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ORDINARY i?O(G)-GRADED COHOMOLOGY 

BY G. LEWIS, J. P. MAY, AND J. McCLURE 

Let G be a compact Lie group. What is the appropriate generalization of 
singular cohomology to the category of G-spaces XI The simplest choice is the 
ordinary cohomology of EG xG X, where EG is the total space of a universal 
principal G-bundle. This Borel cohomology [1] is readily computable and has 
many applications, but is clearly inadequate for such basic parts of G-homotopy 
theory as obstruction theory. Another choice is Bredon cohomology [2] , as 
generalized from finite to compact Lie groups by several authors. This gives 
groups HQ(X;M) for n > 0 and for a "coefficient system" M. Here M is a con­
travariant functor from the homotopy category of orbit spaces G/H and G-maps 
to the category Ab of Abelian groups. (Subgroups are understood to be closed.) 
Bredon cohomology is adequate for obstruction theory. For finite G, Triantafillou 
has used it to algebraicize rational G-homotopy theory [11], and she and two of 
us have used it to set up the foundations of the theory of localization of G-
spaces for general G [8] . When M is constant at an Abelian group A, written 
M = A, we have 
(*) H"G(X;A) = Hn(X/G;A). 

In particular, we have 

H%(EG x X\ A) = Hn(EG xG X\A). 

Thus Bredon cohomology generalizes Borel cohomology. 
Nevertheless, we feel that these theories do not comprise the full equivariant 

generalization of ordinary singular cohomology. The full theory should build in 
the interplay relating the Burnside ring ,4 (G), the real representation ringjRO(G), 
and G-homotopy theory. Any cohomology theory must be "stable". Bredon 
cohomology is only stable in the classical sense that 

Hn
G(X;M) = H^q(LqX;M) 

for a based G-space X (with basepoint a fixed point). A fully equivariant theory 
E* should allow groups EV(X) for all G-representations V;En(X) should be the 
special case of the trivial representation Rn. If SV denotes the 1-point compac-
tification of V and SUX denotes X A SV, we should have 

EV(X) = Ev(Bw(LwX). 
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Such RO(G)-gmded cohomology theories have many advantages. They ad­
mit powerful splitting theorems that greatly simplify the task of computation; 
see e.g. [3]. They come equipped with transfers for G-bundles and G-fibrations 
with compact fibers [10], [13]. They are essential to the specification of a 
meaningful notion of orientability of G-bundles and spherical G-fibrations and 
are therefore essential to a meaningful formulation of even such a basic notion as 
Poincaré duality [15]. 

Known examples of ./?<9(G)-graded theories include ^-theory, various co-
bordism theories, and theories produced by equivariant infinite loop space theory, 
a comprehensive treatment of which is given by Hauschild, May, and Waner [6]. 
The last example includes equivariant algebraic ^-theory of rings, which is defined 
and computed for finite fields by Fiedorowicz, Hauschild, and May [5]. It also in­
cludes spherical G-fibration theory, which is used by McClure [9] to prove the 
sharpest form of the equivariant Adams conjecture and to study the groups JOG(X). 

Ordinary cohomology is missing from this list. For finite G, Waner [14] 
has used the deepest form of equivariant infinite loop space theory (which also con­
structs jRG(G)-graded theories from Galois extensions with Galois group G [6]) 
to construct ordinary Z?0(G)-graded cohomology theories. However, at this 
writing all forms of equivariant infinite loop space theory are strictly limited to 
finite groups, and such a construction is obviously unsatisfactory for something 
as basic and presumably elementary as ordinary cohomology! 

For arbitrary compact Lie groups G and appropriate coefficient systems M, 
we have extended Bredon cohomology to an i?0(G)-graded theory H$(X;M). 
For finite G, M must extend to a Mackey functor as defined by Dress [4]. For 
general G, we have invented the appropriate notion of a Mackey functor. 

As a first application, we have the following simple proof of a deep un­
published theorem of Oliver. 

THEOREM. Let X be a G-space of the homotopy type of a G-CW complex 
and let H be a {closed) subgroup of G. Let R be any commutative ring. Then 
there exists a natural transfer homomorphism 

r:Hn(X/H;R)-^Hn(X/G;R) forn>0 

such that T • 7T* is multiplication by the Euler characteristic x{G/H), where IT: 
X/H —• X/G is the map given by inclusion of orbits. 

