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I. Introduction. Bifurcation theory is the study of branch points in nonlin­
ear equations, that is, of singular points of the equations where several 
solutions come together. It is important in applications because bifurcation 
phenomena typically accompany the transition to instability when a char­
acteristic parameter passes through a critical value. To state the situation 
more precisely, suppose the states of a physical system are determined as 
solutions of a functional equation 

G(K u) = 0 (1) 
where X G A is a parameter, u is an element of a Banach space S, and G is a 
mapping from A X S to another Banach space <5. Let S be the zero set of G 
in A X S and suppose y is a smooth curve in S. Then a branch point (Xc, uc) 
is a point of y such that for any neighborhood of U of (Xc, « c ) i n A x S , 
(U \ y) n S ¥* 0 . Some typical "bifurcation diagrams" are pictured sche­
matically in Figure 1. 
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FIGURE 1. 
(b) 

Schematic diagram of bifurcation at (Xc, 0); one nontrivial 
branch. The vertical axis represents a Banach space &. 

Closely tied to the phenomenon of bifurcation is the property of stability. 
Suppose the solutions of (1) represent equilibrium solutions for a dynamical 
system which evolves according to the time dependent equations ut = (7(X, u). 
An equilibrium solution u0 is stable if small perturbations from it remain 
close to u0 as / -> oo; u0 is asymptotically stable if small perturbations decay 
to zero in time. When the parameter X is varied one solution may persist but 
become unstable as X crosses a critical value Xc, and it is at such a transition 
point that new solutions may bifurcate from the known solution. In Figure 1 
unstable solutions are represented by dashed Unes. 

A very simple nonlinear partial differential equation which exhibits the 
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transition phenomena depicted in Figure 1(a) is 

— = Aw + Aw + w3, u\dD « 0 
ot 

where D is a smoothly bounded domain in R". The equilibrium states are 
given by solutions of the time independent equations (set du/dt * 0). One 
solution valid for all A is clearly u * 0; this solution becomes unstable at 
A » A„ the first eigenvalue of the Laplacian on D: A<p, + A^i * 0, <p,|az> * 
0. For A > A, there are (at least) three solutions of the nonlinear equilibrium 
equation. The structure of the solution set in the vicinity of (A„ 0) is given in 
Figure 1(a); the new bifurcating solutions are stable. 

The Laplacian has a series of eigenvalues \x < A2 < . . . tending to infin­
ity, and all of these eigenvalues are potential bifurcation points. The investi­
gation of the branch points (A,, 0) for j > 1 is, however, largely academic, 
since all of these later solutions must be unstable. 

The area of fluid mechanics is a rich source of instability and bifurcation 
phenomena and the subject has always stimulated the development of 
mathematical analysis. It has the advantage that accurate, tractable mathe­
matical models are known (for example, the Navier-Stokes equations), for 
which many careful experimental studies have been made. 

One problem in fluid mechanics which has attracted much interest in 
recent years is the so-called Benard problem, named after H. Benard who 
first performed his series of experiments at the turn of the century. In these 
experiments a layer of fluid is heated from below, causing an instability to 
develop in the fluid layer when the temperature drop across the layer exceeds 
a certain critical value. The resulting instability takes the form of convective 
motions in the fluid. One of the most striking features of the experiment is the 
regular cellular, in fact crystallographic structure exhibited by these fluid 
motions. _ _ _ _ 

FIGURE 2 

Hexagonal Cells in the Benard problem; E. L. Koschmieder [49] 
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The formation of convection cells in the Benard problem furnishes an 
excellent example of what is called a "symmetry breaking instability". Prior 
to the onset of instability the solution is invariant under the entire group of 
rigid motions (in the idealized infinite plane layer model; see §111.4) whereas 
the bifurcating convective motions are invariant only under a crystallographic 
subgroup. Symmetry is broken "spontaneously", because the symmetry group 
of the equations is unchanged, while the bifurcating solutions have a smaller 
symmetry group. 

The appearance of the Benard cells is not an isolated example, but rather 
typifies a broad range of phenomena in nature. Bifurcation, and symmetry 
breaking instabilities in particular, plays an important role in a diversity of 
physical disciplines, including buckling problems in elasticity, pattern forma­
tion in reaction-diffusion problems, convective flows in geophysical phenom­
ena, neurobiology, physical chemistry, and statistical physics, to name a few. 
The formation of order in dissipative structures is a subject currently of 
interest not only to physicists, but also to biologists endeavoring to explain 
the mechanisms of morphogenesis and pattern formation in evolving biologi­
cal organisms. The thesis that order-disorder transitions in biological struc­
tures can be modeled by systems of partial differential equations describing 
the processes of reaction and diffusion was advanced by A. M. Turing in 
1952 [96] and is today the basis of much of the work in theoretical biology 
and morphogenesis. (See Fife [19].) 

I should like to present, in this article, a summary of the principal 
mathematical techniques of bifurcation theory, an account of some of the 
physical problems in which bifurcation and symmetry breaking play an 
important role, and some open mathematical problems whose resolution I 
believe is germane to future significant progress. The principal tool for 
dealing with symmetry breaking bifurcations is group representation theory; 
this aspect of the subject will be discussed in detail in Chapter III. 

II. Basic techniques of bifurcation theory. 
1. Nonlinear functional calculus. A nonlinear mapping F from a Banach 

space S to ^ is said to be Fréchet differentiable at a point u provided there 
is a bounded linear operator A from S to f such that the quantity 
R(u; h) = F(u + h) - F(u) - Ah is o(h) as h -* 0; that is 

ihn H*(»;»)l l ,a 
ll*ll-o PU 

We denote the Fréchet derivative of F at u by F'{u) or by Fu; when it exists it 
may be computed by the usual formula 

n*)h - iim F ( " + th) - F(M). 
*-*o t 

The functional calculus familiar in the theory of finite-dimensional mappings 
from Rn to Rm carries over directly to the infinite-dimensional case with no 
difficulty. The chain rule, Taylor's theorem, and the implicit function theorem 
in a Banach space are all valid, and are extremely useful in nonlinear 
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analysis. The following version of the implicit function theorem is adequate 
for most applications: 

THEOREM 1 : IMPLICIT FUNCTION THEOREM. Let A, S, <$ be Banach spaces 
and let G be a Fréchet differentiable mapping from a domain U c A X S to ty. 
Suppose G(\Q, U0) = 0 and GU(X0, u0) is an isomorphism from & to $\ Then 
locally, for \\ — \ \ sufficiently small, there is a differentiable mapping u(\)from 
A to &, with (X, u(X)) c U, such that G(X, u(X)) = 0. Furthermore, in a 
sufficiently small neighborhood U' c U, (X, u(X)) is the only solution of G = 0. 
If G is Ck then u is Ck. If A, &, and <5 are complex Banach spaces and G is 
Fréchet differentiable, then G is analytic and u is analytic in X. 

This theorem is proved by a contraction mapping argument. See 
Dieudonné [16] and also [82] for some details of the analytic case in infinite 
dimensions. 

