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BY ROGER HOWE 

In this article I want to popularize the Heisenberg group, which is remark­
ably little known considering its ubiquity. I use the word ubiquity advisedly. 
To justify it, let me give a sample of the many apparently diverse topics where 
the Heisenberg group reveals itself as an important factor. 

(1) Representation Theory of Nilpotent Lie Groups 
(2) Foundations of Abelian Harmonic Analysis 
(3) Moduli of Abelian Varieties 
(4) Structure Theory of Finite Groups 
(5) Theory of Partial Differential Equations 
(6) Quantum Mechanics 
(7) Homological Algebra 
(8) Ergodic Theory 
(9) Representation Theory of Reductive Algebraic groups 
(10) Classical Invariant Theory 

This list could easily be lengthened both by adding new topics and making 
these more specific, for sometimes the applications are multiple. In fact, one 
of the most important areas of application I have not mentioned at all, to 
avoid name-dropping. Why has an object with such wide application gone 
relatively unnoticed until recently? One can only speculate. One reason might 
be that the role of the Heisenberg group in many situations is relatively 
subtle. An investigator might be able to get what he wanted out of a situation 
while overlooking the extra structure imposed by the Heisenberg group, 
structure which might enable him to get much more. Such may have been the 
case with Hermann Weyl, one of the pioneers in introducing the Heisenberg 
group into Quantum Mechanics [Wyl]. Indeed, many physicists still call the 
Heisenberg group the "Weyl group". When Weyl wrote his book The classical 
groups, [Wy2] he overlooked the natural occurrence of the Heisenberg group, 
exploitation of which yields results which one feels Weyl would have liked 
very much. Again, I gather that an appreciation of the role of the Heisenberg 
group in rigidifying abelian varieties was an important aspect of Mumford's 
[Mm] fundamental contributions to their study. Another obstacle to the 
appreciation of the common underlying structure may have been the very 
diversity of the topics I listed above, for detection of its presence in one place 
need not suggest its presence elsewhere. Indeed, investigators in one field may 
very well never have been aware that the Heisenberg group had been found 
in some field not seemingly related to theirs. Another factor certainly contrib-
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utory to its relative obscurity is that what I call "the Heisenberg group" is not 
in fact one object, but a collection of similar objects, rather like a functor, or 
a scheme in algebraic geometry, or even a combination of several overlapping 
functors. Thus one has to look with a certain pair of spectacles in order to see 
the topics on the list as being united via a single common phenomenon. But I 
think this is possible, and I want to give some examples of this point of view 
here. For people unacquainted with the Heisenberg group, this can be an 
introduction. Hopefully those already acquainted with it will also learn 
something. 

These examples will be taken mostly from harmonic analysis. More particu­
larly, except for the last, they are mostly an attempt to bridge the gap 
between abelian and nonabelian harmonic analysis by showing how various 
important results in abelian harmonic analysis may be enriched through an 
interpretation involving the Heisenberg group. Because of this choice of 
theme, the examples will not reveal the breadth of the range of applications of 
the Heisenberg group. But they do hint at more varied applications, and since 
they treat material that should be relatively familiar, they will perhaps be 
accessible to a reasonably wide audience. The topics are 

(1) Plancherel «=» Stone-von Neumann, 
(2) distributional viewpoint towards Fourier Inversion and Poisson Summa­

tion, 
(3) Bochner's Formula,) / c t / ^ x , r . 
(4) Huyghens' Principle) <S/* < W d u a h t * 
(5) symbols in the theory of pseudo-differential operators. 
I take as my text for this discussion the article by E. M. Stein in Studies in 

harmonic analysis, J. Marshall Ash, éd., published by MAA (1976), entitled 
Harmonic analysis on Rn. Before he gets to the more specialized recent 
developments, Stein lists a number of facts and formulas he considers basic to 
the subject of harmonic analysis on Rrt. These are 

(a) the Fourier Inversion Theorem, (1) 
(b) the Schwartz Space, 
(c) the Plancherel Theorem, 
(d) the fact that Fourier transform interchanges d/dx and 

multiplication by 2mx, and translation by y and multipli­
cation by e2vixy. (One might just say, that it interchanges 
convolution and multiplication.) 

(e) that Fourier transform commutes with rotations, and 
more or less normalizes scalar dilations. (More generally, 
Fourier transform more or less normalizes the transforma­
tions coming from GLn. If they are unitarized, it does do so.) 

(f) that (e~"x2)A = e'"*2. Also that the Fourier transform 
on radial functions is given by a Hankel transform: 

f(r) = (2^r)-t—2>/2 ƒ °° X^)A-2)/2(2^)J»/2 efe. 
•'o 

Also Hecke's formula: (P(x)e'irxx)A - ikP{x)e^xx if P is 
a spherical harmonic on R" of degree k; and the formula of 
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Bochner, that (P(x)f(r))A = P(x)T(f(r)% where T is the 
Hankel transform of degree n/2 + k — 1. 

These facts are presented by Stein, I think it is accurate to say, as 
interesting and important facts which happen to be true. I want to cast them 
in the role of clues pointing to a larger truth. I will try to do so without 
getting too doctrinaire or theological. 

The usual point of view is that Fourier transform (herein denoted A) takes 
(hard to understand) convolution operators to (easy to understand) multipli­
cation operators, and this is certainly a vital function of A . However, both 
multiplications and translations are special operators, and to get general 
operators we must combine them. Thus it might be worthwhile to take a more 
symmetrical point of view. This can be effected in a group theoretical context 
as follows. For x, y G R", define 

TJ{x') - ƒ(*' - x\ Myf(x') - e***X*') (2) 

where y • x' is the usual inner product. Also for x E T , consider the scalar 
operators, S2f(x') = zf(x'). Then the set {MyTxSz:y G R", x G R", z G T} is 
in fact a group of unitary operators on L2(R). Somewhat more abstractly, if 
we consider the set H = R" X Rn X T, and define on it a law of combination 

(y„ xx, zx)(y29 x2, z2) = (yl + y2, xl + x2, ^"2w(V20C»z1z2) (3) 

then H becomes a two step nilpotent group we will call the (reduced) 
Heisenberg group of order n. Then the map 

p:(y,x,z)-»MyTxSz (4) 

is a faithful unitary representation of // . It is very easy to see that p is 
irreducible. Since the Mys separate points, any operator commuting with 
them is a multiplication [LI]. Since the Txs act transitively, this multiplication 
operator must be constant, i.e., scalar. 

