SK, OF p-ADIC GROUP RINGS

BY ROBERT OLIVER

If A is a Dedekind domain with quotient field K, and π a finite group, define

$$SK_1(A\pi) = \text{Ker}[K_1(A\pi) \longrightarrow K_1(K\pi)].$$

We concentrate here on the case when A is a p-ring—the ring of integers in a finite extension of the p-adic rationals \hat{Q}_p —and report on results which completely calculate $SK_1(A\pi)$ in this case.

The main reason for looking at $SK_1(A\pi)$ involves $SK_1(Z\pi)$, shown by Wall [5] to be the torsion subgroup of the Whitehead group $Wh(\pi)$ (and thus having various topological applications). The inclusions $Z\pi\subseteq \hat{Z}_p[\pi]$ induce a surjection

$$SK_1(\mathbf{Z}\pi) \longrightarrow \sum_p SK_1(\hat{\mathbf{Z}}_p[\pi])$$

(see §1 in [3]), whose kernel is denoted $\operatorname{Cl}_1(\mathbf{Z}\pi)$. The computation of $SK_1(\mathbf{Z}\pi)$ thus splits into two parts. $\operatorname{Cl}_1(\mathbf{Z}\pi)$ can be calculated in many cases (see, e.g., [4] and [3], noting that $\operatorname{Cl}_1(\mathbf{Z}\pi) = SK_1(\mathbf{Z}\pi)$ for abelian π); but no general formula or algorithm has yet been found. The groups $SK_1(\hat{\mathbf{Z}}_p[\pi])$, on the other hand, are completely described by Theorems 1 and 2 below.

For any finite π , define

$$H_2^{ab}(\pi) = \operatorname{Im}\left[\sum \{H_2(\rho): \rho \subseteq \pi, \rho \text{ abelian}\} \longrightarrow H_2(\pi)\right].$$

If π is a p-group, the situation is particularly simple.

THEOREM 1. For any p-ring A and p-group π ,

$$SK_1(A\pi) \cong H_2(\pi)/H_2^{ab}(\pi).$$

Note in particular that $SK_1(A\pi)$ is independent of A in this case. If $B \supseteq A$ is a totally ramified extension of p-rings, the inclusion $A\pi \subseteq B\pi$ induces an isomorphism from $SK_1(A\pi)$ to $SK_1(B\pi)$. If, on the other hand, $B \supseteq A$ is an unramified extension, it is the transfer map

$$trf: SK_1(B\pi) \longrightarrow SK_1(A\pi)$$

which is an isomorphism.

For arbitrary finite π , the formula is much messier. For any p-ring A and finite group π , set $n = \exp(\pi)$ and regard $\operatorname{Gal}(A\zeta_n/A)$ (ζ_n a primitive nth root of

Received by the editors April 7, 1980.

1980 Mathematics Subject Classification. Primary 18F25; Secondary 16A26.

unity) as a subgroup of $(\mathbb{Z}_n)^*$. Two elements $g, h \in \pi$ will be called A-conjugate if $g^a = xhx^{-1}$ for some $x \in \pi$ and $a \in \operatorname{Gal}(A\zeta_n/A)$.

THEOREM 2. Let A be a p-ring, π a finite group, and set $n = \exp(\pi)$. Let g_1, \ldots, g_k be A-conjugacy class representatives for elements of order prime to p. Define, for $1 \le i \le k$,

$$Z_i = Z_{\pi}(g_i);$$
 $N_i = \{x \in \pi : xg_i x^{-1} = g_i^a \text{ for some } a \in Gal(A\zeta_n/A)\}.$

Then

$$SK_1(A\pi) \cong \sum_{i=1}^k H_0(N_i; H_2(Z_i)/H_2^{ab}(Z_i))_{(p)}.$$

Assume again that π is a p-group. Just finding a map between $SK_1(A\pi)$ and $H_2(\pi)/H_2^{ab}(\pi)$ takes a fair amount of machinery. For simplicity, assume A is unramified over $\hat{\mathbf{Z}}_p$ (ramified p-rings must be dealt with separately). A short exact sequence

$$0 \longrightarrow Wh'(A\pi) \xrightarrow{\Gamma} \overline{I(A\pi)} \xrightarrow{\omega} \pi^{ab} \longrightarrow 0$$
 (1)

is first constructed where

$$Wh'(A\pi) = K_1(A\pi)/(A^* \times \pi^{ab} \times SK_1(A\pi))$$

$$I(A\pi) = \text{Ker}(A\pi \longrightarrow A), \quad \overline{I(A\pi)} = I(A\pi)/\langle x - gxg^{-1} : x \in I(A\pi), g \in \pi \rangle,$$

$$\omega(\sum r_i g_i) = \prod [g_i]^{\operatorname{Tr}(r_i)}$$
 (Tr: $A \to \hat{\mathbf{Z}}_p$ the trace map)

and Γ is defined using the p-adic logarithm.

The sequence (1) gives no new information about Wh' $(A\pi)$ as an abstract group, but it does allow more control over it. For example, when π is a 2-group and Wh' $(\hat{Z}_2[\pi])$ has the involution induced by $g \longrightarrow g^{-1}$, (1) yields the simple formula

$$H^1(\mathbf{Z}_2; \operatorname{Wh}'(\widehat{\mathbf{Z}}_2[\pi])) \cong \frac{\{[g] \in \pi^{ab} \colon [g^2] = e \text{ in } \pi^{ab}\}}{\langle [g] \in \pi^{ab} \colon g \text{ conjugate to } g^{-1} \rangle}$$

(answering a question of Wall).