From Theorem 1 it follows that if G vanishes at (XQ, u0) and Gu is invertible 
there, then there is locally a smooth curve of solutions u(X) through (XQ, W0). 
Bifurcation may occur, however, when GU(XQ, u0) is not invertible. In this 
article we restrict ourselves to problems in which Gu is a Fredholm operator 
of index zero-that is, Gu has a closed range 91 c ^ and finite-dimensional 
kernel (%, with dim % = codim <3l. The assumption that Gu is a Fredholm 
operator is satisfied in many applied problems where G is typically an elliptic 
system or a completely continuous integral operator. In some cases, for 
example when working on unbounded domains, it is the choice of function 
space which determines whether Gu is Fredholm or not; for example, by 
imposing some kind of periodicity conditions it may be possible to ensure 
that Gu be Fredholm. 

2. Principle of linearized stability. Suppose now that the dynamics of a 
physical system are governed by the evolution equations 

Yt = G(\u). (2) 

Let U(t; f) denote the solution of this equation with initial data U(0; f) = ƒ, 
and suppose that u0 = u0(X) is an equilibrium solution, that is, G(X, w0(\)) = 
0. The equilibrium u0 is stable if given any t > 0 there is a 8 > 0 such that 
II u0> f) — uo\\ <t f°r all / > 0 whenever ||/— «0|| < S. Furthermore, u0 is 
asymptotically stable if in addition u(t) -* w0 as / -» oo. If (2) is a system of 
ordinary differential equations, that is, if the Banach space S is finite 
dimensional, then Lyapounov's first theorem states that u0 is asymptotically 
stable if all eigenvalues of the Gu(\, u0) have negative real parts, and u0 is 
unstable if some eigenvalues of GU(X, u0) have positive real parts. 

Lyapounov's theorem has been extended to dissipative systems of nonlinear 
partial differential equations; for example, to parabolic systems and to the 
Navier-Stokes equations, which govern the dynamics of a viscous incom­
pressible fluid [25], [35], [43], [47], [68], [79]. By the principle of linearized 
stability we mean that the stability of an equilibrium solution u0 is determined 
formally by the spectrum of the linearized operator Gu(\, w0). The phrase 
"linearized stability" refers to the fact that the full nonlinear equations for the 
perturbations are replaced by the linearized equations v, = Gu(\, u0)v, and it 
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is assumed that the stability of these linearized equations determines that for 
the full nonlinear equations. This principle is generally accepted as valid in 
the applied literature, and stability is determined formally by solving the 
linear eigenvalue problem GU(X9 u0)<p = a<p. 

Now suppose we have a known solution u(X) of the equilibrium equations 
G(X, u(X)) = 0 and let L(X) = GU(X, u(X)). Suppose that as A crosses XQ one or 
more eigenvalues of L(X) cross the imaginary axis from the left to the 
right-half plane. This is precisely the situation when u(X) becomes unstable. 
Then L(X0) has eigenvalues on the imaginary axis. If some of these eigenval­
ues lie on the origin, then (XQ, U(XQ)) is a possible bifurcation point, for in this 
case the implicit function theorem can no longer be invoked to guarantee the 
existence of a unique solution curve through (AQ, U(\)). 

3. Bifurcation at a simple eigenvalue. When u(X) loses stability by virtue of a 
simple eigenvalue crossing the origin a fairly general result is available. 

THEOREM 2. Let G(A, u) be an analytic mapping and suppose there is a known 
solution u(X) of (1) which becomes unstable by virtue of a simple isolated 
eigenvalue a(X) of GU(X, u) crossing the origin as X crosses A0, and let Gu be a 
Fredholm operator. Assume O(XQ) = 0 and O'(XQ) > 0. Then there is a smooth 
solution curve (A(e), u(e)) bifurcating from the given solution u(X) at (AQ, U(XQ)). 

The bifurcating solutions are stable when they appear supercritically (X > XQ) 
and unstable subcritically (X < XQ). 

The three possible situations are depicted below in Figure 3. 

L— - ^ 7 U(A) / uw 
^ ^ \ U(A) / / 

(a) (b) (c) 
FIGURE 3. 

Bifurcation at a simple eigenvalue, dashed lines denote un­
stable branches. 

Theorem 2 was first stated for ordinary differential equations by E. Hopf in 
his 1942 article [28], but with certain restrictive assumptions on A(c), namely 
that A'(0) and A"(0) are not both zero. The indicated method was to compute 
the perturbation series for the critical eigenvalue along the bifurcating 
branch. The general infinite-dimensional result, without the restrictive as­
sumptions on A(e), was proved using a topological degree argument [80]. (See 
also [14] for a perturbative proof.) H. Weinberger [100] has generalized these 
results to the case where o'(X0) = 0. In that case the bifurcation consists in 
general of several smooth curves intersecting in a point, with the stability of 
each branch alternating as one goes consecutively from branch to branch. 
Stability results based on topological degree arguments have also been 
obtained by T. B. Benjamin [4]. 
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4. Bifurcation of periodic solutions. If w(X) loses stability by virtue of a pair 
of complex conjugate eigenvalues crossing the imaginary axis then, under 
suitable but reasonable technical conditions, one may prove the existence of 
bifurcating time periodic solutions of the evolution equation ut = <7(X, u). Let 
L(X) = GM(X, w(A)) and suppose y(X) is the critical eigenvalue of L(X); thus 
L(X)<p(X) = y(X)<p(X). For real equations (that is, if G preserves the space of & 
of real functions) L(X) computes with complex conjugation, so y(X) is also an 
eigenvalue with eigenvector <p(X). We have 

THEOREM 3. Let G(X, u) be real analytic and suppose that L(X) generates an 
analytic semigroup. Suppose furthermore that y(Xc) = iw0, Re Y(KC) > 0, and 
nicûQ is not in the spectrum of L(XC) for n = 2, 3 , . . . . Then there exists a 
one-parameter analytic family (X(e), <o(e), u(s9 e)) such that 

(i) X(0) = Xc, (0(0) = <*>0, u(s, 0) - i/(Xc), 
(ii) u(s9 e) is Im-periodic in s> 
(iii) X(e), w(<o(e)/, e) is a solution of the time dependent equations. 
This bifurcating time periodic family is unique up to phase shifts and occurs on 

one side of criticality only. If X"(0) ^ 0, the branching solutions are stable if 
they appear supercritically and unstable if they appear subcritically, 

E. Hopf first proved the result in this generality for the finite-dimensional 
case in 1942 [28] and also discussed the possibility of bifurcation of time 
periodic solutions for the Navier-Stokes equations. The first proofs of the 
theorem for the Navier-Stokes equations were given by Iudovic [38], Iooss 
[31], and myself [81], and an improved version was subsequently obtained by 
D. Joseph and myself [42]. A careful treatment of the problem, under fairly 
general hypotheses, has been given in a recent paper by Crandall and 
Rabinowitz [15]. The phenomenon of time periodic oscillations is important 
not only in fluid mechanics, but also in any dynamical system; for example in 
reaction-diffusion problems in chemical kinetics, in biological and ecological 
systems, and lasers [23], [26] to name a few. An alternative proof of the Hopf 
bifurcation theory, based on the center manifold theorem in a Banach space, 
has been developed by Marsden and McCracken [58]. 

The stability statements in Theorem 3 refer to the behavior of the Floquet 
exponents as one continues along the bifurcating solutions. Rigorous proofs 
that the Floquet exponents determine the stability for the nonlinear equations 
have been given by Iooss [31] and Iudovich [37]. 

