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proof by analogy in the first paragraph on p. 292 is unconvincing and the
proof in the following paragraph tacitly assumes the converse to the non-
equivariant complex Adams conjecture, which is false.)

This volume is addressed to experts in algebraic topology. There is no
general introduction and the individual chapters have at most a few sentences
of introduction. There is no index and a quite inadequate list of notations. On
the other hand, most chapters end with historical comments and a guide to
the relevant literature, and there is a very useful bibliography (although
several references in the text failed to reach it). The “exercises” tend to be just
that early in the book but become references to deeper results and research
problems later on. There are numerous misprints. In particular, symbols
meant to be completed by hand rather than by typewriter are often incom-
plete. For example, € or = may appear where & or # is intended (e.g., in
the statements of Propositions 7.4.3 and 7.7.3). Nevertheless, the experts owe
tom Dieck a considerable debt of gratitude, since they will be able to use the
book to get some feel for this fascinating new direction in algebraic topology.

REFERENCES

1. M. F. Atiyah and D. O. Tall, Group representations, \-rings, and the J-homomorphism,
Topology 8 (1969), 253-297.

2. A. Dress, Contributions to the theory of induced representations, Lecture Notes in Math., vol.
342, Springer-Verlag, Berlin and New York, 1973, pp. 183-240.

3. H. Hauschild and S. Waner, The equivariant Dold theorem mod k (to appear).

4. G. Lewis, J. P. May and J. McClure, Ordinary RO(G )-graded cohomology (to appear).

5. J. McClure, The groups JOz(X) (to appear).

6. G. B. Segal, Equivariant stable homotopy theory, Actes Internat. Congres Math., Tome 2,
1970, pp. 59-63.

7. , Permutation representations of finite p-groups, Quart. J. Math. Oxford (2) 23 (1972),
375-381.

8. S. Waner, Equivariant RO(G)-graded singular cohomology (preprint).

J. P. MAY
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 4, Number 1, 1981

© 1981 American Mathematical Society
0002-9904/81/0000-0005/$01.75
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Representations of a finite group G are finitely generated RG-modules,
where R is a commutative ring. Thus representation theory is largely con-
cerned with the commutative monoids m(RG) where, for any ring A, m(A)
denotes the monoid of isomorphism classes of finitely generated A-modules
with addition given by the direct sum.

Classically R is taken to be the complex numbers. The monoids m(CG)
have a very simple description: they are freely generated by finitely many
irreducible modules. Indeed for any field K whose characteristic does not
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divide the order |G| of G the same is true of m(KG), though the generators
depend on K. In all these cases the relevant point is that the ring RG is
semisimple, so that all short exact sequences of modules split.

When K is a field whose characteristic divides |G| this is no longer true.
However, the Krull-Schmidt-Azumaya theorem still guarantees that m(KG) is
freely generated by the indecomposable modules—now to be distinguished
from the irreducible ones. It is this case which constitutes the theory of
modular representations.

A next step in the generalization of coefficients is to take for R the ring of
integers in a field of algebraic numbers: to study, then, the integral represen-
tations.

When the coefficients are not a field the representation theory, as might be
expected, becomes more complicated. Rings R of integers, or more generally
Dedekind domains, which have themselves a relatively simple module theory,
provide a reasonable generalization of field coefficients, since one can bring
to bear on the module theory of RG the techniques of algebraic number
theory.

Prominent among these is localization. There is indeed a level of generality
intermediate between field and integral coefficients, namely that in which
they are complete P-adic rings. In the integral case the Krull-Schmidt-
Azumaya theorem no longer holds in general for RG-modules: m(RG) is not
free. But for each P-adic completion R, m(R,G) is free. The use of these to
study the more intractable m(RG) exemplifies the application of localization
in integral representation theory.

There appear to be two major strategies in the study of integral representa-
tions. One of these exploits the fact that m(A) is functorial in A. If A >T is a
ring homomorphism then an associated homomorphism m(A) —» m(T) is
defined by [M] — [' ® , M], where [M] denotes the isomorphism class of the
module M. Thus for example if R— S we have m(RG)— m(SG); this
provides the connection between m(RG) and m(R,G) alluded to above, and
also relates m(RG) to m(KG) where K is the quotient field of a domain R. If
on the other hand H is a subgroup of G then m(RH) — m(RG) gives the
induced representations. A number of powerful induction theorems extract
information about representations of a group from the module theory of more
tractable subgroups.

Another application of this functoriality uses the fact that when R is a
domain of characteristic 0 then RG is an order in the semisimple algebra KG
and is thus contained in a maximal order A. Maximal orders have in general
a simpler module theory than nonmaximal ones and thus the homomor-
phisms m(RG) — m(A) may also be used to provide information about
m(RG).

The other strategy is to study in parallel with m(RG) associated objects
which may be more accessible to computation and may in addition embody
independently interesting information. For any R-order A for example the
A-lattices, i.e., the finitely generated R-projective A-modules, form a sub-
monoid /(A) C m(A), while the A-projective modules form a submonoid
P(A) C I(A). All these objects may be further “stabilized”, monoids being
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somewhat cumbersome, by substituting for them their abelian group reflec-
tions, in effect the abelian groups with the same generators and relations. The
notations m(A), I(A), p(A) are ad hoc; Reiner uses a(A) for the group
reflection of /(A); the notation Ky(A) for that of p(A) is of course familiar.

