obtain easily a bounded on ||z||, and hence 
on c, independent of M. 

The last part of the argument, the limit process, is technical and we will 
confine the rest of our discussion to the simple case of a function H which is 
positive homogeneous of degree 4. In this way, at any rate, we include a 
complete proof of Theorem A. 

Observe first that a stationary point z = (p(t), q(t)) in RN where F has the 
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stationary value c, satisfies the Euler equation 

jf2* [p • * + </> -q - Hp(p, q)-<j>-Hq()^]dt=0 (15) 

for every function (<J>(0> \p(t)) lying in our space RN. Here \p = d\p/dt etc. If 
we set <f> = p, $ = q we find 

j 2pq= j p-Hp + qHq = 4J H (16) 

by the homogeneity hypothesis. On the other hand, 

c = ƒ /? • q - H, 

and hence 

ƒ i* = c < C. 

(The letter C will be used to denote various constants independent of M.) By 
the homogeneity, it follows that 

| |z | |^ < C. (17) 

Next we wish to establish the estimate 

PIL» < C (18) 
and to this end we set (<>, \p) = (q, -p) (which is indeed in Ex) in (15). After a 
partial integration we find 

Pill*- ƒ Hpq-Hqp < piWIgradtfHtf 
so that 

\\i\\L*< | |grad// | |L 2<C| |z | | ie . (19) 

Inserting (19) and (17) in the standard interpolation inequality 
11/6 

we find 

« CI I Izl2 + l i l2 V \*\ffî> 

\\z\\L. < c ( l + ƒ |z|6) < C(l + C| |2 | | i . )1 / 6 by (17). 

From this it follows that | |z | |L . < C, and (18) then follows from (19). 
From these inequalities we may draw a further conclusion. Set \\z\\L«, = p. 

According to (16) we have for our solution z 

2f H-fp-q-f (p-p)-q 

where p is the average of p on (0, lit), 

< \\q\\o\\P-P\\o<C\\q\\0\\p\\0; 

thus 

ƒ H < cpilii. (20) 
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On the other hand, by (19), 

PHi* < Cf \z\6 < Cp2f \z\4 < Cp2f H. 

Inserting this in (20) we find, since ƒ H > 0, 

1 < Cp2 

i.e. 

P = II*|IL- > 8 (21) 

where 8 is a fixed positive constant independent of M. 
We are now in a position to carry out the limit process. Let M —> oo 

through the integers. By (18) we may assert that a subsequence of the z = zM 

converge weakly in Hl(Sl) and also (by the Sobolev embedding theorem) 
uniformly to a function z = (ƒ?(/)> #(0) which is a solution of (13). By (21) we 
have ||z||£«, > 3 > 0 and so z is a nontrivial solution. A standard regularity 
argument then shows that the solution is smooth. Theorem B for the special 
case, and hence Theorem A, are proved. 

REMARKS. 1. By Theorem 2, for every positive integer k, (13) has a 
nontrivial solution with period T/k. Hence (13) has infinitely many solutions 
with period T. It is an open problem whether there are solutions of period T 
for which T is the smallest period. 

2. Remarkably, Rabinowitz [54] has shown that Theorem B holds even if 
assumption (i) is dropped. The proof, again via a minimax argument, is based 
on a cohomological index theory developed by Fadell and Rabinowitz [29]. 
Furthermore, there exist solutions of (13) with given period T and having 
arbitrarily large L°° norms. 

3. Clarke and Ekeland [20] have proved an analogue of Theorem B but 
under somewhat opposite conditions on H. They assume H to be convex and 
to satisfy 

l̂  + i^lo) at (infinity)' 

and prove that there exists a nontrivial solution having any given T > 0 as 
minimal period. Their proof is based on a different variational problem. 

They introduce a different Lagrangian F(p, q) for which the Euler equation 
is still (13). It is, essentially, a dual to the F treated above. In [24] Ekeland 
treated a Hamiltonian behaving like that of Rabinowitz using a dual varia­
tional problem. 

4. In connection with Theorem A, Ekeland and Lasry [26] consider a 
Hamiltonian H for which the level set 2: H = 1 is a closed convex set lying 
in an annular region 

0 < r- < \pf + \q\2 < r. 