5. Hysteresis, This section must necessarily take on somewhat of a 
metaphysical flavor, for I want to discuss a phenomenon which is quite 
common in applications, but, because it pertains to the structure of the 
solution set in the large, is often beyond the reach of rigorous mathematical 
treatment. Consider the diagram in Figure 4. Again, stable solutions are 
indicated by solid lines and unstable solutions by dashed lines. According to 
Theorem 2 subcritical solutions bifurcating at a simple eigenvalue are unsta­
ble and supercritical solutions are stable. At multiple eigenvalues, however, 
this need no longer be the case, and a transcritical branch may be unstable on 
both sides of criticality. Suppose, however, that the subcritical branch has one 
unstable mode, and that this subcritical branch "bends back" as shown in the 
figure. Precisely at the point (XQ, M0), GU must have a nontrivial null space. 
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For, let (X(e), w(e)) be a regular parametrization of the solution curve. Then at 
(\Q, W0), d\/de = 0 and du/de ^ 0, and differentiating G(X(e), w(e)) along the 
curve one obtains that Guu' = 0. If dim ker Gu = 1 then it can be shown that 
an eigenvalue of GM(X(c), u(e)) crosses the origin as we pass through (XQ, U0). If 
the eigenvalue which crosses is the unstable one associated with the lower 
branch, then the solution will regain stability as we move to the upper branch. 
If the solution structure is as in Figure 4 then the following effects would be 
observed. As X is increased past Xc the basic solution becomes unstable and 
the system makes a rapid transition to the new, nontrivial solution, as 
indicated by the vertical line (a); as X is decreased the system moves along (b) 
until the point XQ is reached, when it drops back to the basic state (c). This 
behavior is detected in many physical systems, and in fact the nontrivial 
branch sometimes extends very deeply into the subcritical region. The effect 
associated with Figure 4 may be called hysteresis in analogy with similar 
effects observed in ferromagnets, namely the transition path from state A to B 
is different than that from Bio A. 

FIGURE 4 
6. Lyapounov-Schmidt procedure. We now discuss a general method for 

reducing an infinite-dimensional bifurcation problem to a finite-dimensional, 
algebraic one. We assume that L(X) = Gtt(X, u(X)) has, at X = Xc, an w-fold 
eigenvalue at the origin, that is, that dim ker L(XC) = n. For simplicity, let us 
assume the origin transformed so that Xc = 0 and w(Xc) = 0, and write 
L0 = Gu(0, 0). It is very natural to make the assumption in applications that 
S C <$ (for example if G is a second-order elliptic operator then typically 
S = C2>a and ^ = Ca), and this assumption somewhat simplifies the argu­
ments. Let 91 = ker LQ = [<pl9 . . . , <pj and let P be the projection onto this 
linear space which commutes with L0. Then P must take the form 

n 

PU = 2 <",9/H 

where the ( p / 6 ? * c 6 * are null functions of the adjoint operator LJ and 
<<Pi? <P*y = 8y ^ is a linear operator from ®i to <&, hence can be regarded as a 
mapping from £ to itself as well, and Q = I — P is a projection onto the 
range of L0 in S7. Using P and Q the equation G(X, u) = 0 can be decom­
posed into the system of equations 

QG(X, v + i//)= 0, PG(X, v + yp) = 0 

where v = Pu and ty = Qu. The first equation is solved for \p = t//(X, v) by 
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applying the implicit function theorem, and then this result is substituted into 
the second equation, thus obtaining the bifurcation equations 

F(X, v) = PG(X, v + i//(A, v)) - 0. 

Solutions of the bifurcation equation are in one-to-one correspondence with 
solutions of the original system sufficiently close to the bifurcation point. 

The procedure we have just described is known as the Lyapounov-Schmidt 
method; the solution of the infinite-dimensional problem is reduced to an 
algebraic problem. In addition to finding all solutions of the bifurcation 
equations we shall want to determine their stability properties. A second 
method for reducing an infinite-dimensional problem to a finite one at the 
critical point is by way of the center manifold theorem. This method will be 
described in §8. 

7. Reduced bifurcation equations. Having derived the bifurcation mapping 
F, let us expand this mapping in a power series in v: 

F(X, v) = A(X)v + B2(X; v> *0 + B3(\; © ,©,©)+• • • (3) 

where A(X) is a linear mapping from 91 to 91, B2 is a quadratic mapping, and 
so forth. By scaling the variables X and t> as follows 

v * ea£, X = efir 

with an appropriate choice of the exponents a and /? F takes the form 

F(X, v) « F(e^ e*Q - e*£(£, r) + c*+1Ci(£ r, e). 

Dividing by ey and letting y ->0we arrive at the reduced bifurcation equations 
ö(£, T) = 0. The choice of the exponents a and /? can be determined from a 
Newton diagram analysis of F [77], [83], [98]. One would like to obtain as 
much information as possible from an analysis of the reduced bifurcation 
equations (3). If (|0, T0) is a solution of the reduced bifurcation equations and 
ö$(£o> To) is invertible, then a solution to the full equations can be obtained by 
an application of the implicit function theorem. In fact, this solution takes the 
form 

v - ea((o + £,£, + • • • )> T - e \ . (4) 

On the other hand, in applications where the problem is invariant under the 
action of a continuous symmetry group, Q^ will in general be singular, and 
the standard form of the implicit function theorem can no longer be applied. 
In particular cases (e.g. the Benard problem [83]) solutions of the reduced 
bifurcation equations can be extended to solutions of the full equations, even 
in the presence of a continuous transformation group, but the general case is 
an open problem. 

8. Stability of bifurcating solutions. The stability of the bifurcating solutions 
can sometimes be determined, in the neighborhood of the branch point, by 
computing the eigenvalues of the Jacobian Q^(rQ9 £0). If (A(e), u(e)) is the 
bifurcating branch let L(e) = Gu(X(e), u(e)). L(0) has an «-fold eigenvalue at 
the origin, and, according to standard perturbation theory for an eigenvalue 
of finite multiplicity, the spectrum of L(e) in the neigborhood of the origin is 
given by the eigenvalues of an n X n matrix B(e). 
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THEOREM 4 [84]. B(e) = ey^aQi(r0, £0) + 0(ey-«+l) where v and T are 
scaled as in (4). 

In particular, if F(\, v) = XAv + Bk(v) + 0(\X\2 + |M|*+1) then a + p = 
y and Z?(e) = B^Q^(T0, £0) 4- O ^ * 1 ) . If ft is even, bifurcation is one sided 
and supercritical (subcritical) solutions are obtained by solving the reduced 
bifurcation equations for r0 = 1 (T0 = -1). When /? is odd the bifurcation is 
transcritical and we may take r0 = 1. 

COROLLARY 5 [77], [86]. When FXv = A is nonsingular 

B(e) = e^Q,(r0,Q + O(e^). 

For even fi unstable modes of the branching solutions are in one-to-one 
correspondence with the positive eigenvalues of Q^. For odd fi bifurcation is 
transcritical and unstable modes of the supercritical (subcritical) branch are in 
one-to-one correspondence with the positive (negative) eigenvalues of Q^. 