The basic formulas for Fourier transform say that A normalizes p(H). 
More precisely, let us define an automorphism r of H by the rule 

r(y,x,z) = (-x,y,e2"ix*z). (5) 

Then it is immediate to verify that 

Ap(A) = p(r(A))A. (6) 
That is to say, A intertwines the two representations p and p <> r of H with 
each other. When you have an intertwining operator between irreducible 
representations, it has to be terrible not to be unitary. In particular, if densely 
defined and closable, so if its adjoint is densely defined, it will be unitary (up 
to multiples). This is the general Schur's lemma [L2, p. 180]. It is relatively 
obvious that A has these weak properties, so it is unitary up to multiples. 
Thus computing one Fourier transform, any one, serves to show that in its 
standard form, 

Ay) - f f(x)e-2™* dx, (7) 
A is unitary. 
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Fourier inversion can be dealt with similarly. If we repeat A twice we know 
AAp(/j) = p(r\h))AA, where r\y, x, z) « (->% - x , z). It is trivial to check 
that w(-l), defined by <o(-l)/(x) = f(-x) accomplishes the same intertwin­
ing. Thus by irreducibility of p, A2 = <o(-l) up to multiples, and again a single 
computation suffices to establish that the normalization is correct. With 
regard to these computations, let us note they are both accomplished by the 
single formula, listed by Stein (see (l)(f)). 

(e-"xx)A = *-•**. (8) 

For the proof of this, Stein says you make an obvious reduction to the one 
dimensional case, where it follows by a contour integral argument. A less 
sophisticated procedure in the one dimensional case is to observe that e"**2 

solves the differential equation 

(d/dx + 2iTx)f=0. (9) 

Since this equation is invariant under Fourier transform, we see e~""* must be 
its own Fourier transform up to multiples. Thus the whole business is reduced 
to the famous formula 

f* e-**dx-L (10) 
• ' - o o 

The significance of this proof of (8) will be discussed later. 
Thus simply the observation that the reduced Heisenberg group exists 

virtually suffices to establish the basic Plancherel and Fourier Inversion 
formulas. Reciprocally, the Plancherel Theorem serves to prove and 
strengthen a celebrated fact about the Heisenberg group, the Stone-von 
Neumann Theorem, which lies at the foundation of quantum mechanics. 
Thus the Plancherel and Stone-von Neumann Theorems are revealed as 
essentially equivalent. We proceed to detail this, bringing in the Schwartz 
space along the way. 

When you have a unitary representation a of a Lie group G, it is natural to 
differentiate it and integrate it, and one has a notion of smooth vectors. Let $ 
denote the Lie algebra of H. Let e: § -» H be the exponential map. We can 
choose a basis Xp Yp T for $ such that 

e(2yj Yj + 2* ,* , + tT) - (y, x, e»*-r*/*>) (11) 

where y - (yl9..., yn), x « (xv . . . , xn). Then we find easily that 

p(Xj) = - a / a * p( Yj) - 2mxJy p(T) - 2m. (12) 

The equations (12) are significant in several regards. For one thing, we can 
compute that 

[ Yj, X,] - YjX, - Xt Yj - 2m8u. (13) 

The equations (13) are the celebrated canonical commutation relations of 
Heisenberg. The also famous Stone-von Neumann Theorem asserts that 
under mild assumptions the operators of (12) are, up to unitary equivalence, 
the only realization of the canonical commutation relations. We will for­
mulate the group theoretical version of this result. This is essentially the 
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formulation of von Neumann [vN]. It is an interesting historical note that 
Hermann Weyl realized very early [Wyl] that the canonical commutation 
relations were the structural equations for a Lie algebra, and that there was 
an essentially equivalent formulation of them in terms of the corresponding 
Lie group. For this reason, among physicists, the group H is often called the 
Weyl group. This terminology would obviously cause too much confusion 
among mathematicians, and also probably exemplifies some of the dif­
ferences in psychology between mathematicians and physicists. 

In any case, we have the following result. 

THEOREM (STONE-VON NEUMANN). The representation p of H is, up to unitary 
equivalence, the only irreducible unitary representation of H such that 

p((0, 0, z)) - zL (14) 

(To express (14), we say the central character of p is the identity.) 
Just as introducing the Heisenberg group facilitated proof of the Plancherel 

Theorem, the flow can be reversed, and the Plancherel Theorem used to 
prove the Stone-von Neumann Theorem. This comes about simply by in­
tegrating p in a reasonably explicit way. The argument comes from I. Segal 
[Sg], and is almost to be found in von Neumann's original (1931) paper [vN], 
A great virtue of it is that it proves a meaningfully stronger result than the 
one we have just stated. 

Consider ƒ E Ll(G). One defines p(f) in the usual way: 

P(f) = (f(g)p(g)dg. (15) 
JH 

Defining left translation in the usual way, 

Lh{f)(h>)=f{h-'h') (16) 

we find from (15) the relation 

p ( V ) = 2P(/) ioizGTQH. (17) 

Thus, let us define 

°f=(z-lLJdz. (18) 

Then it is easy to see that 

(a) P(°/) = P(/), (b) I*(7) - * (7 ) . (19) 

The subspace L\H, e) of L1 consisting of ƒ satisfying (19)(b) is a two-sided 
convolution ideal in L1 a n d / - » °f is a projection of L\H) onto L\H, e). 
Equation (19)(a) says p factors through this projection. Hence in computing 
(15) it will suffice to consider only ƒ e Ll(H, e). Such ƒ are determined by 
their restrictions r(f) to the set (y, x, 1) C H. Let S (Rn) be the Schwartz 
space of rapidly decreasing smooth functions on Rn [L2], JTJ. Take 4> e S (R") 
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and compute 

P(/)(*)(*0 - ƒ K/)0% *)A/,(T>)(*') dy dx 

- f r{J)(y9 x)e2«»'x'4>(x' - x) dy dx 

- f r(f)Ar\x\ x)<j>(x' - *) dx (20) 

(where Af 1 indicates inverse Fourier transform in the first variable) 

- ( r{f)^\x\x'-x)<t>{x)dx 

= f KÂx\ x)<p(x) dx 
JRn J 

where 

K/(x\ x) - r ( / ) A r V > x' - x). (21) 

Segal calls formula (21) the Weyl transform. Thus p(f) is an integral kernel 
operator. We recall that the integral operators with square integrable kernel 
form the algebra of Hilbert-Schmidt operators 3C.S. Also, we should note 
that there is a notion of smooth operator just as well as smooth vector. A 
smooth operator T is one such that p(ux)Tp(u^) is bounded for all ul9 u2 in the 
universal enveloping algebra of H. It is easy to see from formulas (12) that 
the smooth operators for p are just the integral kernel operators with 
Schwartz functions as kernels. These clearly arise as Weyl transforms from 
§(ƒƒ, e), the functions ƒ in Ll(H, e) with r(f) in S(R2n). From our acquain­
tance with the Fourier transform, we may use formula (21) to conclude: 

THEOREM (SEGAL). The representation map p from Ll(H, e) to bounded 
operators on L2(Rn) extends to an isometric isomorphism from L2(H, e) to 
3C.S., and restricts to a topological isomorphism from S( / / , e) to the smooth 
operators for p. 