Given any extension $1 \to \rho \to \tilde{\pi} \to \pi \to 1$ of p-groups, (1) is used to get a diagram (with exact rows)

$$\begin{array}{cccc} 0 \longrightarrow SK_1(A\rho) \longrightarrow \operatorname{Wh}(A\rho) \stackrel{\Gamma}{\longrightarrow} \overline{I(A\rho)} \stackrel{\omega}{\longrightarrow} \rho^{ab} \longrightarrow 0 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow SK_1(A\widetilde{\pi}) \longrightarrow \operatorname{Wh}(A\widetilde{\pi}) \stackrel{\Gamma}{\longrightarrow} \overline{I(A\widetilde{\pi})} \stackrel{\omega}{\longrightarrow} \widetilde{\pi}^{ab} \longrightarrow 0 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow SK_1(A\pi) \longrightarrow \operatorname{Wh}(A\pi) \stackrel{\Gamma}{\longrightarrow} \overline{I(A\pi)} \stackrel{\omega}{\longrightarrow} \pi^{ab} \longrightarrow 0. \end{array}$$

A little diagram chasing yields a homomorphism

$$\Delta$$
: $\operatorname{Ker}[\rho^{ab} \to \widetilde{\pi}^{ab}] \to \operatorname{Coker}[SK_1(A\widetilde{\pi}) \to SK_1(A\pi)]$,

whose kernel is easily seen to contain $[\rho, \tilde{\pi}]$. The spectral sequence for the extension induces an exact sequence

$$H_2(\pi) \xrightarrow{\delta} \rho/[\rho, \widetilde{\pi}] \longrightarrow \widetilde{\pi}^{ab}$$

and the composite $\Delta \circ \delta$ is a natural homomorphism

$$H_2(\pi) \longrightarrow \operatorname{Coker} \left[SK_1(A\widetilde{\pi}) \longrightarrow SK_1(A\pi) \right].$$

That this induces an isomorphism $H_2(\pi)/H_2^{ab}(\pi) \cong SK_1(A\pi)$ (for proper choice of $\tilde{\pi}$) now follows upon checking:

(A) Δ induces an isomorphism $\rho_0/\rho_1\cong {\rm Coker}\,[SK_1(A\widetilde\pi)\longrightarrow SK_1(A\pi)]$, where

$$\rho_0 = \rho \cap [\widetilde{\pi}, \widetilde{\pi}] \quad \text{and} \quad \rho_1 = \langle z \in \rho : z = ghg^{-1}h^{-1} \text{ for some } g, h \in \widetilde{\pi} \rangle.$$

- (B) $\rho_0 = \delta(H_2(\pi))$, $\rho_1 = \delta(H_2^{ab}(\pi))$, and for $\widetilde{\pi}$ large enough, δ induces an isomorphism $H_2(\pi)/H_2^{ab}(\pi) \cong \rho_0/\rho_1$.
 - (C) There exists $\widetilde{\pi} \longrightarrow \pi$ such that $SK_1(A\widetilde{\pi}) = 0$.

In other words, it is the difference between "actual" commutators and elements in $[\tilde{\pi}, \tilde{\pi}]$ which gives rise to elements in $SK_1(A\pi)$. Note that by (A), and the surjectivity of the localization map, surjections $\tilde{\pi} \longrightarrow \pi$ of p-groups can be constructed such that the induced map

$$SK_1(\mathbf{Z}\widetilde{\pi}) \longrightarrow SK_1(\mathbf{Z}\pi)$$

is not onto.

Once $SK_1(A\pi)$ is computed for p-groups π , the result for general π is obtained by first extending to certain twisted group rings, and then applying the induction theory in [1]. In particular, one gets in the process (using also Theorem 1 in [3])

THEOREM 3. $SK_1(A\pi)$ (A any p-ring) and $SK_1(\mathbf{Z}\pi)_{(p)}$ are generated by induction from p-elementary subgroups of π .

As examples of specific computations, we get

THEOREM 4. Let A be a p-ring and π a finite group. Then $SK_1(A\pi) = 0$ if (i) π_p (p-Sylow subgroup) has a normal abelian subgroup with cyclic quotient or (ii) π is a symmetric or alternating group.

Specific examples of p-groups π with $H_2(\pi)/H_2^{ab}(\pi) \neq 0$ are constructed in [2]. The smallest such π occur when $|\pi| = p^5$ (p odd) or $|\pi| = 64$. Combining these results with those on $\operatorname{Cl}_1(\mathbb{Z}\pi)$ in [3], we get

Theorem 5. $SK_1(\mathbb{Z}\pi)=0$ if π is any symmetric group or generalized quaternionic group, or if $\pi\cong SL(2,p)$ or PSL(2,p) for p prime. In particular, $Wh(\Sigma_n)=0$.

REFERENCES

- 1. A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. (2) 102 (1975), 291-325.
 - 2. W. Neumann, Manifold cutting and pasting groups, Topology 15 (1975), 237-244.
 - 3. R. Oliver, SK_1 for finite group rings. I, Invent. Math. 57 (1980), 183-204.
- 4. M. Stein, Whitehead groups of finite groups, Bull. Amer. Math. Soc. 84 (1978), 201-212.
- 5. C. T. C. Wall, Norms of units in group rings, Proc. London Math. Soc. 29 (1974), 593-632.

MATEMATISK INSTITUT, AARHUS UNIVERSITET, 8000 AARHUS C, DENMARK