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A Lie superalgebra, or (Z2-) graded Lie algebra, is a vector space © = ©0 

© ©, with a bilinear multiplication, < , >, satisfying the graded versions of 
the axioms for Lie algebras: if X G @a, Y EL ®fi9 and Z G ©y (a, /?, y G 
{0, 1}), then 

(1) (X, Y) = (-l)a*[r, X] ("graded antisymmetry"); 
(2) (-ir<*> <r, z » + (-i)*a<r, <z, x)} + (-i)Y/*<z, <*, y » - o 

(the "graded Jacobi identity"). 
Note that ©0 is a Lie algebra (in the ordinary sense). In what follows, it will 

always be tacitly assumed that © is finite dimensional and is defined over a 
field of characteristic 0. 

The standard example of an ordinary Lie algebra is gt(n), the space of all 
n X n matrices, with [X, Y] = XY — YX. (For instance, a representation of a 
Lie algebra is a homomorphism into gl(n).) There is a corresponding standard 
example of a Lie superalgebra; it, too, is used to define representations. Let 
V = V0® Vx be a ^-graded vector space. We define pl(V) =pl(V)0® 

pl(V)i, where 

PKV)O ={V-»V, T(VJ) C VJJ = 0, 1}; 

pl{V)x - {S: V^ V: S(Vj) Q V^J - 0, l } ; 

thus pl(V)0 consists of the linear maps on V taking each distinguished 
subspace to itself, and/>/(K)j consists of the linear maps on V taking each to 
the other. The multiplication is given as follows: if X, Y are each inpl(V)0 or 
pl(V)v where 

<*, Y> - XY - YX if either X or Y G pl( V)0; 

(X, Y> = XY+ YXiiX, Y G/?/(K),. 

Thus the multiplication in pl( V) consists of both commutators and anticom-
mutators. It is this fact which explains the sudden interest in Lie superalge-
bras among physicists; they offer a mathematical framework for combining 
various symmetry theories. (It seems to be somewhere between unclear and 
dubious, however, whether the resulting supersymmetry theories do jibe with 
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experimental results. In physics, it is not enough that your theory be elegant; 
in addition, God must have had the same idea as you.) 

Spurred on in large part by the physicists, mathematicians have been 
working actively in Lie superalgebras. (Actually, Lie superalgebras had arisen 
some years ago in mathematics-see, e.g., [4]-but the subject had languished.) 
The greatest triumph of this work, and the major topic of Scheunert's book, is 
V. Kac's classification of the simple finite-dimensional Lie superalgebras over 
an algebraically closed field of characteristic 0. Kac's result is found in [1]; as 
the book makes clear, [1] is by far the most important paper yet on the 
subject of Lie superalgebras. 

The analysis of Lie superalgebras begins with modification of standard Lie 
algebraic machinery: the Poincaré-Birkhoff-Witt Theorem, the Killing form, 
and so forth. The subject becomes interesting because it turns out that these 
tools are only of limited effectiveness. The Killing form, for example, is 
nondegenerate for all semisimple Lie algebras (and for semisimple Lie alge­
bras only), but its graded analogue can be degenerate for Lie superalgebras. 

Scheunert's proof of Kac's theorem follows the outlines of Kac's original 
proof, but differs in some details. The analysis is in two parts. The graded 
Jacobi identity implies (among other things) that @, is a @0-module (in the 
usual Lie algebra sense). Call the simple Lie superalgebra © classical if ©j is 
completely reducible. It turns out that © is classical iff ©0 is reductive. Then, 
of course, standard Lie algebra representation theory gives some information 
about ©,, and a careful analysis (based on the graded Jacobi identity) gives 
the classification of these algebras. (The procedure given is adapted from [5].) 

The nonclassical superalgebras are more difficult. One begins with an 
analysis of Z-graded Lie algebras. £ = © „eZ£(/I) is a Z-graded Lie algebra if 
it has a bilinear multiplication, < , ) , such that 

0 ) \k(m)> k(m)) £ ^m + ziî 
(2) if ©0 - © n e z£ ( 2 / l ) , ©i - © „GZ£<2,,+i)> t h e n Ê = ©o 0 ©, is a Lie 

superalgebra. One says that C is transitive if ($(_Xy Ö(̂ > ¥* {0} unless ü(/> = 
{0} and that S is irreducible if the obvious representation of C(0) in S ^ is 
irreducible. To classify the nonclassical superalgebras, one first shows that 
each such superalgebra © gives rise to a transitive irreducible Z-graded Lie 
algebra, £, such that £(/l) = 0 if n < - 1 . One then classifies such Z-graded 
Lie algebras, and uses this classification to determine ©. The classification of 
the algebras £ is, like that for classical Lie algebras, a complicated exercise in 
the representation theory of semisimple Lie algebra, since £(0) is reductive. 
This analysis is taken from Kac [1]. Presumably it will be simplified in time. 

What else needs to be done? The last chapter of the book gives an 
introduction to some of the obvious topics. Kac has shown that © = ®0 © ©1 

is solvable if and only if ©0 is; he has also shown that the analogue of Lie's 
theorem (for solvable Lie algebras) is false. There is, presumably, more that 
can be said about solvable Lie algebras. The representation theory of simple 
Lie superalgebras promises to be somewhat complicated; for instance, the 
analogue of H. Weyl's theorem (on the complete reducibility of finite-dimen­
sional representations) is in general false, as is shown in [1]. Kac gives a 
number of results on representations of graded Lie superalgebras in [1]; more 
recently, he has investigated "typical" irreducible representations of simple 
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Lie algebras, in [2]. Another topic that deserves attention is that of the 
cohomology of Lie superalgebras. Levi's theorem says that every Lie algebra 
over C is a semidirect product of its radical with a semisimple Lie algebra. 
This theorem is generally regarded as a theorem about the vanishing of 
certain cohomology groups. The analogous theorem for Lie superalgebras is 
false (as Scheunert remarks); presumably there are interesting results to be 
found in the cohomology theory of Lie superalgebras. [3] gives a (very) basic 
introduction to the subject. 

The book is clearly written, with very few misprints. It lacks a symbol 
table, and the index is sketchy; both of these faults are, however, bearable. 
Scheunert's book should prove a convenient source for information on Lie 
superalgebras; perhaps it will stimulate further research as well. 
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