9. Center manifold theorem. The center manifold theorem in a Banach space 
is an alternative method for reducing an infinite-dimensional problem to a 
finite-dimensional one. The theorem in the case of smooth diffeomorphisms 
was given by O. E. Lanford [52]. 

THEOREM 6. CENTER MANIFOLD THEOREM IN A BANACH SPACE. Let Z be a 

Banach space and let ip G Ck+l(Z), with \p(0) = 0. Let ^(O) have spectral 
radius 1 and let the spectrum of ;//(0) be the union of a part on the unit circle 
and a part inside. (This is the case if $'(0) is compact.) Let Y denote the 
generalized eigenspace of *//'(()) belonging to the spectrum of \p'(0) on the unit 
circle, and assume dim Y = d < + oo. Then there exists a neighborhood UofO 
in Z and a Ck submanifold M of U of dim d, passing through 0 and tangent to 
YatO such that 

(a) xf,(M n U) c M, 
0>) if V(x) G U for n = 1,2,... then, as n -* oo, dist||^%x;) - M\\ ->0. 

M is called a center manifold', in general it is not unique. 

The reduction of the infinite case to the finite-dimensional case makes use 
of a special trick: the center manifold theorem is applied not to <t>(x, ft) but to 

*P(x, fx) = ($(x, y), ii). 

If <£'(0, 0) has two simple complex conjugate eigenvalues of \z\ = 1 then 

has a three-dimensional space Y with spectrum on the unit circle. So by the 
center manifold theorem there is a three-dimensional manifold M i n x - / t 
space; fixing fi we obtain a two-dimensional section M^ which is locally 
invariant and attracting for O(0, /A). NOW restrict 4>(0, fx) to MM and we have 
reduced the situation to a two-dimensional problem. 

10. Repeated branching, strange attractors, and turbulence. We have seen 
that when an equilibrium solution loses stability it may bifurcate to a 
time-periodic solution. What happens when, at a later stage, that time 
periodic solution loses stability? The situation is best described in terms of the 
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Poincaré map, which is constructed as follows. Take a small section S of a 
hyperplane of codimension 1 which intersects a periodic orbit y in a single 
point JC0. For a point x in that section let <f>(x) be the point where the 
trajectory through JC next intersects S going in the same direction. <j> is thus 
defined on some subset S ' of S and fixes JC0. Periodic orbits near y show up 
as fixed points of <J>, while subharmonic solutions of period roughly N X 
(per y) correspond to fixed points of $ln\ the nth iterate of <t>. The stability of 
a fixed point x is determined by the spectrum of the Fréchet derivative <j>(x): 
x is stable if the spectrum of </>' is contained in the disk \o\ < 1 and unstable 
if the spectrum of <j>' contains points in \o\ > 1. The existence and regularity 
of the mapping </> is a consequence of the smooth dependence of the solution 
on the initial data. This includes the infinite-dimensional case when the 
differential equations are parabolic and the data is smoothed as time goes 
forward. 

FIGURE 5. 

Now let us suppose that as /x crosses zero the fixed point x0 of <f> loses 
stability by a simple eigenvalue of <&(x0, /x) crossing through ±1 or by a 
complex conjugate pair of simple eigenvalues A(/i), A(/x) crossing the unit 
circle. The multidimensional case (even the infinite-dimensional case) can, 
under reasonable regularity assumptions, be reducedjo the finite-dimensional 
case by the center manifold theorem, and when À, A cross the unit circle we 
have a two-dimensional bifurcation problem with the following result [52], 
[65], [74], [76]. 

THEOREM l.If\m^\ for m — 1, 2, 3, 4 there exists a coordinate transfor­
mation after which <f>: R 2 X R - > R 2 takes the form <f>(x, /x) = N(x, /x) + 
0(|JC|5) where, in polar coordinates, 

N(x, ju): (r, <p) -* ((1 + it)r - ƒ,( y)r\ <p + 0(/x) + f3(/x)r2). 

Ufi(0) > 0 tnere exists, for small /x, an invariant attracting circle of<f>(-, /x). 

REMARK. If ƒ,(()) < 0 there exists an attracting invariant circle for <f>""1(«, ii) 
for /x < 0. These invariant circles appear as bifurcating invariant tori for the 
original dynamical system. This theorem was announced by Neimark but 
with the condition Am(0) ^ 0 for m = 1 , . . . , 4 replaced by the condition 
that the origin be a weak attractor for the diffeomorphism <£(•, 0) at critical-
ity. It was proved by Sacker in 1964 but appeared only as a New York 
University technical report. It was proved independently by Ruelle and 
Takens, who also extended it to the infinite-dimensional case using the center 
manifold theorem. (See also Lanford [52].) The situation in the strong 
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resonance cases \m = 1 for m = 1, 2, 3, 4 can be dealt with in greater detail 
as follows. 

THEOREM 8 (Iooss AND JOSEPH [33]). Assuming sufficient regularity for the 
diffeomorphism <ƒ> and that Xm(0) = 1 for m = 1, 2, 3, or 4, we have 

m = 1: bifurcating fixed points of<f>; supercritical solutions are stable, subcrit-
ical solutions are unstable. 

m = 2: bifurcating fixed points of <f> ° <f> appearing on one side of criticality 
only; supercritical solutions are stable, subcritical solutions unstable. 

m = 3: bifurcating fixed points of <f> <> <f> ° <J>; unstable on both sides of 
criticality. 

m = 4: three possibilities 
(i) 0/ie transcritical branch of fixed points of period 4; unstable on both 

sides of criticality, 
(ii) fMw one-parameter branches of fixed points of period 4; fotf/i branches 

are one-sided (that is, appear on one side of criticality only) and at least one 
must be unstable, 

(iii) no bifurcation at all. 

For further details and results, see Iooss' book [32]. 
It is not in general possible to determine the flow on the invariant torus. 

One possibility is that the solutions are quasi-periodic with two periods and 
may be represented in the form /(co,f, oo2t) where ƒ is lit periodic in each 
variable and «i/w2 is irrational, but this situation is nongeneric. (See the 
recent paper by Iooss and Joseph [34] for a more detailed discussion of this 
aspect of the subject.) 

Laudau [51] and Hopf [29] proposed that hydrodynamic turbulence was the 
result of a cascade of repeated bifurcations: a periodic motion to a quasi-peri­
odic motion with two periods, then two to three, etc. Such solutions can 
indeed be constructed formally [40], but the perturbation series always lead to 
small divisors. Moreover, it is impossible to do the calculations in general, 
and it sometimes is the case that the first bifurcation is subcritical and the 
system passes directly to a turbulent state. Chenciner and Iooss [10] have 
shown that under rather stringent (indeed nongeneric) conditions an w-torus 
will bifurcate to an (/i + l)-torus. 