This result makes it plausible that p is unique, for there is in some sense 
nothing left from Ll(H9 e) out of which to make another representation. 
Indeed a few exercises in the yoga of matrix coefficients suffice to derive the 
Stone-von Neumann Theorem from this one. 

The fact that p extends from Ll to L2 means that p is what is called a 
square-integrable representation. It is increasingly appreciated these days that 
square-integrability is an important property of representations. 

We may combine the above results to obtain 

THEOREM (STONE-VON NEUMANN-SEGAL). Up to unitary equivalence there is 
a unique representation p of H with the identity onT as central character, and 
this representation is square integrable. 

In the light of recent results in representation theory, in particular those of 
Moore and Wolf [MW] on square-integrable representations, we can say that 
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square-integrability is a natural thing to include in the description of p 
because 

THEOREM (MOORE-WOLF). An irreducible representation a of a nilpotent Lie 
group N is square-integrable (modulo the center of N) if and only if it is the 
unique irreducible representation of N with its central character. 

From the uniqueness and square-integrability we can conclude immediately 
that p is isometric from L2(H, e) to 3C.S. Reading formula (21) backwards, 
we conclude that Fourier transform is isometric. Thus we conclude: 

The Stone-von Neumann-Segal and the Plancherel Theorems are equiva­
lent theorems. 

Another aspect of the formulas (12) is that they imply immediately that the 
space of smooth vectors of p is the Schwartz space S (Rrt). If we combine this 
with the Stone-von Neumann Theorem, we see that the Schwartz space is 
characterized abstractly as the smooth subspace p00 of a certain irreducible 
representation p of H. Thus all questions of smoothness, growth, etc., of 
tempered distributions on R" could in principle be formulated purely in terms 
of the structure of p. Although this procedure would often be counterproduc­
tive, it can be occasionally useful and is something to keep in mind. We will 
give an example as our last topic below. 

Although H has only one representation with central character the identity 
up to unitary equivalence, there are many rather different looking ways of 
realizing this representation. This rather Hinduish multiplicity-in-one is char­
acteristic of the theory of H and adds greatly to its richness. We have already 
seen that the theory of the Fourier transform can be viewed as studying the 
intertwining between two realizations of p. The study of the intertwining 
between all realizations of p leads in many directions, of which we can 
mention only a few. 

Many realizations of p are obtained by inducing. Let A C H be any 
maximal abelian subgroup, and \p any unitary character of A restricting to the 
identity on T. We may form the induced representation 

indjfy = p ^ 

defined by left translation 

PA^h)f{h') = f(h'lh') (22) 

on the space of functions ƒ such that 

f(h'a) - tf*)-lf(h% f \f\2dh<«>. (23) 
JH/A 

It is clear that the central character of pA ^ is the identity, and since A is 
specified as maximal abelian, it is not too hard to show, for example via the 
general results of Mackey that 

THEOREM. pA ^ is irreducible, hence a realization of the unique irreducible 
representation p of H with the identity central character. 

For example, if A = {(y9 0, z)} and \p(y, 0, z) = z, then we just get the 
original action of H defined by formulas (2). In this case, since if X = 
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{(0, x9 1)} C H, we have H = A • X9 we can identify a function in the space 
of pA ̂  with a function o n l ^ R", and then the action is just that given in (2). 
This is called the Schrödinger model of p. Since H has a lot of symmetry, this 
gives a lot of realizations of p. We will see further examples below. 

Corresponding to the realizations just described there is a distributional 
version of Frobenius reciprocity. Let p00* be the dual space of the smooth 
vectors p00 of p. In the Schrödinger model, p00* is of course just the space of 
tempered distributions. On p00* one has the representation contragredient to 
the restriction of p to p00. 

THEOREM. For maximal abelian A Q H and unitary character ^ of A 
restricting to the identity there is a linear functional &(y4,i//), unique up to 
multiples, such that 

p°°*(a)%(A9 +) = yp(ayl&(A9 xp), a G A. (24) 

That is, 

Z(A9 Mp(*)(t>)) - *(a)Z(A, tf(v)9 aeA9vGp«>. (25) 
In the realization pA ̂  of p, the functional &04, *//) is just evaluation at the 
identity in H. 

This theorem is probably due more to Cartier [Cr] than anyone else. 
Let us consider some concrete instances of this theorem. Let A = 

{(y, 0, z)} as before and B = {(0, x9 z)}. Then if *k,(y> 0, z) = z and 
i//x(0, x9 z) = z, we can see in the Schrödinger model that &(A9 ^ ) = S0 is the 
Dirac delta at the origin in Rn, and S(2*, \px) = dx is Lebesgue measure on 
Rn. These particular results may be proved in a down-to-earth fashion by the 
following advanced calculus lemmas. 

LEMMA. Iff G S (Rn) andf(ö) = 0, then we may write 

f-txJi (26) 

W / / A J ; G S ( R " ) . 

LEMMA. Iff G S (Rn) and fR»f dx = 0, then we may write 

f = 2 ¥- (27) 
w/7A/. e S(R*). 

Of course these lemmas are just Fourier transforms of one another, but we 
want to take the opposite point of view. Suppose we have the general result 
on $,(A9 \j/)9 and let a be an automorphism of H which acts trivially on T. By 
the uniqueness of p we know from general considerations that there is a 
unitary operator co(a), defined up to scalar multiples, such that 

<o(a)p(/»Ma)-' - p(a(h)). (28) 

If A is a maximal abelian subgroup of H9 then so is a(A). Let a*(^) be the 
character on a(A) defined by 

«•(*)(«(«)) - +(«)• (29) 



THE ROLE OF THE HEISENBERG GROUP 829 

It is clear that w(a) preserves p00 since this is defined in terms of the action of 
H. Therefore we can define w°°*(a) acting on p00* in the usual manner: 

<o*°°(a)(A)(t;) - \(u(a-l)v). (30) 

Putting these formulas together, we find that 

<o*°°(a)â(,4, *) - 9,(a(A), a*(*)). (31) 

It is to be understood that (31) is an equation in projective space. If we apply 
equation (31) to A = {(y, 0, z)} and a = r as in formula (5), then we find by 
formula (6) and our lemmas that Lebesgue measure is the Fourier transform 
of the Dirac delta, which is simply the Plancherel Theorem from the distribu­
tional point of view. 

A nice feature of this approach to Fourier transform is that it puts it on the 
same footing as the Poisson Summation Formula. Thus let T =» {(a, b, z)) 
where a, b E IT. It is easily checked that T is a maximal abelian subgroup of 
H. Let \p be the character of T such that \p(a, 0, 1) = 1 = ^(0, b, 1). It is easy 
to see that the automorphism r of formula (5) fixes T and i/>. In the 
Schrödinger model we conclude that S(T, i//) is an eigendistribution for 
Fourier transform. It is easy to check that Haar (counting) measure on Zn is 
invariant under p(a, 0, 1) and p(0, b9 1), hence must be S(T, \p). (A direct 
proof that it is the unique distribution with these invariance properties is 
another advanced calculus exercise.) Thus counting measure on 7T is, up to 
multiples, invariant under Fourier transform. Again the formula (8) allows us 
to fix the multiple as 1. Thus we have the Poisson Summation Formula. 

