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SK, OF p-ADIC GROUP RINGS
BY ROBERT OLIVER

If A is a Dedekind domain with quotient field K, and = a finite group, de-

fine
SK,(An) = Ker[K, (A7) — K, (Km)].

We concentrate here on the case when A is a p-ring—the ring of integers in a fin-
ite extension of the p-adic rationals Qp——and report on results which completely
calculate SK, (Am) in this case.

The main reason for looking at SK, (A7) involves SK (Zm), shown by Wall
[5] to be the torsion subgroup of the Whitehead group Wh(n) (and thus having
various topological applications). The inclusions Zx C 2p [7] induce a surjection

SK,(Zm) —> 3 SK,(Z, [])
14

(see §1 in [3]), whose kernel is denoted Cl,(Zm). The computation of SK, (Zm)
thus splits into two parts. Cl,(Zm) can be calculated in many cases (see, e.g.,
[4] and [3], noting that Cl,(Zr) = SK, (Zm) for abelian 7); but no general formu-
la or algorithm has yet been found. The groups SK 1(2p [r]), on the other hand,
are completely described by Theorems 1 and 2 below.

For any finite m, define

HE(m) = Im[X_{H,(p): p C m, p abelian} — H,(m)].
If w is a p-group, the situation is particularly simple.
THEOREM 1. For any p-ring A and p-group w,
SK,(Am) = H,(m)/H5® (m).

Note in particular that SK, (A7) is independent of 4 in this case. If B 24
is a totally ramified extension of p-rings, the inclusion Aw € Br induces an iso-
morphism from SK, (A7) to SK, (Bm). If, on the other hand, B 2 4 is an unrami-
fied extension, it is the transfer map

trf: SK,(Br) — SK,(Am)

which is an isomorphism.
For arbitrary finite m, the formula is much messier. For any p-ring 4 and
finite group m, set n = exp(n) and regard Gal(4¢,/4) (,, a primitive nth root of
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unity) as a subgroup of (Z,)*. Two elements g, k € m will be called A-conjugate
if g2 = xhx™? for some x € 7 and a € Gal(4¢,/A).

THEOREM 2. Let A be a p-ring, © a finite group, and set n = exp(w). Let
&> - - - » & be A-conjugacy class representatives for elements of order prime to
p. Define, for 1 <i<k,

Z,=Z,@g); N,=x€m xgx ! = g? for some a € Gal(4$,/4)}.
Then

k
SK,(Am) = ;1 H Ny H,(Zi)/Hé”’(Zi))(p)-

Assume again that = is a p-group. Just finding a map between SK, (4)
and Hz(ﬂ)/Hgb (m) takes a fair amount of machinery. For simplicity, assume 4 is
unramified over 2p (ramified p-rings must be dealt with separately). A short
exact sequence

0 — Wh'(4n) = I{dn) > 7% — 0 m

is first constructed where

Wh'(47) = K, (Am)/(4* x 7 x SK,(4m))

I(An) = Ker(Am — A), I{An) = IAn)/ix — gxg™': x EI(Am), g €™,

w(Qreg) = [1EI™®? (Tr:4— 2p the trace map)

and T is defined using the p-adic logarithm.

The sequence (1) gives no new information about Wh'(A7) as an abstract
group, but it does allow more control over it. For example, when = is a 2-group
and Wh'(Z, []) has the involution induced by g — g™, (1) yields the simple
formula

{lg] € 7*: [g%] = e in 1™}
{[g] € 7*®: g conjugate to g71)

H'(Z,; Wh'(Z, [n])) =

(answering a question of Wall).
Given any extension 1 — p — 7 — 7 — 1 of p-groups, (1) is used to
get a diagram (with exact rows)
0 — SK, (4p) — Wh(dp) > I{Ap) > p® — 0
l l ! l
0 — SK, (A7) — Wh(47) > I{47) <> 7 — 0
l l ! !
0 — SK, (Am) — Wh(4n) > ItAm) 2 7% — 0.
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A little diagram chasing yields a homomorphism
A: Ker[p®™ — 7] — Coker [SK, (A7) — SK,(4m)],

whose kernel is easily seen to contain [p, 7]. The spectral sequence for the ex-
tension induces an exact sequence

Hy@ = p[[p, 7] — 7
and the composite A © § is a natural homomorphism
H,(m) — Coker[SK, (AT) — SK (Am)].

That this induces an isomorphism H, (ﬂ)/Hgb(n) = SK, (Am) (for proper choice
of 7) now follows upon checking:
(A) A induces an isomorphism py/p, = Coker[SK, (A7) — SK,(4m)],
where
po=pN X7 and p, =(z €p: z=ghg~ h™" for some g, h €.

(B) po = 8(Hy(m), p, = 8(HZ(r)), and for 7 large enough, & induces an
isomorphism H,(m)/HZ®(m) = py/p, -

(C) There exists # —=> m such that SK, (A7) = 0.

In other words, it is the difference between “actual” commutators and
elements in [7, 7] which gives rise to elements in SK,(Aw). Note that by (A),
and the surjectivity of the localization map, surjections # —> 7 of p-groups can
be constructed such that the induced map

SK,(Zw) — SK,(Zm)
is not onto.

Once SK, (Am) is computed for p-groups =, the result for general 7 is ob-
tained by first extending to certain twisted group rings, and then applying the
induction theory in [1]. In particular, one gets in the process (using also Theo-
rem 1 in [3])

THEOREM 3. SK,(An) (A any p-ring) and SK (Z‘n)‘p) are generated by
induction from p-elementary subgroups of «.

As examples of specific computations, we get

THEOREM 4. Let A be a p-ring and w a finite group. Then SK,(Am) =0
if () T (p-Sylow subgroup) has a normal abelian subgroup with cyclic quotient
or (ii) m is @ symmetric or alternating group.

Specific examples of p-groups m with H, (ﬂ)/Hgb () # 0 are constructed in
[2]. The smallest such m occur when |7| = p° (p odd) or Ir| = 64.
Combining these results with those on Cl,(Z7) in [3], we get
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THEOREM 5. SK,(Zm) = 0 if m is any symmetric group or generalized
quaternionic group, or if n = SL(2, p) or PSL(2, p) for p prime. In particular,
Wh(Z,) =0.
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