Ruelle and Takens, however, state the following proposition: Let « be a 
constant vector field on a torus Tk (k > 4). In every Ck~x small neighborhood 
of co there exists an open set of vector fields possessing a strange attractor. This 
result shows that systems of ordinary differential equations which exhibit a 
bifurcation of a 4-torus to a higher-dimensional torus are nongeneric. On this 
basis Ruelle and Takens disputed the Hopf-Landau view of turbulence; such 
cascades are nongeneric, and a dynamical system may be expected to exhibit, 
after only a few bifurcations, a transition to a chaotic state exhibiting no 
quasi-periodic behavior. This time-dependent state, though complex, should 
nevertheless exhibit a discernible structure in configuration space and a 
highly stable behavior. Thus, it should be a set invariant under the flow and 
which is approached asymptotically as f -» oo by all data initially sufficiently 
close. Furthermore it should be neither an equilibrium solution nor a periodic 
one. Such stable, aperiodic attracting sets are called "strange attractors". 
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Strange attractors are difficult to deal with analytically and rigorous proofs 
of their existence for a given dynamical system are rare. (See, however, 
Levinson [54].) Smale's "horseshoe map" [89] is an example of a diffeomor-
phism possessing a strange attractor (with diffeomorphisms continuous time 
is replaced by discrete time, and one looks at the flow under iterates of the 
mapping). Most of the current work in this area consists of numerical analysis 
of differential equations or diffeomorphisms. In 1963 E. Lorenz [55], a 
meteorologist interested in the problem of long-range weather preduction, 
analyzed numerically the very simple system 

x = — ax + cry, y = -xz + rx — y9 z = xy — bz. 

The solutions of these equations exhibit, for certain values of the parameters 
a, r and b, chaotic behavior and sensitive dependence on initial conditions. 
The divergence of the vector field is everywhere equal to — (a + b + 1) so 
that volumes in R3 are contracted under time evolution. For 

r>o{o + b + 3)(a - b - l ) " 1 > 0 

there are three equilibrium points, none of them stable. Lanford and Ruelle 
[75] analyzed the solutions by studying a section map associated with the 
flow. Namely, let P be a point on the plane z = 27 at which i < 0 and follow 
the trajectory through P until the orbit again crosses z = 27 in the downward 
direction; the new point is denoted by <J>(P). Using a computer with a 
graphical output Lanford plotted the successive iterates $Sn\P). For large n 
the successive images tend to lie along two point sets T and F as in the figure 
below. 

FIGURE 6. 

Successive iterates of the section map for the Lorenz equa­
tions obtained numerically by Lanford. 

(The line 2 represents an exceptional set of points which do not come back to 
cross the plane z — 21; trajectories through 2 tend to the unstable 
equilibrium point at the origin.) Under successive iterations of <f> points move 
about T and F in an erratic manner. Moreover, two points Px and P2 initially 
close move apart and follow completely different histories under <J>(w); yet 
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these sequences nevertheless lie along T and F . T u T' represents the inter­
section of an attracting set S with the plane z = 27. 

Other numerical studies on strange attractors have been carried out by 
Rössler [73] for simple systems of ordinary differential equations and by 
Hénon and Pomeau [24] for a simple diffeomorphism of R2. Iterations of 
nonlinear diffeomorphisms arise directly in models of population dynamics 
where successive generations are presumed to evolve according to a simple 
finite difference equation: xn+l = <j>(xn). See May [59], Guckenheimer [22]. 

In addition to the computer experiments there are now a number of 
physical experiments which demonstrate the existence of aperiodic phenom­
ena. Chaotic behavior has been observed in chemical kinetics [88] and has 
been measured quantitatively in recent experiments with turbulent flow. In 
1975 Gollub and Swinney [20] used laser light scattering and photon correla­
tion methods to obtain highly accurate measurements of the power spectrum 
of the fluid motion in a classical experiment known as the Taylor problem. 
Such experimental techniques allow one to obtain quantitative information 
about the frequency spectrum of the flow, and Gollub and Swinney (later 
with Fenstermacher) compared the results of their experiments with the 
theoretical discussions of Ruelle and Takens, Joseph and Iooss. 

In the Taylor experiment (first performed and analyzed theoretically by G. 
I. Taylor in 1923 [91]) the region between two concentric cylinders is filled 
with fluid, and the inner cylinder is rotated. The nondimensional bifurcation 
parameter is the Reynolds number R = S2,./;.(r0 — rt)/p where B, is the angu­
lar velocity of the inner cylinder, rt and r0 are the radii of the inner and outer 
cylinders, and v is the kinematic viscosity of the fluid. At small R the flow is 
purely azimuthal, that is, vr » v2 * 0 and only v9 » v9(r) is nonzero. When R 
exceeds a critical value Rc there is a bifurcation to a stable flow with a 
horizontal toroidal system of vortices. This is the bifurcation which was 
studied in 1923 by Taylor. Under a further increase of R the Taylor vortices 
become unstable to a time-dependent flow, in fact a series of waves moving 
around the cylinder. These were experimentally studied in detail by Coles 
[11]. Under a still further increase of R these wavy vortices break down to a 
more irregular flow. 

The power spectra of the radial velocity flow at various values of R/Rc are 
shown in Figure 7 

Taylor vortices at R/Rç * 1.1 
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FIGURE 7. Power spectra of the radial velocity of the flow in the Taylor 
problem obtained in the experiments by Fenstermacher, et al. [17]. 
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The time independent Taylor vortices exist in the range 1 < R/Rc < 1.2. 
After that the wavy vortices bifurcate and persist stably to about R/Rc •• 
10.1 ± 0.2. In this range of R there is a single spike in the power spectrum at 
o) = o)v A second component, denoted by w3 (a component w2 found in 
previous experiments turned out to be a transient), appears at R/Rc « 10.1 
± 0.2 and persists to R/Rc — 19.8 ± 0.4, where it disappears. In this range of 
R the flow is "apparently quasi-periodic, neglecting a weak broadband 
component" (denoted here by B). 

The onset of the broadband component denoted by B is difficult to 
determine accurately. It exists with the sharp spikes at <o, and co3, and is the 
only survivor above R/Rc = 22.4. In this range the flow appears to be 
qualitatively different, "one characterized by a continuous spectrum or, 
equivalently, a decaying velocity auto correlation function". 

These experiments confirm the view that turbulence (1) sets in after only a 
few bifurcations and (2) cannot be described in terms of a cascade of 
bifurcations. There are as yet, however, no satisfactory mathematical tech­
niques for giving a theoretical treatment of these observations, even for so 
simple a system as the Lorenz equations. 

11. Imperfections and singularity theory. Bifurcation is, in a sense, an 
idealized, nongeneric phenomenon; diagrams such as that in Figure 1 are 
structurally unstable, and small perturbations of the mapping will break the 
bifurcation diagram. (Consider the behavior of the zero set of g(x, A, e) = Ax 
— x3 + e as e varies in a neighborhood of zero.) Since imperfections are 
present in any physical system we should require that a description of the 
transition point include the effects of variations in the problem other than the 
bifurcation parameter. If the idealized bifurcation problem is determined by 
g(x, A) — AJC — x3 = 0, for example, what is the most general form of the 
solution structure under small perturbations of the system? 

Golubitsky and Schaeffer [21] have addressed this question using the 
theory of singularities of mappings. Let $„ denote the class of germs of all 
C°° mappings of R" X R into R" and associate each element of %n with a 
"bifurcation problem". $„ is a module over the ring of C°° scalar functions 
with respect to addition and multiplication of functions. 