The gentle reader will hopefully also have been reminded by the above 
discussion of our argument for formula (8). Indeed, formula (8) is related to 
another class of realizations of p, not induced in the usual sense, but 
sometimes called holomorphically induced, and also called Fock models or 
complex wave models. Study of the Fock model leads into the study of 
0-functions, Toeplitz operators and other topics. Indeed, study of the 2, (A, xp) 
leads in many directions. They are a central concern in the theory of the 
Heisenberg group. 

We have now discussed most of the topics on Stein's list. There remains the 
relation of Fourier transform to GLn and Bochner's and Hecke's formulas. 
These topics lead deeper into the theory, to the construction of a certain 
unitary representation with many names. I shall call it the oscillator represen­
tation because of its connection with the quantum harmonic oscillator and its 
analogy with the spin representation. Once having gone so far we will find 
other topics are also approachable. We will discuss a very classical one-
Huyghens' Principle for the wave equation. 

Of course GLn is the group of automorphisms Rrt. We see further that if 
g e GLn9 then 

a(g): (y9 x, z) -* (g'-'OO, g(x), z), (32) 

where g / _ l is the inverse transpose of g, defines an automorphism of H. We 
more or less began this discussion by observing that Fourier transform also 
defined an automorphism r of H. It can be observed from (5) and (32) that r 
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normalizes a(GLn). Precisely 

« ( * ) / • - « - a ( * ' - ) . (33) 

This has the following operator theoretic consequence. 
For g G GLn, we define w(g) on L2(R") by 

co(g)/(*) - |dct g f ^ g - ' W ) . (34) 

Then <o(g) is unitary and satisfies (28). We conclude from (33) and (6) that, 
up to a multiple which one again checks to be 1, 

M s ) = <o(g'")A. (33') 
Formula (33') is of course very easy to verify directly. 

Thus (33') arises because A normalizes a(GLn) in the automorphisms of 
the Heisenberg group. At this point it is natural to ask for all the automor­
phisms of H acting trivially on T. This is most easily attacked by transferring 
the problem to the Lie algebra $ of H, as described in (11) and (12). Put 
W = span{A,., >}}, so that 

$ - W © R. (35) 
First there are inner automorphisms. These are easily checked to act simply 
transitively on the linear complements to R in § . Therefore we may identify 
the outer automorphism group of $ with the group of automorphisms fixing 
W. From formulas (12) it is evident that Lie bracket on $ induces a 
symplectic form < , > on W. Evidently any automorphism of $ fixing R 
pointwise and leaving W invariant must preserve < , >. And from (12) one 
can also see that conversely any isometry of < , > on W extends in obvious 
fashion to an automorphism of §. We will denote the isometry group of < , > 
by Sp( W, < , » = Sp and will consider it as a group of automorphisms of H. 
If we note that W = Rn © Rw, where the first factor is the span of the y's and 
the second the span of the X's, then a(GLn) is the subgroup of Sp preserving 
this decomposition, and the transformation r of (5) is precisely the nontrivial 
element of the normalizer of a(GLn) in Sp. 

As we noted above we get for each g G Sp a unitary operator <o(g) defined 
up to multiples and satisfying (28). We thus get a well-defined action <A of Sp 
on the projective space PL2(Rn). Such an action is called a projective unitary 
representation. An ordinary, linear, unitary representation gives rise to a 
projective representation by just looking at the action on lines. A natural 
question is the extent to which the reverse is true, and this has been 
considered in a general context by Mackey [Ma]. In the present situation one 
knows [Sh], [Wi]. 

THEOREM (SHALE-WEIL). Let Sp be the 2-fold cover of Sp. Let g -» g be the 
projection map. Then there is a unitary representation « of Sp on L2 such that 

u(g)p(hMg)~l - p(g(h)). 

We will call w the oscillator representation. 

We will use this theorem to abuse notation and not distinguish between o> 
as a projective representation of Sp and as a linear representation of Sp. 
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We should describe w a little bit. We have already described co(a(GLn)) and 
o)(r). Let N be the subgroup of Sp which leaves the Y/s fixed. Then N is 
isomorphic to the space of symmetric n X n matrices in such a way that w(iV) 
consists of multiplications by functions 

emQ{Xtx)9 Q Symmetric n x n. (36) 

Since a(Gln), N and r generate Sp, this in principle describes all co(g), and we 
will leave the matter there. It is a property of w not to be transparently 
describable in any realization. However, letting ê£ denote the Lie algebra of 
Sp, we can easily describe w(%p). It consists of the differential operators of 
"total order" 2, namely 

™** * ? a ^ and ï r ^ + Vv"*** "*' (37) 

It is the necessity of adding \ trace to the linear vector fields in order to 
unitarize the action of GLn that leads to the order 2 obstruction to linearizing 
w as a representation of Sp (as opposed to Sp). 

The oscillator representation has a number of remarkable properties. We 
are going to give an example of one of the most remarkable, then show how it 
relates to the topics mentioned above. Fix an inner product ( , ) on Rn. For 
convenience say n = p + q and 

(x,y) = xxyx + • • • +Xpyp - xp+lyp+x • • • -x„yn. (38) 

Let Opq = O be the isometry group of (, ). Put 

plq = p2(x,x). (39) 

(We will no longer be referring to the representation p of H, though, of 
course, it is there.) Also put 

p 32 p+q 32 

^ - A - S f j - S fj. (40) 

Then p2 and A, as differential operators, obviously commute with w(O). Also, 
p2 and A belong to the Lie algebra w(ê£). We compute 

It may easily be verified that A, p2 and É span a Lie algebra g, with 
commutation relations 

[É, iVp2] = 2 rap2 = 2(/Vp2), 

2» WW' 

Z\ = Ê- <42> 
These will be recognized as the commutation relations of a standard basis for 
êi2. It is easy to check further that g' is the full Lie subalgebra of èp 
commuting with w(0). Let G' be the subgroup of Sp generated by g'. Then 

ii 2 ' A l 
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G' is the centralizer of O in Sp, and in fact, the relation is mutual: (O, G') is 
a pair of groups in Sp, each of which is the centralizer of the other. We call 
such a pair a dual pair. Let O, G' be the inverse images of O and G' in Sp. 
Then (Ö, G') are a dual pair in Sp. Hence if we restrict <o to Ö or G', each 
group gives us operators commuting with the other, and thus helps us to 
decompose the restriction of <o to the other group. It turns out that the 
situation in this regard is as nice as it could be [Hwl]. 

THEOREM D. The groups <o(0) and o>(G') of operators generate each other's 
commutants, in the sense of von Neumann algebras. Thus 

6>| Ö X G' « L a ® a' do>(o') (43) 

where G' is the unitary dual of G', and a G 0 , and the map o' -*o is an 
injection almost everywhere with respect to the spectral measure dw(a'). 