They prove that there are at least n different periodic solutions of (13) on 2. 
(A closed solution curve may of course be traversed several times, but all 
these solutions are not considered to be different.) 
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II.5 In Remark 3 at the end of the preceding section we mentioned the use 
of a kind of dual Lagrangian in finding periodic solutions. In this section we 
will describe an adaptation of it applied to a different problem: that of 
finding time-periodic solutions u(x, t) of a nonlinear vibrating string equation 
on an interval (0,77): 

uu ~ uxx + g{u) = 0, 0 < x < w; w(0, t) = u{ir, t) = 0. (22) 

Here we assume g(0) = 0, so that u = 0 is a solution, but we seek a nontrivial 
solution having a given time period T. 

This problem bears some resemblance to the one treated in the preceding 
sections and similar methods are used. Until a few years ago most results for 
this problem were local: g was assumed to be appropriately small (perhaps 
with a small factor e attached) and one sought solutions close to zero. In the 
last few years new methods have been introduced enabling one to treat large 
g. However, up to now the results are mainly confined to the case that g is 
monotone (either increasing or decreasing). Thus we cannot yet treat the 
sine-Gordon equation: g = sin w-for which explicit time periodic solutions 
are known in case the string goes to infinity in both directions. 

There is also a restriction on the given time period T. For technical reasons 
we can, essentially, till now, only treat the case that T = 2m/X is a rational 
multiple of the length of the string, i.e., X is rational. The reason for this will 
be explained presently. 

Much work has been done in the case that g grows at most linearly as 
\u\ —> 00 (see {14] and [5] for some recent results). The case that g grows 
superlinearly is, perhaps, more interesting. The main result in this case is due 
to Rabinowitz [52]. Assuming g as above and satisfying 

g(w) = o(u) as u —> 0, 

G(u) < 0ug(u), \u\ large, some 0 in (O, \) 

he proved there is a nontrivial periodic solution with any given time period 
T = 277-/À, X rational. A particular, and interesting, example is g = w3. The 
solution is obtained as a nontrivial stationary point of the Lagrangian, 
defined for functions u{x, t) satisfying the boundary condition and with time 
period 2ir/X, 

where 

F(u) = jf2* Jf'* [ \{ul - uf) + G(u(x, 0) 

G(u) = I g{s) ds. 

dx dt (23) 

His proof follows the scheme of the one in the preceding section and makes 
use of the Generalized MPL-which indeed he introduced in [52]. 

We will describe a different variational problem using a sort of dual 
Lagrangian, which leads to a simpler proof of the result. This is due to Brézis, 
Coron, Nirenberg [15]. The case g = u3 admits of a particularly simple 
treatment. Ü will denote the period rectangle 0 < x <w9 0 < t < T. 
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First some remarks about the condition that X is rational. This comes from 
an analysis of the linear problem for u with time-period ITT/X: 

Au = utt - uxx = ƒ, w(0, 0 = y(ir, t) = 0. 

Fourier expansion provides a complete analysis of this-a sine series in x 
being appropriate because of the boundary condition. Arguing formally, let 
us set 

u = 2 aJk sinjx e0**, ƒ = £ SJk sin A eiXk'. 

k 

Then 

Au = 2 ( / - ^ 2 H * sinyx **" 

and, for a solution, 

— jk 

provided the denominator is not zero; if it is then we should h a v e ^ = 0. In 
general, but not always, if X is irrational the denominators j 2 — X2k2 may be 
arbitrarily small for infinitely many values of j and k. In that case if we take u 
in L2($l) or HS(Q,) or C°°(S2), it is very difficult to characterize the range of A, 
In general it will not be closed (in some reasonable topology) and for this 
reason the case of general T is still intractable. We have here a small divisor 
problem. If X is rational however, for convenience let us confine ourselves to 
the case X = 1, the denominator, if =£ 0, is an integer and hence > 1 in 
absolute value. Furthermore \j2 — k2\ —» oo as \j\ + \k\ —> oo, j ^ k. In this 
case, X = 1, however, the null space N = N(A) is infinite dimensional, 
spanned by sinjx cosjt, sinjx sinyï, j = 1, 2 . . . . (We will use N9 sloppily, 
to denote the set of C °° functions in ker A, or its closure in some topology.) 
In fact any function in N has the form 

q(t + x) - q(t - x) 

where q is periodic of period 2TT. 