DEFINITION 9. Two bifurcation problems G, G E <$>„ are contact equivalent if 
there exists a linear transformation TXfK and orientation-preserving coordinate 
transformations X(x, A) and A(A), with X(0, 0) - A(0) = 0, such that 

G(x,À) = ^ G ( ^ , À ) , A ( À ) ) . 

Of course, the analysis is entirely local here. 
Let G_eiJ&n and let Oc be the orbit of G under contact equivalence, that is 

OG — {G\G is contact equivalent to G). OG may be regarded as an infinite-
dimensional submanifold of %„ whose tangent space TG at G may be 
calculated formally by differentiating along one-parameter curves in OG 

through G. Thus, differentiating 

Gt - T(x, A, t)G(X(x9 A, /), A(A, /)) 

with respect to / and setting t — 0, where T(x, A, 0) « I, X(x, A, 0) = x, and 
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A(A, 0) = A, we get 

G0 = f(x9 A, 0)G(x, A) + M l | £ + |^À(A, 0). 

For example, when n = 1, 

TG - {«(*, A)G + *(*, A ) g + c(A)|£ } , 

for arbitrary smooth functions a(x, A), b(x9 A), c(A). TG is an ideal generated 
by G, Gjç, and GA in the ring ©,. 

DEFINITION 10. 7%e bifurcation problem G has codimension k if there exists a 
k-dimensional subspace K of %n such that $„ = TG © Jt. 

THEOREM 11. If G has finite codimension k and K is spanned by 
gl9 ..., gk(x9 A), then 

k 

G(x, A, a) - G(x, A) + 2 <*,&(*, A) 
i « i 

is a universal unfolding of G. 

This theorem means that any perturbation of G of the form 

G(x, A, « j , . . . , e7) = G + 2 C,A(*> *) 
i - i 

for smooth hX9... 9ht is contact equivalent to F9 and the coefficients a,-
depend smoothy on the parameters e(. Therefore any basic bifurcation prob­
lem G with finite codimension can be transformed into an explicitly computa­
ble canonical form. If we restrict ourselves to real-valued functions (poten­
tials) of codimension at most 4, we are led to the so-called "7 elementary 
catastrophes" of Thorn. 

COROLLARY 12. Up to contact equivalence, F{x9 \9p9 q) = x3 — Ax + px2 -f 
q is a universal unfolding of x3 — Ax. 

Corollary 12 is obtained from Theorem 11 by some elementary manipula­
tions with Taylor's series. Since this is an important technique in singularity 
theory it is worth presenting here. The tangent space is given by 

TG - [a(x3 - Ax) + b(3x2 - A) + c(A)x}. 

Note that x3 = f (3x2 - A) - \{x3 - Ax) G TG. We must show that K * 
%X/TG - sp{l, x2}. Any C00 function/(x, A) can be expanded as 

A*> *) - ftfii) + /,(A)x + /2(A)x2 + /3(A, x)x3; 

but since/,(A)x and x3 belong to TG9 

Ax, A) s /0(A) + /2(A)x2 (mod TG). 

Furthermore (3x2 - A) e TG so A = 3x2(mod TG); therefore 

/oW=/o(0 ) + X/o(0) + A2A(A) 

s i>0 + Pjx2 + 9x3(xA(A)) (mod TG) 

= P0 + JPjX2 (mod TG); 
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and 

= f2(0)x2 + ¥ ^ (mod TG) 

- Co + Q\*2 ( m o d TG). 
Finally, f0(\) + f2(X)x2 == P0 + P,*2 where ƒ><, and Px are constants. The 
behavior of the zero structure of F is sketched in Figure 8. 

FIGURE 8. 

The structure of the zero set of F changes across the lines 
q = 0 and q = p3/21. Real bifurcation can occur only along 
the exceptional curve q = 0, hence is nongeneric. Hysteresis 
sets in upon crossing the curves C and D (Golubitsky and 
Schaeffer [21]). 

The importance of imperfections has long been known among elasticians; see 
Hunt [30] and Thompson [94]. The effect of imperfections on bifurcation was 
first studied by J. Keener in his thesis; see Keener [45], Keener and Keller 
[44], and Reiss [71]. T. B. Benjamin has discussed the effects of imperfection 
in the bifurcation of the Taylor cells [5]. 

III. Group representation theory and symmetry breaking. 
1. Bifurcation at multiple eigenvalues. Let us now suppose that at criticality, 

dim ker L0 > 1, a situation commonly referred to as "bifurcation at a 
multiple eigenvalue". The Lyapounov-Schmidt method, described in II.6, is 
nice in theory, but in practice the computation of even the lowest order terms 
of the bifurcation equations is extremely complicated. Moreover, systems of n 
equations in n unknowns can display a complex solution structure and the 
algebraic problem in general can be quite complex. The results of Theorem 2 
concerning the stability of bifurcating solutions are no longer valid at multi­
ple eigenvalues. 
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In many problems of physical interest, however, the multiplicity of the 
branch point arises from an underlying symmetry of the problem. Just as in 
quantum mechanics, where the invariance of the Hamiltonian under a sym­
metry group leads to degeneracy of the energy levels, group invariance of a 
system of nonlinear equations leads to multiple eigenvalue branch points. The 
physical consequence of this situation is that the bifurcation point is char­
acterized by a symmetry-breaking bifurcation. By applying methods of group 
representation theory it is possible to compute the structure of the bifurcation 
equations directly from a knowledge of the transformation group, thus 
bypassing the complicated Lyapounov-Schmidt procedure. In this way we are 
able to analyze and classify bifurcation phenomena on geometrical grounds, 
and thus build a unified mathematical theory of bifurcation at multiple 
eigenvalues. 

2. Covariance of the bifurcation equations. Let Tg be a linear representation 
of a group § on the Banach spaces & and f and assume that TgG(\, u) = 
G(X, Tgu). This covariance of the mapping G is a natural assumption in 
physical theories and is a mathematical expression of the axiom that the 
equations of mathematical physics be independent of the observer. For 
example, the Navier-Stokes equations 

Aw* — 
duk 

Uj~ïx, duk 

are covariant with respect to the representation 

Tg 

" i 

«2 
«3 

.P. 

00- 0 
.0 0 

0 1 
0 
0 
0 1J 

f"l] 
«2 

«3 

[p\ 

U"*) 

of the group of rigid motions; here gx = Ox + a where a E R3 and O is a 
3 x 3 orthogonal matrix. 

Moreover, in mathematical modeling, the introduction of a high degree of 
symmetry into the geometry simplifies the analysis, so that problems arising 
in applications are found to have a nontrivial symmetry group. 

From covariance it follows that 7̂ GU(A, u) » GM(X, Tgu)Tg; so if u0 is an 
invariant solution of S then TgL0 = L0Tg. Therefore SIQ = ker L0 is in­
variant under Tg. If dim 9!^ < + oo, as is often the case in applications, 
T = 7^9^ is a finite-dimensional representation of S. Writing the bifurcation 
equations in the form F(X, v) = 0, where Ü G 91Q and F: C X 91Q -» 91Q, we 
have the following [83]. 