We will consider this result in the cases q = 0 and q = 1. When q — Owe 
discover Bochner's and Hecke's formulas. When q = 1 we discover 
Huyghensf principle. Before beginning the details we note two general proper­
ties of w| G '. 

(1) From the general considerations about <o it is easy to see that ifp + q is 
even, then G' is just S/2, but if p + q is odd, then G' is the nontrivial 2-fold 
cover of <S72, with the nontrivial element of the kernel of the covering map 
acting by minus the identity on L2{X). 

(2) The generator of S02 (or its cover) in G' is (i/2)(2irp2 - A2/2ir) which 
is just an indefinite Hermite operator. Hence ^ W ^ V - A /2*r) }s essentially 
just the Fourier transform "adapted to ( , )" that is, 

Ap'q(f)(y) - f We'***-» dx. (44) 

In other words 

«#(¥-£))--™*=-(n) 
where ( 0 J ) G Sl2~ G'. (45) 

If # » 0, then Op0 = C^ is compact, and by general considerations [LI] we 
know we can write L2(Rn) = 0 ]to Hj where the Hj are isotypic spaces for 
Op. The duality theorem above then says that each Hj is irreducible as an 
Op x G' module. Thus 

Hj as Oj ® a; (46) 

where Oj is a finite-dimensional representation of Op9 and a,' is the correspond­
ing representation of G'. As we have mentioned above, the generator of a 
maximal compact subgroup K of G' is (i/2)(2irp2 - &/2ir). The Hermite 
operator p2 — A/4w2 is obviously nonnegative. Thus w\K will have only 
one-sided spectrum. The representation of G ' in which A" has one-sided 
spectrum are called holomorphic representations and are very well under-
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stood [LI]. This is what they look like. Put 

ï = i(irp2 - A/4w) 

n+ = È-*?-{*/Am) = _ | e ^ ( A / 4 w ) e - v 

n~ = * + V + (A/4,r) m | e - „ p W 4 w ) e < ( 4 7 ) 

Then from (42) we find 

[f,/! + ] « 2 f n + , [ f , « - ] - -2 / / Ï - , [ « + , « ~ ] - -ff. (48) 

Any unitary representation of G' in which — it has positive spectrum contains 
a unique vector v0 such that n ~v0 = 0 and tv0 = /fo0/2 for some positive 
integer /. The vector v0 is called the lowest weigiht vector for the representa­
tion, and 1/2 is the lowest weight. The space of the representation then has an 
orthogonal basis consisting of the vectors vm = n+mv0. These are eigenvectors 
for Ï with eigenvalues *(//2 + 2m). Denote by Z)//2 the representation with 
lowest weight 1/2. 

From this description and (46) we see that the kernel of n" will contain 
exactly one copy of each representation of On that occurs in L2(Rn), and the 
irreducible On modules in ker n~ will just be the eigenspaces of ï. From the 
second expression for AI" in (47) we see that ker n~ consists of functions of 
the form <pe~vp where A<p = 0, i.e., <p is harmonic. Since <p is harmonic it is 
analytic and we may expand it in a power series 

<P = 2<P, (49) 

where y is a polynomial of degree j . Each <pj will of course also be harmonic. 
From the formulas (47) we can easily compute that 

t(<pe-"f>2) - i(E<p)e~< (50) 

Hence <pe~vp2 is an eigenvector for ï if and only if 9 is a homogeneous 
polynomial. If <p has degree m, then 

t(<pe-«p2) = i(m + p/2)<pe-< (51) 

Let %m be the harmonic polynomials of degree m. Since (JC| + ix^)m is 
harmonic, we see %m ¥* {0} if p > 2. If p - 1, then 9CQ - C, % - Cx, 
% = 0 f o r i >2. 

A computation shows that the space of functions <pf(r) is invariant by /i"1" if 
<p is homogeneous and harmonic. We summarize the consequences of the 
above computations in the light of Theorem D. We restrict to p > 2 for 
simplicity. 

THEOREM. For p > 2, we have S(Rn) - 2 £ _ 0 %* ® S where $ £ S are 
rotationalfy invariant functions and %m is the space of harmonic polynomials of 
degree m. Each %m is irreducible as Op module. Each space %m ® 5 is 
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irreducible under w\Op X G', and as Op X G' module has the form 

%* ® Dm+p/2. (52) 

Thus we recover the theory of spherical harmonics with extra structure. 
Furthermore, the formulas of Hecke and Bochner are now clear. Indeed 
Hecke's formula is immediate since if <p G 9Cm, then <pe_,rp is an eigenvector 
for f of eigenvalue m + p/2 and emit/2 = ipA

9 as we remarked at the outset. 
As for Bochner's formula, the curious thing about it is not its specific 
form-that is what it is-but that restriction of A to %m ® $ depends only on 
m + p/2. From the viewpoint elaborated above, we can say that all the 
ingredients in Bochner's formula are defined in terms of G' alone, and 
therefore the form of the operator will depend only on which G' module is 
involved-and that, from (51) and (52) depends only on m + p/2. This fact in 
itself can be predicted from the internal structure of the representation theory 
of G'y and general considerations about w, but we won't go into that. 

We now turn J o the Lorentz case q = 1. One can decompose L2(Rp+l) 
under to\0PtX X G' explicitly as we did above when q = 0, and this has been 
done by Strichartz [St] and by Rallis and Schiffman [RS]. Here, however, we 
will discuss a more special topic, Huyghens' Principle [Hw2]. 

The situation is this. One considers the wave equation 

À dx2 " dt2 ' (3) 

One wants to solve the initial value problem: given <p(x, 0) = <p0(x) and 
9<p(;c, 0)/dt = <p'o(x), find <p solving (53). Standard techniques involving the 
Fourier transform show there exist distributions Px and P2 on Rp + 1 such that 

<p(x, t) » Px * <p0 + P2 * <p'0 

where the convolution is in the jc-variables only. The distributions Pt are 
called propagators. They have been computed classically and the following 
results are known. 

(a) <p(jc„ /) depends only on the values of <p0(x) and <p'0(x) for ||JC — xx\\ < 
|/|. In other words Pj( , /) is supported in {x: \\x\\ < |f|}. In other words Pj is 
supported inside the light cone, i.e., in the set C " = {(*, t\ 2x? — t2 < 0}. 

(b) If/? is odd and > 1, then <p(xl91) depends only on the values of <p0(x) 
and <p'0(x) (and their derivatives) for ||JC - JCJ|| = |/|. In other words, Pj( , /) is 
supported on {x: \\x\\ = | / | } . In other words, Pj is supported on the li^it cone 
C0 - {(x, 0: 2 * / - t2 - 0}. 

The circumstances of (b), that signals are extinguished suddenly in odd 
(e.g., (3)) space dimensions is what is known as Huyghens' Principle today. 
We want to see how it comes out of the group theory. 