In L2(Q) the range R(A) is then N1- and if we factor out N(A) we may 
consider A~l: R(A) -> R(A). There is a simple explicit integral formula for 
A~l: R(A)-^R(A) and it is not hard to verify the following properties of 
A-1. 

(i) In L2(£2), A ~l is compact. 
(n)\\A-lf\\L„<C\\f\\LhfeR(A). 
(iii) Set 

Ep = { v JL N\v e Lp j with the Lp norm. 

Then 4̂ _ 1 : Ep -> Lp is compact for 1 <p < oo. Here \/p + \/p' = 1. 
The result in [15] is slightly more general than that in [52]. 
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THEOREM [15]. Let g be as above and monotone increasing and let X be 
rational. Assume 

lim ^ - o o , \g{t)-G{t)><x\g{t)\-C 

\ft and some constants C, a > 0. Then there is a nontrivial solution u E L°° of 
(22) with time period 2TT. 

For g _strictly increasing and C °°, it was shown in [14] and [52] that 
u E C°°(fi). 

The variational approach of [15] was motivated by the work in [20], [24]. 
We will assume g is strictly increasing; denote g~l by h and set 

H(v) = fV h(s) ds. 

First we rewrite equation (22)-arguing formally. Suppose M is a solution; 
decompose it 

u = ux + w2, 

ux E R{A\ u2 E TV, and set 

v = g(ux + u2). 

The equation then has the form 

Aux + v = 0. 

S o t ) 6 R(A\ 

ux + u2 = /i(f), 

and the equation is equivalent to 

ux + A~lv = 0 

or, after adding w2 to both sides 

A~lv + /I(Ü) = u2e N. 

To this form we now associate the following Lagrangian defined on R(A) 
alone, i.e. we throw away the infinite-dimensional nullspace TV, 

v E R(A). (24) F(t>) = ƒ ƒ [ | v-A~lv + H(v) 

Note, indeed, that if v E #04) is a stationary point of F then 

0 = F'(v)(Ç)=ff (A~lv + h(v))£, Vf E R(A). 

It follows that v4 ~ lv + /Z(D) = u2 belongs to R -1 = TV. Reversing the steps 
above we obtain a solution of (22). Thus the u2 component of u appears as a 
kind of Lagrange multiplier. 

The Lagrangian (24) looks much more tractable than (23) since A ~l is 
compact. The case g(u) = \u\qu, qi^ 1, is particularly simple. Consider g = u3 

(this proof works as well for other values of q). In this case H = const M4/3. 
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We may obtain a solution via a still different variational problem. Namely 

min ƒ I V Av. 

\\V\\L4/><1 

Because of the compactness property (iii), with p = 4/3, and the fact that 
v • A ~ lv may be negative one finds that the minimum occurs at some point v, 
which is necessarily on the boundary of the ball. Consequently for some 
Lagrange multiplier X > 0 we have 

A~lv + \\v\~2/3v e N. 

We want À = 1, and this is achieved simply by stretching v. Unfortunately 
this argument works only in the case that g is homogeneous. 

As an exercise for the reader we suggest reproving the result for g = u3 

using the mountain pass lemma in the space £4/3. 
The general case is treated in [15] with the aid of the mountain pass lemma 

in the space Ex. In order to work in this space the function h(v) is first 
changed for |u| large so as to be constant on the intervals v > k; v < -k. The 
space Ll is not reflexive, making it difficult to verify (PS). In fact we were not 
able to, and we were led to a modified form of the condition. The modifica­
tion is employed in just the same way as condition (PS) and we believe it will 
prove useful in other problems. In this form, c is a fixed real number, and we 
consider a real function F defined on a Banach space X which is Gâteaux 
differentiable (in our particular case in [15] the function is not Fréchet 
differentiable). 