PROOF. By (*) above and by a change of groups isomorphism, we have a 
commutative diagram 

Hn
G(X;R)^H"(X/G;R) 

**[ l«* 
Hn

G{G/H x X; R) = Hn(X/H; R). 
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Here TT on the left is the projection G/H x X —* X, which is obviously a G-bun-
dle. This much precedes our theory, requiring only standard facts about Bredon 
cohomology. We have checked that R is the underlying coefficient system of a 
Mackey functor. Thus the groups on the left are terms in an RO(G)'graded co­
homology theory. We therefore have a transfer homomorphism connecting them. 
On a technical note, we have a new treatment of transfer for G-bundles with 
compact fibres which requires no finiteness condition on the base space. The 
Euler characteristic formula drops out immediately from general properties of the 
transfer together with specific properties of the relevant Mackey functor. 

REMARKS (i). We are using singular cohomology, wheras Oliver uses Cech 
cohomology and totally different techniques. 

(ii) If H has finite index in G, the result is easy. Here Illman [7] already 
gave a transfer adequate for our proof. 

(iii) The G-CW homotopy type hypothesis on X can be weakened. By 
Waner's results [12], it is not very restrictive in any case. 

Our construction of H£ (X; M) is based on use of the equivariant stable 
category constructed by the first two authors. Let U = © Vj°, where Vj° is the 
sum of countably many copies of Vt and {V.} runs through a set of representa­
tives for the irreducible real representations of G. A G-spectrum E is a collection 
of based G-spaces EV indexed on the finite dimensional invariant sub spaces V of 
U together with G-homeomorphisms EV = SlwE(V + W) for V orthogonal to W. 
Maps E —> F are collections of G-maps EV —• FV compatible with the given 
homeomorphisms. Homotopies are families of maps parametrized by the unit 
interval. A map is a weak equivalence if each fixed point map (EV/1 —• (FVf1 

is a weak equivalence. The stable category HSG is obtained from the homotopy 
category of G-spectra by adjoining formal inverses to the weak equivalences. 
There is a notion of a G-CW spectrum, and HSG is equivalent to the homotopy 
category of G-CW spectra and cellular maps. HSG has all the good formal prop­
erties familiar from the nonequivariant context, and its suspension functor Sü is 
an equivalence. There is a stabilization functor S°° from based G-spaces to G-
spectra, and D°°X — X A S where S is the sphere G-spectrum 2°°^ . 

A G-spectrum E determines an i^O(G)-graded theory on G-spectra Y via 
E?{Y) = [Y, XVE]G. By restriction to Y = 2°°(X+), there results a n i ^ G ) -
graded theory on G-spaces X, where X4" = X II {*}. Here V E RO(G), desus-
pension in HSG allowing the interpretation of XVE. 

Let 0 be the full subcategory of HSG with objects G/H+ A S. We define 
a Mackey functor to be a contravariant additive functor M: 0 —• Ab. This is (most 
unobviously!) equivalent to the usual notion when G is finite. By restriction to 
maps / + A 1 for G-maps ƒ : G/H —-• G/K9 a Mackey functor determines an un­
derlying coefficient system. For a G-spectrum Y and integer n, define a Mackey 
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functor nnY by 

(nnY) {G/H+ A S) = [G/ff+ A Sw, Y]G, where S» = S»S. 

For example, if Y = Sn the right side is the Burnside ring A(H). For a G-CW 
spectrum Y with «-skeleton Yn

9 define C„r = <nn(Y
n/Yn-1). YnjYn~x is a 

wedge of G-spectra of the form G/H* A Sn. Then C^F is a complex in the 
Abelian category of Mackey functors. We can form the cellular cochain complex 

C*(7;M)=Homö(C*r,M) 

and pass to homology to obtain a Z-graded cohomology theory H*(Y; M) on G-
spectra. Its Oth term is represented by an Eilenberg-Mac Lane spectrum K(M, 0). 
The RO(G)-gmded theory on G-spectra determined by K(Mf 0) extends the Z-
graded cellular theory we started with and gives the desired i?0(G)-graded exten­
sion of Bredon cohomology with coefficients in M. 

We have a dual construction of i?0(G)-graded homology theories H*(Y; N) 
with coefficients in covariant functors N: 0 —> Ab. For finite G, 0 is self-dual 
and the two kinds of coefficient systems are equivalent. For general G, 0 is not 
self-dual and a quite different kind of Eilenberg-Mac Lane spectrum K(N, 0) repre­
sents these homology theories. 

We have obtained change of groups isomorphisms, universal coefficients 
spectral sequences, Kunneth theorems, Green functors and products, Atiyah-
Hirzebruch spectral sequences, and so forth for these new theories. Details will 
appear in due course. Computations are work in progress. 

Incidentally, we have also proven that, for finite G, the completed Burnside 
ring A(G) has defect set the p-Sylow subgroups of G. In particular, this implies 
that the Segal conjecture, which asserts that Â(G) is isomorphic to the 0th stable 
cohomotopy group of BG9 is true for all finite groups G if it is true for all p-
groups. 
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