We begin by observing that the wave equation (53) or more to the point, 
the initial value problem for the wave equation, has certain symmetries, and 
these symmetries are reflected in symmetries of Px and P2. (Although the 
wave equation itself is invariant under the full Lorentz group OnX as well as 
dilations of space-time, the initial value problem has somewhat less symmetry 
since one must also worry about preserving the initial conditions.) Investigat-
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ing these symmetries, we find 

(i) u(R)Pj = Pj where R S On is a rotation in the x's. 

(ii) u(sI)Px - \s\^iy2PX9 o>(sI)P2 -15 |^- 1 ) / 2 sgn(s) P2 

where.?/ is a dilation by s on all R**1*1. 

(iii) Pj satisfies the wave equation. (54) 

Although (iii) might not usually be considered a symmetry of PJ9 it is 
appropriate to so call it in our present context since the wave operator is just 
one of the infinitesimal generators of the G' commuting with OnV 

The conditions (54) can be shown to characterize the Pj up to multiples. 
Indeed, let A*» = A be the Fourier transform adapted to 2 xj - t2 onRp+l. 
Then we see from (54) that 

(i) 0>(R)Pj - Pj. 

(ii) *(,/)A - I j f O * 1 ^ <o(*/)P2 -I,!"*-»'2 sgn(*)P2. 

(iii) (r2 - t2)Pj « 0. (55) 

Equation (55)(iii) says Pj is supported on the light cone C°. (Indeed, away 
from zero, it must factor through the restriction map to the light cone.) Then 
since Op and dilations together act transitively on C°, we find, taking degrees 
of homogeneity into account, that 

P, = bxt
2d\k, P2 = b2td\i (56) 

where dp is the unique OpX invariant measure on C° — {0}. 
Consider now the matter of Huyghens' Principle. Equations (54) say that 

Pj, aside from being On -invariant, is killed by the wave operator and is an 
eigenvector for the Euler operator E. Recalling formulas (42), we see this says 
Pj is a highest weight vector for the G' module it generates. We have seen 
Huyghens' Principle holds exactly when Pj is supported on C°. Since C° is 
just the locus of zeroes of 2 xf — t2, we know Pj is supported on C° if and 
only if 

( 2 **-,*)'/>, = 0 (57) 
for some /. But in the light of (54)(ii) and (iii) this is equivalent to saying Pj 
generates a finite-dimensional module for G'. That is, we have the 

CRITERION. Huyghens* Principle holds if and only if Pj generates a finite-
dimensional module f or G'. 

As an immediate corollary we see that Huyghens' Principle must fail in odd 
space-time (even space) dimensions, because then, as we remarked above, G' 
is not Sl2 but the two-fold cover, which has no (faithful) finite-dimensional 
representations. 

It is possible, however, for Huyghens' Principle to hold in even space-time 
dimensions. Taking Fourier transform, we see Huyghens' Principle will hold 
if and only if Pj generates a finite-dimensional G' representation of which it 
will then be the lowest weight vector. This is guaranteed by the following 
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result, which is a distributional partial analogue to the L2-duality theorem. 

THEOREM D*. Ifp + l w even, the distribution Q(x, t)dfi, with du as in (56) 
and Q a harmonic polynomial of degree m, generates the G' module Km+(/,_1)/2 

of dimension m + (p — l ) /2. The subspace of S *(R/?+1) transforming accord­
ing to Km+(/,_1)/2 under G' is finite dimensional and irreducible for the joint 
action of OpX X G' and isomorphic to the tensor product 

3CM ® r m + ( ,_ I ) / 2 . (58) 

For m = 1, 2, we find the Pj generates a finite-dimensional G' module, 
since / is harmonic, and 

where the first term is harmonic, and the product of the second term with dp 
is zero. Thus Huyghens' Principle is verified in this case. In fact, from 
formula (45) and the well-known structure [LI] of finite-dimensional Sl2 

modules, we can write 

( a2 a2 \(p+i)/2 

( 32 a2 \0>-l)/2 

*h~i?) "*> m 

where the fa are constants. Thus the propagator is computed explicitly and is 
by inspection supported on C°. 

The wave equation is of course one very special partial differential equa­
tion. Over the past 20 or so years, a major theme in the theory of partial 
differential equations has been the development of more or less explicit 
operational calculi to treat various general classes of equations. These calculi 
are of two main types, generally referred to as classes of pseudo-differential 
operators, and of Fourier integral operators. Since these theories grew in part 
out of abelian Fourier analysis and rely heavily on the Fourier transform, 
with hindsight we may not find it surprising that they may also be developed 
using the Heisenberg group. In fact some aspects of pseudo-differential 
operators, especially symbols, fit very naturally into the group-theoretic 
framework. For a detailed development of the discussion below, see [Hw 3]; 
the ideas were also partially anticipated in [GLS], and indeed some go back 
to Weyl [Wy 1] and his original construction of the Heisenberg group. 

The formula (21) tells us, as already noted, that S(H, e) is taken by the 
representation p, in the Schrödinger model, to the algebra of all integral 
operators on S (Rrt) with kernels in S (R2rt). Since p is also unitary, we can 
extend it to a linear isomorphism, still denoted p, from S *(//, e) to S *(R2n). 
The extended p will still be an algebra isomorphism to the extent this makes 
sense. The Schwartz Kernel Theorem [T] identifies the space S *(R2rt) to the 
space of all continuous maps from S (Rrt) to S *(Rrt). Hence any operator on 
S (Rn), or even from S (Rrt) to S *(Rrt) may be viewed as coming, via p, from a 
distribution on H. In particular, pseudo-differential operators on S (Rn) will 
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arise in this way. Let us consider how the symbol of such a pseudo-differen­
tial operator looks from this viewpoint. 

Actually we will not discuss the most common symbol, that of Kohn-
Nirenberg [KN], but a slightly different one, which happens to be the one 
written down by Weyl [Wy 1]. This symbol was also considered in [GLS], and 
used in the very general pseudo-differential calculus of [Hr]. We will call it 
the isotropic symbol. It differs in relatively minor ways from the Kohn-Niren­
berg symbol, and explicit formulas relating the two can be found in [Hw 3] 
and [GLS]. 

The differences between the two symbols can be understood as follows. 
Functions in S (H, e) behave in a known way in the direction of the center T 
of H, so that to know ƒ in S (/J, e) one needs only know it on a cross-section 
C of the T-cosets in H. Thus by restriction one obtains an isomorphism from 
S (if, e) to some space of functions on C. By transport of structure one can 
define a convolution product on these functions, and one can map them to 
operators via p. If one coordinates C by means of the projection of H to 
H/ T c~ R2n, then the convolution product on S (H, e) transferred to C looks 
like convolution on R2rt "twisted" by the 2-cocycle defined by the cross-sec­
tion C. For example, if one uses the cross-section Cx = {(y9 x, 1)} as in 
formula (20), then the convolution (denoted by # ) can be written 

fx # f2(y', *') = f Mx,y)f2(x' -x,y'- y)e2™V^ dx dy. (61) 

On the other hand, if one uses the cross-section C0 = e{ W), where e: § -» H 
is the exponential map and W (and §) is as in (35), then one gets a slightly 
different convolution (denoted 10 and writable as 

fx H SJM - f fxWfii"' - w)e^^> dw. (62) 

Here < , > is the symplectic form on W (cf. formula (35) et infra). Other 
cross-sections give still different convolution product formulas. 