CONDITION (PS)C. If there is a sequence {uj} in X such that 

F(uj) ->• c and F\Uj) —> 0 strongly, 

then c is a critical value of F. 
Clearly (PS) => (PS)C for every c. 
The mountain pass lemma then holds in the following form, [15], 

LEMMA. Let F be Gâteaux differentiable and F': X —» X* continuous from the 
strong topology of E into the weak * topology_of E*. Assume that there is an 
open neighbourhood U of 0, a point u0 £ U, and a constant p such that 
F(u0), F(0) < p < F(u)for all u G dU. Assume F satisfies (PS)cfor 

c = inf max F(u) > p. 
P U^P 

Here P is a continuous path from 0 to u0, and the inf is taken over all such 
paths. Then c is a critical value of F. 

III. Local theory 

III.l This part will be concerned with the local study of equation (1). We 
will suppose as before that the mapping F is from one Banach space X to 
another, Y, and that 

F(u0) = >V 
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One wishes to study the set of solutions near u0 of a perturbed equation 

F(u) = y near^0 (25) 

-or F may depend on one or more parameters X 

F(u, X) = y, F(w0, X0) = y0. (26) 

Our remarks will refer to the case that the implicit function theorem (I FT) is 
not applicable. 

In case F is a Fredholm operator the well-known Lyapounoff-Schmidt 
procedure (see for example Chapter 3 in [47]) reduces the local study to one 
in finite-dimensional spaces. In case dim ker F'(u0) = d9 codim Range F\u^) 
= d\ the procedure leads to a mapping from Rd to Rd. But the problem 
remains a difficult one; many different kinds of phenomena can occur. 

One procedure in the finite-dimensional case, is to try to find a suitable 
local change of variables after which the (finite-dimensional) map F reduces 
to some simple canonical form admitting rather easy analysis. For example, if 
F is a real smooth function defined on Rd near the origin F(0) = 0, the 
simplest case is the case: dF(0) ¥= 0. Then by the IFT we can find new 
coordinates so that F has the form F(x) = xv If dF(0) = 0, the next simple 
generic case, is to suppose that 0 is a nondegenerate critical point of F. In 
that case the well-known Morse lemma says that after a suitable change of 
coordinates, F is equal to a homogeneous quadratic function. More generally, 
the theory of singularities of differentiable maps, stability of maps and, in 
particular, catastrophe theory of Thom and Mather is very useful in the study 
of qualitative behaviour of solutions of (26). In this theory one makes changes 
of variables (x, X) and y to reduce the mappings to simple forms. Sometimes 
one wishes to distinguish the parameter variable X, and not permit general 
change of variables which mix those with x. A suitable corresponding form of 
the theory has been developed by Golubitsky and Schaeffer [33], and applied 
to problems in elasticity as well as others. 

Local problems in which F is a Fredholm operator, but Range F'(u0) =£ Y, 
are often called bifurcation problems. Even in such problems, global topologi­
cal techniques are very useful. We describe one example: 

A classical bifurcation problem is one concerning periodic solutions for 
ordinary differential equations; here x is a vector in Rn. 

% = Hx, X), (27) 

where F depends smoothly on x and a real parameter X, near X = 0, and 

F(0, X) = 0, VX. 

We are interested in finding nontrivial periodic solutions near the origin for 
|X| small, which bifurcate from the origin. Let 

Fx(0, A) = L(X), 

and assume the matrix L(0) is nonsingular. Then for |X| small, the only 
stationary point of (27) is x = 0. It is easy to see that no periodic solutions 
will bifurcate from the origin unless L(0) has a purely imaginary eigenvalue. 
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Suppose if}, j3 > 0, is an eigenvalue of L(0). Then the linearized equation 

has a nonconstant periodic solution of period lirfi~l. (For |X| small, L(X) has 
a unique eigenvalue a(X) + ifi(X) which is close to ifi9 and it depends 
continuously on X.) We are interested in finding nonconstant periodic solu­
tions with period close to 2 77$ ~1 in case |A| is small. 

In this direction there is the classical result of Hopf. Here is a well-known 
formulation (see [41] for a general survey). 

HOPF BIFURCATION THEOREM. Let if! be as above and assume that no other 
integral multiple of ifi is an eigenvalue of L(0). Assume that a(X) ¥" Ofor X ¥= 0 
and changes sign as X crosses 0. Then for \X\ small, there exists a nontrivial 
small periodic solution of (27) with period close to 2TT/3 ~l. 