THEOREM 13. Let G(X, u) be an analytic operator from a complex Banach 
space & to ?F, covariant with respect to a representation Tgof a compact group 
ê. Suppose that G(\., u0) — 0, Tgu0 — UQ for all g 6 § , and GW(AC, u0) is a 
Fredholm operator of index zero with kernel 91 .̂ Then 91^ is invariant under Tg 

and the bifurcation equations F(\, v) are covariant with respect to T, the 
restriction of Tg to % ; that is TgF(A, v) * F(X, Tgv). 

This theorem is easily proved by following through the details of the 
Lyapounov-Schmidt procedure. Each term Bk(k, v, w,... ) in the expansion 
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(3) of F is symmetric in its variables and covariant with respect to the 
representation Tg. In particular, TgA(\) = A(X)Tg; so by Schur's lemma, if 
9to is irreducible A(\) = a(X)7, where I is the identity transformation. The 
higher-order terms B29 B3,... can all be calculated, up to scalar factors, by 
the methods of group representation theory. For example, if § = 0(3) and 
91Q transforms according to the irreducible representation Z)7, then the 
coefficients in the quadratic terms of the bifurcation equation are the 
ordinary Clebsch-Gordon coefficients for the rotation group. The reduced 
bifurcation equations are similarly covariant with respect to the representa­
tion rg. 

In this way, transition phenomena can be categorized according to the 
geometry of the problem, rather than by the particular physical mechanisms 
involved. From this point of view, the onset of convection in a spherical 
geometry, the buckling of a spherical shell, or the onset of ionic currents in a 
developing spherical egg, can all be given a unified mathematical treatment, 
even though the physical mechanisms in each of the problems may be vastly 
different. On the other hand, the specific physical mechanisms in the problem 
make themselves apparent in the determination of the critical value of À and 
the transformation properties of the kernel 9^. In addition, the physics of the 
problem determine the values of the scalar parameters multiplying the co-
variant terms in the bifurcation equations; these parameter values determine 
the direction of bifurcation (supercritical or subcritical) as well as the stability 
of the various bifurcating solutions. 

Depending on the representation Tg, there may be more than one covariant 
term of lowest degree k. In that case we would arrive at a system of reduced 
equations of the form 

\w - *,*?>( w) + a2B?\w) + • • • +a/2#>(w) (5) 

where the coefficients a„ . . . , at are parameters which depend on the original 
parameters of the systems. The multiplicity / of covariant terms of degree k 
can be computed directly from a knowledge of the representation T and does 
not depend on the particular structure of the equations at hand. In fact, the 
multiplicity / is precisely the number of times the representation T is con­
tained in (r®*)5, where the subscript s denotes the restriction of T9k to the 
subspace of completely symmetric tensors. When there are multiple covariant 
tensors, as in (5), the possibility of selection mechanisms arises. The stability of 
the various bifurcating solutions depends on the relative sizes of the parame­
ters a , , . . . , ar The numerical values of the parameters ax,..., at are de­
termined by the physics of the problem, but in general the computation of 
their exact dependence on the natural physical parameters of the problem is a 
difficult matter (equivalent to the direct calculation of the full set of bifurca­
tion equations). Such calculations could be carried out numerically in specific 
cases, but in order to classify the types of transitions which can take place, it 
is sufficient to consider the parameters ax,..., at as free parameters, and 
investigate the possible transitions which may occur. These matters will be 
discussed more fully in §4. 

3. Computational methods. The identification of covariant mappings of a 
given order with invariant tensors of one higher order gives us, firstly, a way 
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to compute the number of independent covariant mappings of a given order 
based on the group characters. The character of a representation is the trace: 
x ( g ) = Tr T(g). If T(g) is a representation the A>fold tensor product T®k(g) 
acting on the space of A>linear mappings is defined by T®k(g)B(uv ... ,uk) 
= B(T(g~l)ul9..., T(g~l)uk), and the character of this representation is 
X*. We always restrict ourselves to the subspace of mappings B which are 
completely symmetric in their variables, which is invariant under T9k. The 
restriction of the representation T®k to the subspace of symmetric mappings 
is denoted by (T®k)s and its character is denoted by X(*>(g)-

THEOREM 14. Let The a representation on the vector space 91 of the compact 
group § and let cn(T, §) denote the number of completely symmetric n~linear 
operators on 91 which are covariant with respect to T. A generating function for 
the coefficients is 

| cm(T,8)z'-f dct(I-zT(g)ylx(g)dli(g) 
««o Je 

where x(g) — Tr T(g) and /x(g) is the normalized invariant measure on §. {In 
the case of a finite group, /x assigns weight l/\@\ to each element g 6 § , where 
\§\is the order of S.) Alternatively, the number of n-linear covariant mappings 
may be computed from the formula 

f c„(T,Q)z»=f 2 xUsUg)^ Ms) 
where 

X(«)U) = 2, 
2 - - „ 1W,!2%!... n\\ 

For example, the character x@) is given by 

X(2)(iO=Kx2(s) + xU2)). 
This theorem is very closely related to the Molien function which is the 

generating function for the invariants of a given representation (see Jaric and 
Birman [39]). The proof of Theorem 14 is given in [86], [87]. 

EXAMPLE. Let the group in question be Z)3, the symmetry group of the 
equilateral triangle. This group is generated by the elements g = (1 2 3) and 
h = (1 2). It has three irreducible representations: 

two one-dimensional and one two-dimensional 
arising from the natural action of D3 in 
the plane. The conjugacy classes are 
{e}> { g> g2}> and {*, gh, g2h} and the 
character table is 

D3 

x 0) 

x(2) 

x(3) 

{*) 
1 
1 
2 

Us2} 
1 
1 
1 

{h,gh,g2h) 

1 
- 1 

0 
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Let T be the representation T = T(1) © T(2) © T(3) and let us compute the 
number of covariant quadratic mappings. The characters are 

X 

X(2) 

X(2)X 

{e} 
4 
10 
40 

Us2} 
1 
1 
1 

{h,gh,i?h} 

0 
2 
0 

Accordingly, the number of maps is 

cJLT9D£-\ S X(2 )Wx(a ) -^ ( l -40 + 2 . 1 + 3 . 0 ) = 7. 
° oe/)3 ° 

There are thus 7 independent mappings for this representation, and therefore 
7 scalar quantities must be tabulated to completely determine the bifurcation. 
Let us calculate covariant mappings. We represent the vector space 91 as 
linear polynomials in four variables x, y9 z, and z (x and y are real). These 
variables transform as follows under the group action 

gx = x hx = x 
gy - y hy « -y 

gz . e
2w'/3z hz - J 

(We are using complex conjugate variables z and z for the two-dimensional 
action.) The mapping F = (Fv Fl9 F3, F4) must also transform as x9y9 z, and 
z. In particular, Fx is an invariant and so is a function of the invariants 
x9y

2
9 \x\2

9 z
3,z3: 

F, = ,4(;c,72,|z|2,z3,z3). 

F2 must transform like j>, so 

F2 = yB(x9y\\z\2
9z\z3). 

The functions z and z2 both transform like z, so 

F3 - zC(x,^f |z|2, z3, z3) + z2Z)(x,^, |z|2, z3, z3). 

Now applying the group operation h9 we get 

hF3 = F4 = F3A, 

F4(x,y9 z, z) « F3(x, ->>, z, z) 

- zC(x, - y9 |z|2, z3,) + z2Z)(x, - y, |z|2, z3, z2). 