The cross-sections Cx and C0 have some particular virtues which make 
them more useful than other cross-sections, and for most purposes they are 
the only cross-sections one need consider. (In the theory of ^-functions, 
another cross-section, not exactly of H, but of H extended by the real scalar 
operators, plays a role.) The cross-section Cx is most closely related to the 
conventional manner of writing differential operators, with the differentia­
tions coming first, followed by the multiplications. The cross-section C& 
which we call the isotropic cross-section treats differentiations and multiplica­
tions in symmetrical fashion. Its virtue is that it is invariant under the full 
symplectic group Sp(W9 < , » = Sp, and it is the only such cross-section. The 
cross-section Cx is invariant only under the subgroup a(GLn) of Sp (as 
defined in (32)). 

With each cross-section we may associate a symbol map. The symbol 
associated to C, is the Kohn-Nirenberg symbol, which was built to conform 
with the traditional "derivatives first" manner of writing differential opera­
tors. The isotropic symbol which we will discuss below is the symbol associa-
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ted to the isotropic section C0, and so is more natural in the group-theoretical 
framework. 

The isotropic symbol is defined via the symplectic Fourier transform on W. 
F o r / e S {W) write 

y(V) - 2~n f f(w)e-"i<w>w'> dw. (63) 

Our normalization of dw makes ^ unitary. Since it is defined via a symplectic 
rather than, as is usual, a symmetric form, the map ̂  has order 2 rather than 
order 4; that is, 

ƒ - / (64) 

Comparing formulas (62) and (63) we note the intriguing fact that r^ amounts 
to convolution on the right by the constant function 2~n. Furthermore, the 
function 2~n on W turns out to correspond via p to the operator co(-l), the 
image under the oscillator representation of minus the identity in Sp. Finally, 
we note that of course ° can be extended to %*(W) by continuity. The 
extended ns is then the isotropic symbol, and will be denoted also by a. Thus 
we have 

o(D) = 9=D^ 2~\ p(o(D)) « p(Z>M-l). (65) 

This symbol has, as it should, a symbolic calculus. To write it we require 
the usual notation. Set up coordinates in W via the basis of formulas (11) and 
(12). Let a — (aï9 . . . , « „ ) denote a multi-index of nonnegative integers. We 
associate various quantities with a: 

I«I= i N , «!- n «,!, K = n ^ (66) 
i - l i - l i - l U A i 

From (65) we see that, given say two distributions D and E, 

o(D\\E) = D\\ o(E). (67) 

From (67) it is straightforward to compute that 

a(D * E) = 2 « S ( ^ ^ a ! i 8 ! ) ( a ; 9 / a ( Z ) ) ) ( 3 ; 3 / a ( £ ) ) 

- 2n(o(D)o{E) + ^ {o(D\ o(E)} + - . • ) . (68) 

Ignoring factors of 2", TT, etc., which are essentially artifacts of our choices of 
normalization, we see that the leading term of o(D $ E) is just the pointwise 
product of o(D) and o(E), as it should be. The second term is the Poisson 
bracket of o(D) and o(E), and the higher terms are transvectants, certain 
classical differential invariants of the symplectic group. 

An important use of the symbol is to estimate the size of the corresponding 
operator. A work horse estimate [Hr], [B] which can be proved very naturally 
in this group-theoretical context is the Calderón-Vaillancourt (O, 0) estimate 
[CV]. 
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THEOREM (CALDERÓN-VAILLANCOURT). If a(D) and all its derivatives are 
bounded, then p(D) is a bounded operator, with operator norm estimable in 
terms of the supremum norms on the derivatives. 

This is actually a consequence of a general estimate for representations of 
locally compact groups, an estimate simple enough to derive. Let G be a 
locally compact group, and a a representation of G on a Hilbert space %. Let 
3C.S. be the Hilbert-Schmidt operators on %. On 9C.S. is defined the 
unitary representation a ® a* of G by the rule 

(a ® o*)(g)(T) - o(g)To(gy\ T G 3C.S.,g E G. (69) 

Let w, v be vectors in %, and define the dyad Euv in 9C.S. by 

EuJM - ("> *)«> w e 3C (70) 
where ( , ) is the inner product in %. 

One computes easily that 

°(g)£M,t> = Eo(g)u,v> EUvO{g)~X = ^ ( ^ t , . (71) 

If v is a unit vector, then the map a: % -» 9C.S. defined by 

«(«) - *.,,„ (72) 
is an isometric embedding, and from (71) we see that 

<*(°(g)u) - o(g)a(u) a(u)a(gy
lEvv - <p(g)a(w) (73) 

where 

* ( * ) - ( * * ( * ) * ) (74) 
is the matrix coefficient of a defined by v. Combining the parts of (73) gives, 
assuming <p(g) ^ 0, 

«("(*)(«)) - ri*)'f(" ® 0(«(«))^. (75) 
Thus if ƒ € L'(G) is supported away from the zero set of <p, we may integrate 
both sides of (75) to obtain 

«((£ƒ(*)<»(*)#)(«)) = ((jAgM8r\° ® a*)(g)*)(a(«)))^ 

(76) 

or more briefly 

«(*(ƒ)(«)) - (« ® o * ) ( ^ _ I K « ( « ) ) ^ (77) 
Since a is an isometry and right multiplication by Evv on 3C.S. has norm 
one, from (77) we get the estimate 

t|o(/)||<||a®a*(/<p-1)|| (78) 
where \\A || denotes the operator norm of A. 

REMARK. Formula (77) reminds one of the theory of Toeplitz operators [D], 
[V]. One might say it exhibits a(f) as a Toeplitz operator constructed from 
o®o*(f<p-1). 
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Consider now the case when G = H, the Heisenberg group, and a » p, the 
standard irreducible representation of H. Since the center T of H is sent by p 
to scalar operators, the representation p® p* of H will in fact factor to the 
abelian group H/T. Since representations of abelian groups are completely 
analyzable by means of the Fourier transform, and since the isotropic symbol 
amounts essentially to Fourier transform, it is perhaps plausible that (78) for 
H and p would imply a result like the (0, 0) estimate. At any rate, it does. 

Although the isotropic symbol does what it should and its definition (65) is 
clean, it may still seem less than completely natural. As a final point, we will 
attempt to further motivate (65) by showing it is consistent with the Kirillov 
orbit theory for nilpotent groups, as specialized to H. Such a motivation is 
entirely unhistorical, but it may suggest possibilities for future research. 