Alexander and Yorke [2] discovered a generalization. Assume as before 
that //?, /? > 0, is an eigenvalue of L(0) and that Mult(//?) = 
{ikifi, ik2p, . . . , ikrp), 1 < kx < • • • < kr, positive integers, are all the 
eigenvalues of L(0) which are positive integral multiples of ifir counted with 
multiplicity. For |A| small there is then a unique set of r eigenvalues OLJ(X) + 
i/3j(X),j = 1, . . . , r close to the set, and varying continuously with X. 

EXTENSION OF THE HOPF BIFURCATION THEOREM [2]. Assume that for X¥=0, 
ctj(X) =£ 0,j = 1, . . . , r. Let r+ (r"~) be the number of these which are positive 
for X > 0 (X < 0). Assume that r = r+ — r~, the number of changes of signs of 
the a- as X passes through 0, is odd. Then for \X\ small there is a nontrivial, small 
periodic solution of (27) with period close to 277)8 - 1 . 

The proof in [2] relies on some topological machinery. Subsequently Ize 
[35] presented a simpler proof which uses less topology. It makes use of the 
Hopf map of S 3 to S2. [2] and [35] also contain more global results, 
concerning a connected family of periodic solutions. 

The paper [35] has many results on bifurcation in particular when a real or 
complex parameter is involved. In papers [1], [3] further topological tools are 
used in analyzing bifurcation. Applications of bifurcation theory may be 
found in [55]. 

III.2 As we mentioned in §1.1 the implicit function theorem may fail 
because of the "loss of derivatives" on applying F(u0)~

l-a. situation which is 
common in nonelliptic problems. For example, consider the wave equation 
for a function u(x, t), x G Rn, t G R1, 

utt — Axw = ƒ, u = ut = 0 at t = 0. 

If, say, ƒ has compact support then for ƒ in the Sobolev space Hl the 
solution u belongs to Hs+l-not to Hs+2. If we consider then a perturbation 
problem of the form 

F(u) = utt - f(uXk, ut, uXXj) =y; u = u0 = 0 at / = 0, 
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which is hyperbolic, and u = 0 is a solution for y = 0, and wish to solve this 
for y small, the implicit function theorem is not applicable. 

In [44], Nash introduced a procedure for attacking local problems in which 
such a loss of derivatives occurs. Since then several variations have been 
developed. In particular Moser [42] introduced a scheme which is based on 
the Newton iteration scheme for solving a nonlinear problem. This method is 
now commonly called the Nash-Moser technique. See also Hörmander [34] 
for another modification of the Nash method. This technique is to my mind a 
truly fundamental development in the study of nonlinear problems. For the 
first time it enabled one to solve problems involving "loss of derivatives", 
which up to then had appeared completely intractable. 

Before describing the Nash-Moser procedure let us first recall the Newton 
iteration scheme for solving a problem F(u) = g where F maps RN -> RN. 
Suppose F(u0) = y0 and y is close to y0. Assuming F'(w0) is invertible, the 
Picard iteration scheme is the following, 

Up + \ = »P + F'(uo)~Xy ~ F(UP% ƒ> = 0, 1, . . . , 

and it converges like a geometric series. Newton's scheme is 

^ + i = »P + F\upY\y - F(up% p = 0, 1, . . . , 

assuming that F'(u)~x exists for u near w0. This scheme converges much more 
rapidly than Picard's. 

In case the operators F'{u)~l "lose derivatives", up+l is less regular than up9 

and so there is hope for convergence in a function space with some prescribed 
regularity. 

The Nash-Moser scheme makes use of smoothing operators depending on a 
parameter. To be specific, say we are working in Sobolev spaces Hs of some 
manifold and denote the corresponding norms by || \\s. For 0 > 1, S0 is 
supposed to be a linear operator mapping Hs into C00, Vs, and satisfying 

\\S$u\\k<C0k--'\\u\\J for j<k, 

\\(I- Se)u\\k<C0k-J\\u\\j forj>k. 