In a(RG) there is a multiplication given by [M] - [N] = [M ® N], with
the diagonal operation of G on the tensor product, making a(RG) a ring. It is
interesting to divide this by the ideal generated by the elements [M’] — [M]
+ [M "] associated to short exact sequences 0 > M’ > M — M"” — 0. The
quotient is the Grothendieck ring Go(RG). As the subscripts are meant to
indicate Ky(A) and Gy(A) are the first terms in sequences {K,(A)} and
{G,(A)} of groups—K;(A) and G,(A) are associated with automorphisms of
the modules in question. The study of these constitutes algebraic K-theory,
with which rapidly growing field integral representation theory thus finds
itself sharing a common border.

This Lecture Notes volume is made up of two parts: Topics in integral
representation theory by Irving Reiner and Integral representations and presen-
tations of finite groups by Klaus W. Roggenkamp.

The first of these is a general account of integral representation theory,
describing the strategies outlined above as well as some of the major results,
such as Swan’s characterization of the projective modules over RG for
suitable Dedekind domains R, Dade’s theorem, which gives conditions under
which /(RG) is infinitely generated and Bass’ computation of the rank of
K,(ZG). Its brevity prevents it from being self-contained: it depends on a
certain amount of information about classical and modular representation
theory, as well as about orders in algebras—all readily available in previous
books by the author. At the other end its articulation with K-theory depends—
no doubt inevitably—on references to the periodical literature. It provides
nevertheless an admirable conspectus of the field, organizing a remarkably
large body of material in coherent fashion and demonstrating the styles of
argument which have dominated its progress.

“Integral representations and presentations of finite groups” in contrast
undertakes a more exhaustive discussion of the narrower field indicated in its
title, and in particular of the recent work of K. W. Gruenberg and the author.

The access to this area is to a large extent via the relation modules of a
group. If R is the kernel of a free resolution, i.e., an epimorphism F — G with
F free, then R = R /[R, R]is a ZG-module, the relation module associated to
the resolution. These modules are involved in a variety of ways with the
properties of G; a sampling of these may give some idea of the scope of this
exposition.

If d(G) is the minimal number of generators of G, d;(N) the minimal
number of generators of N < G as a normal subgroup and d,(M) the
minimal number of generators of a A-module M then d R is the minimal
number of relators in a presentation of G by the generators of a free
resolution F — G. Evidently d:R > d,;R. But d(R) depends on the resolu-
tion even when it is minimal, i.e., when d(F) = d(G), in particular d(F) —
dg(R) is not an invariant.

The presentation rank pr(G) = d(G) — d,;(g), where g is the augmenta-
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tion ideal (the kernel of ZG — Z) is an invariant of appropriate type. Any
relation module R can be nonuniquely factored as 4 @ P where P is
projective and 4 has no nontrivial projective summand; such an 4 is a
“relation core”. Given any relation core 4° and any minimal relation module
R, Ry~ A%, ® (Z(5)G)PP"D, where (), denotes semilocalization at the
primes dividing |G|. It is shown that pr(G) = 0 if d(G) < 2 or G is solvable;
on the other hand if G is perfect then lim,_, , pr(G") = oo.

Decomposibility of modules appears as a recurrent theme, as does also its
generalization to what might be called stable decomposability (the author
prefers to say that stably indecomposable modules are “Heller modules™). A
module M is stably decomposable if for some projective P, M @ P decompo-
ses as the sum of two nonprojective modules. A typical result asserts that for
solvable G, Z is stably indecomposable if and only if G is a special sort of
iterated semidirect product (a 2-Frobenius group).

A notable technical innovation is the introduction of extension categories
as an amplification of the module categories which underlie the characteriza-
tion of representation theory advanced above. In fact relation modules
appear in the character of group extensions R — F/[R, R] — G with abelian
kernel, thus as objects in the category (¢) of such extensions or alternatively
in the equivalent category (2) of module extensions 4 — E — g.

From this point of view new representation—theoretic phenomena become
prominent. For example Frattini extensions A — E — G, that is to say those
for which H< E, A-H = E imply H = E, correspond to extensions
A-Mm5 g such that gy epic implies ¢ epic. These essential epimorphisms ¢
are dual to the essential monomorphisms, such as the inclusions of modules
into their injective envelopes. While injective envelopes always exist, the dual
projective covers do not. Here once more is a typical result: g, has a
projective cover if and only if G is p-primary or cyclic.

In this application the extension categories have been relativized by restrict-
ing the kernel to be a module over Zg,. Other relativizations are also
interesting: e.g., to modules with trivial operation of G, thus to central
extensions. The fundamental theorem on Schur multiplicators appears in this
context as a special case of a more general result.

In contrast to the first part of these Lecture Notes, the second is substan-
tially a report on work in progress. No doubt as this work advances the
organizing principles of the field will become more apparent. The reader
should perhaps be reassured that the somewhat germanic grammar of this
essay does not detract from its otherwise adequate readability.

ALEX HELLER