Let H be the universal covering group of H. The group H has the same Lie 
algebra $ as does H, and the exponential map 

ë:$^H (79) 
is now a diffeomorphism. Let 2 denote the center of $ and Z = exp 2 the 
center of H. Above in equation (35) we have identified 2 with R. We will 
identify Z to R also in such a way that exp: 2 -» Z is the identity map on R. 
Then we may write 

H - {(exp w, t):weW,tE: R} (80) 
with W also as in (35). The group law in H then reads 

(exp w„ f,)(exp w2> h) - («xp(wi + ™2)> 'I + h + Kwi» w2>)- (81) 
According to Kirillov [Kr], the irreducible unitary representations of H are 

in natural bijection with the orbits of H (or H, since the center acts trivially) 
in $*, the dual of $, under the co-adjoint action. In accordance with the 
Stone-von Neumann Theorem, the orbits which are not single points are 
hyperplanes of the form X + 2 -1, where 2"1 is the annihilator in $* of 2 and 
X is some element in the orbit. An irreducible representation r of H 
determines a central character Xr o n Z, and is determined by %r if this is 
nontrivial. If r corresponds to the orbit X + 2 X , then 

e2*'A<*> = Xr(expz), : e i (82) 
There will be a unique point \ in ( X + 2 x ) n W^. Thus having a 

cross-section W to 2 is equivalent to having a base point \ in X + 2 X » XQ 
+ 2 X . From now on we will take X = \ . Note that %^ is naturally dual to 
W. On the other hand W is self-dual by virtue of the symplectic form X([, ]) 
defined on it. Therefore we have an isomorphism 

0: w-* 2X 

defined by 
/}(0(w) = \([w',w]). (83) 

We can define in a natural manner a Fourier transform * from S(§) to 
S($*)by 

ƒ( V) = [Ax)e2v"*x) dx, ƒ e S («), M e $•. (84) 
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Here dx = dwdz where dw is self-dual Haar measure on W and dz is 
Lebesgue measure on % cz R. We may extend (84) to tempered distributions 
by continuity. 

If the representation r corresponds to the plane \ + 2 X in $*, then the 
analogue for H, with its noncompact center, of the space S (H, e) is the space 
S (H, T) of functions ƒ on H such that 

£exp,10 - ^ /Xo(2 )/, z G 2 , ( ƒ o exp)| W G S ( W). (85) 

If, under the identification of (35) of % with R, we have \Q(Z) = z, then T is 
simply the lift to H of the representation p of if, and the space S (H, T) is 
simply the pullback to H of S (//, e). Fix this T. Then for ƒ in §( / / , T) we may 
speak of the isotropic symbol a( ƒ) as a function on W. On the other hand ƒ 
may be regarded as a distribution on H, and its pullback to $ via exp is a 
distribution on $. Thus we may consider 

( ƒ o exp)~ 

which will be a distribution on $*, and will have the form 

(focxpy-fdr (86) 

where ƒ is a smooth function on \ + 2 X and </J> is an appropriately 
normalized Lebesgue measure on \ + Z x . Comparing (84) and (86) with the 
definition (63) of the isotropic symbol, and using (83) we see that 

o(f)(w) - 2-y(Xo + jB(w/2)). (87) 

Again, the factors of 2 here are essentially irrelevant. 
Formula (87) tells us that the symbol as it is understood in P.D.E. is 

consistent with the map 

/ ^ ( / o e x p r (88) 

from S (H) to S ($*). But the map (88) has been a basic part of harmonic 
analysis on nilpotent groups since Kirillov's original paper [Kr] where it was 
used to construct the characters of irreducible representations. This suggests 
that the map (88) might be usefully construed as a symbol map for a general 
nilpotent group. It might be used, for example, in deriving norm estimates for 
the images of functions under representations of the group, including the 
regular representation. There has developed over the past few years a theory 
of "singular integral operators" on nilpotent groups with dilations, but this 
theory has used nilpotent harmonic analysis in a minimal way. The motivat­
ing example for this theory was again provided by the Heisenberg group, and 
appeared in a paper of Knapp and Stein [KS]. Because of the dilation-invari-
ance of the Knapp-Stein operators, formula (87) implies that the Knapp-Stein 
result follows from the Calderón-Vaillancourt (O, 0) estimate. On the other 
hand, it is a simple matter to dilate the Calderón-Vaillancourt (C-V) result. 
We will do this explicitly because it further illuminates the group-theoretic 
basis of this estimate and because it suggests generalization. 

Since H acts on $* via the co-adjoint action Ad*, by applying Ad* to $ we 
have a Lie algebra of vector fields on $*. Let {Xp YJ9 T} be the basis for $ 
defined in (11), and let {*,*, Yf, T*} be the dual basis for $*. Let xf9yf9 z* 
be the coordinates on £* with respect to this dual basis. Then 
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Ad*(Xj) - z * - ^ , Ad*(Yj) = - * • g | r , Ad*(r) - 0. (89) 

Thus, restricted to any hyperplane AQ + 2 X , the vector fields Ad*(JP) are 
just the constant coefficient vector fields, i.e., just give first order partial 
derivatives, and it is in terms of the symbol and its derivatives that the C-V 
estimates is couched. Thus the formula (89) together with an inspection of 
how the constants in C-V depend on Planck's constant allow one to derive 
results like this. 

THEOREM. Suppose D G § *(H) is such that (D <> exp)A is a smooth function 
and the functions obtained by applying any product of the operators 
z*~l/2Ad*(w), w G W, are bounded. Then f or any unitary representation r of 
H, the operator T(Z>) is bounded. The bound is independent of r and depends 
only on the oo-norms of the functions described above. In particular, left 
convolution by r is bounded. 

It is not difficult to extend a result like this to a general 2-step nilpotent 
group. Then formula (78) would permit use of the 2-step result to get 
estimates for irreducible representations of 3-step nilpotent groups. Thus one 
might envisage a bootstrap argument yielding analogues of C-V for general 
nilpotent groups. 

To conclude, this paper has tried to illustrate how it can be helpful and 
pleasing to consider various basic or classical topics in harmonic analysis in 
terms of the Heisenberg group. It does not begin to exhaust the list of 
possible topics, even in this relatively restricted domain of discourse. The 
topics chosen reflect the author's predilections and limitations more than the 
bounds of known applicability of the Heisenberg group to analysis. In fact, 
the article of Stein which framed the first part of this article ends with a 
discussion of some applications of the Heisenberg group, and Stein's work 
has often involved H. And it should also be clear that the perspective 
propagandized here has many possibilities for future development. 

I would like to thank the University of Maryland and Ron Lipsman, whose 
invitation to deliver lectures for their Special Year in Harmonic Analysis 
provided the occasion for writing a preliminary version of this article. 
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