The scheme is to choose a sequence 0j = 2a\ 1 < a < 2, and work with a 
modified Newton scheme 

*wi = UP + W W V ~ F(UP))-

Because of the smoothing, all the iterates are C °°-functions. Under suitable 
conditions on F-in particular one needs F\u) to be invertible not only at u0 

but nearby-one shows that the scheme converges. The error introduced by 
the smoothing operators is compensated for by the rapid convergence of the 
Newton scheme. We refer the reader to [43], Chapter 2 in [57] and the last 
chapter in [47]. 

III.3 Recently Klainerman [36] has adapted this scheme to study the 
following problem posed by F. John. Consider the initial value problem (we 
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will limit ourselves to a special case) for u(x, t) 

utt - aiJ(Vu)uxx = 0, tt v / xiXj > ^ 

w = U ut = £o a t * = 0-
The coefficients aij are assumed to be smooth and to satisfy 

a» - 8iJ = bij and bu(0) = 0. 

The functions /0, g0 G C °° and (with many derivatives) are assumed to be 
small. For convenience let us suppose they have compact support. The 
problem is whether there exist global (i.e. for all time) smooth solutions. If we 
do not assume f0, g0 to be small then simple examples show that the answer 
can be no. On the other hand, in one space dimension, even if/0, g0 are small 
but not zero, if the aij are not constant, one knows that shocks will occur. 
Namely, the solution will exist and be smooth for small /, but eventually 
singularities must develop. In higher dimensions there is more space for the 
characteristics (which carry singularities) to spread and so one might hope 
that smooth solutions may exist for all time. 

Klainerman proved this to be the case if n < 6. 
Naturally one is interested in knowing what happens for smaller n, in 

particular n = 3. Very recently F. John has shown that for the equation 

Aw 

no matter how small are (/0, g0) 2É 0, there is no global smooth solution for 
all time. 

We will conclude these lectures by a brief and very informal description of 
Klainerman's procedure. The method we describe is the first one he devised. 
In the published paper [36] he used a modification. The proof is highly 
technical so we can only sketch some of the ideas. 

A classical result is that one can solve the initial value problem, and obtain 
aC°° solution in a small time interval, 0 < t < T, where T depends only on 
the following (all integral norms are over the space variable in Rn): 

S lia%ll*+ 2 \\dao0\\L, 
\a\<[n/2]+2 \a\<[n/2]+l 

Here a is a multi-index of nonnegative integers a = (ax, . . . , aw), da = 
3 f1, . . . 9^, dj = d/dxj, these involve only space derivatives. Thus to find a 
global smooth solution it suffices to find a solution for which the following 
norms (in Rn) are bounded in 0 < / < T: 

2 Pa"||L2 + S 113̂ ,11* < C(T) 
\a\<[n/2] + 2 \a\<[n/2]+l 

for every T; C( 7") may however grow as T —> oo in any way. 
(a) In order to attack the problem we expect to make use of results for 

corresponding linear equations. Consider a linear problem 

u„ - aiJ(x, t)uXXj + b \ = g 
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with the matrix a = {aij} positive definite. Bounds on the L2 norms (in Rn) 
of derivatives of the solution are usually obtained with the aid of energy 
estimates. If one defines the energy at time t as 

f u2 + aiju u 
JRn J 

then one finds, using Green's theorem, that 

d r 
— E(i) = J afauj - a^utut + 2gut - 2blutut 

< (max |VÛ| + max \b\)E + 2\\g\\L2El/2 

R R 
-in rather obvious notation. Integrating from 0 to time t we find 

El/2(t) < c + f' exp [ ('(max \Va(x, a)\ + max |*|) do nu**)*-
If we want the energy to be finite for all time it seems reasonable to require 
that for all /, 

is 
max (I Val + max |6|)(f) < :— for some e > 0. 

x n + 1 \ 
This linear problem is the kind that will arise in the Nash-Moser scheme 

when we linearize about some iterate v. In view of the way the coefficients in 
the linear operator depend on v it seems reasonable to work with functions 
whose derivatives decay as t —> oo, uniformly in x. 

(b) The next crucial fact is that for solutions of the classical wave equation 
such decay estimates exist. Namely, suppose u satisfies 

utt — Aw = 0, u = 0, ut = g at t = 0. 

Then 

|M(*,0l<a<1-">/2 S r g U 
| « | < ( « - l ) / 2 

\Vu(x,t)\ < C ^ - W ) / 2 S |3^IL»- (29) 
| a |< (n+ l ) /2 

In addition, by the standard energy estimates (applied to spatial derivatives of 
w), and by the Sobolev embedding theorem, we have 

\Vu(x,t)\<C 2 I|9*SIIL- (30) 
\a\<n/2+l 

This leads to a corresponding decay for a solution of the inhomogeneous 
equation 

utt — At/ = g, u = ut = 0 at / = 0, 

in case g decays in time. In terms of the appropriate solution operator V(t), u 
is given by (here we suppress the space variables) 

u(t) = f ' V(t - s)g(s) ds 
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\Vu(x, t)\ < 

so that 

I ft/2VV(t - s)g(s)ds\+\ft VV(t - s)g(s)ds 
KO I K l / 2 

We have divided the / integral into two parts. In the first we use the estimate 
(29) which is useful for large, not small, t, while in the second we use (30). We 
thus obtain the estimate (where we have thrown something away) 

\Vu(x, 0 | < Q<1-">/2 f'/2 2 \9°g\Li(s) ds 
J0 | a |<« /2+ l 

Jt/2 | a |<« /2+ l 

Since we want solutions to decay, this suggests introducing decay norms, 
for A: > 1, 

W\k,r,V = «UP (1 + /)* 2 |9*"U 
/ > 0 \a\<r 

Hiill^» sup (1 + 0* 2 l l^ l l z -
\a\<r 

Then from the preceding inequality we find f or A: > 1, 

|V«(*. t)\ < CP-"V2\g\0,n/2+hLl + C(l + 0I_*l|g|lfc./2+i- (31) 

Now in our application of this to be the nonlinear problem, via the 
Nash-Moser scheme, the function g will involve products of derivatives of 
iterates. In view of energy estimates, we cannot expect the L2 norms of these 
derivatives to decay. They may only, at best, remain bounded. So if the max 
norm in Rn of the derivatives decay like 0(t~k) then, at best, || g\\ktn/2+i will 
be bounded. But then the last term on the right of (31) decays only like 
0(tl~k). Thus there is a loss in decay^-as well as the usual loss in smoothness. 
Furthermore, the first term on the right of (31) shows that one cannot expect 
to establish faster decay than 0{P~n)/1). In particular, for n = 3, this doesn't 
give any decay at all. 

(c) Now we turn to the iteration scheme. To overcome the loss in decay (as 
well as regularity), Klainerman introduces a modified "smoothing operator" 
in the Nash-Moser scheme: His operator involves smoothing and, at the same 
time, cut off after large time: If f(f) > 0 is a C°° function on f > 0, f = 1 in 
0 < / < 1, f(0 = 0 for t > 2, define the operator 

C9 — multiplication by u -z J, 9 > 1. 

The new "smoothing operator" will be a product 

Cg * Sg>, U, U > 1. 

Next, the iteration scheme used is a modification of the Nash-Moser 
scheme. For a suitable choice of 9p -^ oo and Op -> oo, set 

SP = Cop
se;-
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In fact 0p + l = 0p
T for some r in 1 < r < 2, and 0p = 0* for some small e > 0. 

The (p + l)st iterate is defined as the solution of 

^(Wp+i ~ Up) = y ~ SpF(up) 

with zero Cauchy data on / = 0. Here Lp is the linear operator (a modifica­
tion of F\up)) 

Lp = d„-A- S,[6*(VS)]8,a, + Sp(upxxjb^up)). V 

is rather obvious notation. 
Making use of the energy estimates and the decay estimates described 

above (applied to spatial derivatives of the iterates) one establishes after much 
work a series of recursive estimates. This involves the use of still more norms 
and at this point we have to refer to [36] for the details. 

Our description of Klainerman's treatment is perhaps too sketchy to be 
useful. It has been included as an indication of the flexibility of the Nash-
Moser method. In particular, I want to call attention to the use of the 
"smoothing operators"-they need not merely smooth, they might operate in 
some other way-in this case by cut off for large time. 
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