Now we can write down the lowest order terms, beginning with linear, then 
quadratic functions of the four variables: 

F, - \xx + ax2 + by2 + c|z|2 + • • • 

F2 - (X2 + </.*) + • • • 

F3 = A3z + ezy + /JCZ + gz2 + • • -

F4 = X3z — ez> + fxz +gz2 + • • • . 
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The seven scalars a,... ,g index the seven independent quadratic covariant 
mappings. In practice, seven variables is too many to deal with, and I only 
give this example as an illustration of the techniques involved. We turn to 
some computations in actual physical situations. 

4. The Benard problem. The equations modeling convection are the Bous-
sinesq equations 

9P = 1 
dxk p, 

du* du* 
J dXj dt àuk + 8k3R9 -

du, 
I T " * OXj 

— 00 < Xv X2 < 00, 0 < JC3 < 1 

where Pr is the Prandtl number, R is the Rayleigh number, and ul9 u2, u3, 0, P 
are the components of velocity, temperature, and pressure. R is proportional 
to the temperature drop across the layer, and convection sets in when R 
exceeds a certain critical value Rc (Rc = 1708 if both the top and bottom 
surfaces are rigid). For a more extensive discussion see D. Joseph's book [41]. 
Bifurcating solutions of the nonlinear problem were first constructed formally 
by Malkus and Veronis [57]; the first rigorous proofs of the existence of 
bifurcating solutions were given by Iudovic [36] and Rabinowitz [69]. Iudovic 
proved the existence of bifurcating solutions by a topological degree argu­
ment. Earlier, however, Velte [99] had proved the existence of branching 
solutions of the Taylor problem by a topological degree argument. 

The infinite plane layer model described here has the advantage that it 
simplifies the mathematical analysis and gives good quantitative predictions 
for the onset of convection and of the value of the critical wave number. It 
has the disadvantage, however, that it allows a high degree of nonuniqueness 
in the bifurcating solutions. The question then arises as to what mechanisms 
govern the selection of a particular pattern. 

Busse [7], motivated by an earlier work of Malkus, showed that there was a 
functional associated with the bifurcation problem and argued that this 
functional would be maximized by the physically correct solutions. Busse's 
functional is in fact the invariant tensor corresponding to the reduced 
bifurcation equations, so his method is equivalent to a linearized stability 
analysis of the bifurcating solutions. Group theoretic ideas are already 
implicit in Busse's work. In [84], [85] the problem of pattern selection is 
discussed entirely from a group theoretic point of view. 

We begin not with the Boussinesq equations on an infinite plane, but with 
any general system G(X, u) which is covariant with respect to the group of 
rigid motions in the plane. For simplicity we consider the case where « is a 
scalar, though the situation is somewhat more complicated in the case of the 
Bénard problem. When cellular solutions appear the symmetry is broken 
from the full group of rigid motions to a crystallographic subgroup. There is 
so far no mathematical proof that symmetry must be broken in this fashion; 
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we simply make the Ansatz that we look for bifurcating doubly periodic 
solutions. These are characterized by the hypothesis that the solutions be 
invariant under some subgroup of the full translation group. Let A be a 
lattice of vectors in the plane generated as the sum of all integer combinations 
{/!«, + m<ù2} for two fixed linearly independent vectors, Wj and iö2. Let H(A) 
denote the subgroup of translations H(A) = {Tw: w e A} where (rwi/Xx) — 
u(x + to). We consider the subclass of all functions which are invariant under 
H(A). From the translational invariance of G, such subclasses are invariant 
under G; so we may restrict ourselves to bifurcation in subspaces of doubly 
periodic solutions with a given lattice structure. If \p is A-periodic then Tr\(/ 
(where r is a rotation) is A-periodic if and only if r"1 leaves A invariant. We 
denote by ^(A) the largest subgroup of 0(2) which leaves A invariant; such 
a subgroup is called the holohedry. When we restrict ourselves to the bifurca­
tion of A-periodic functions the kernel 91 of Gu(\, 0) is spanned by the finite 
set of wave functions 

91(A) = {e^*>} r e 6 D ( A ) . 

We denote by S (A) the subgroup of the group of rigid motions which 
includes all translations plus the elements of ^(A). S (A) is the symmetry 
group of the equation G(A, u) = 0 restricted to A-periodic functions. In the 
case of the Boussinesq equations the linearized operator Gu> restricted to the 
subspace of doubly periodic functions, is a Fredholm operator (Fife [18]). 

Let us derive the branching equations for bifurcation of solutions in the 
hexagonal lattice. The kernel is spanned by the six wave functions 

{ e ^ » > , y - l , - . - , 6 } 

where the vectors «o, are as pictured in Figure 9. Denote these wave functions 
by**. 

°W—>?0 

I \ /\60\ 
G>3 r 7v"^—nQ« 

C02^ Qy 

FIGURE 9 

PROPOSITION 15. Let Ta be the representation of the group of rigid motions 
given by (Tau)(x) = u(o~lx). The action Ta on the basis functions 
{i//„ .. .,\p6}is as follows: 

(i) Ifa = ais a translation, Tm\pj - ei<4aJ*\ 
(ii) If o — r is a rotation or reflection in ^(A) then Tr acts as a permutation 

on the \pj. Specifically, let r(J) be the permutation of the vertices <AJ induced by 
the rotation r. Then Tr\pj - i//^. 

(iii) Tr\pj = \f/j whenever ncj = -«, . 

This proposition is easily proved by direct computation. To prove (ii) note 
that Tre

i<4a,x> » ei<<a$r~lx> ** e
i<r4*'x> since r is an orthogonal transformation; 

thus Tr moves the wave vector & to rco. 
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If instead we write the bifurcation equations in the form 

FjiK zl9..., Zj) = 0 

then the variables z. should transform as the *//,. Let a = ( 1 2 3 4 5 6) and 
/? = (2 6)(3 5); these two permutations generate the symmetry group of the 
hexagon. From aF = Fa we have 

F2(zx, . . . , z6) - Fx(z2, z 3 , . . . , z6, zx) 

and so forth, so it is only necessary to determine the first component F,; the 
remaining components are obtained by cyclically permuting the variables. 
From TaF « FTa we get 

*'<-'••>ƒ•,(*„ . . . , z6) = F, (e '<-->2 l f . . . , e'<"*»>z6). 

We break Fj down into linear, quadratic, cubic terms, etc. If F, contains the 
linear term z, then ei<Mïya>Zj — e'^^zy, therefore Fx contains no linear terms 
except z, and F, = azx, F2 = a z 2 , . . . . Thus the linear term must be a scalar 
multiple of the identity; and according to Schur's lemma the representation 
Ta restricted to the kernel 91(A) is irreducible. The quadratic terms ZjZk will 
be covariant only if 

e^^ZjZf, - (e'^*>z7)(e'^*>zjk)> 

hence only if <o, = iCj + <o*. The only vectors satisfying this condition are 
4C- = io2 and mk = io6, so the only covariant quadratic term is bz2z6. Then 
F2 = 6z3Zj, F3 = bz4z2,.... 

In the cubic case we are similarly led to the condition «, — coj + <ck + «/. 
There are three possible solutions to this equation, leading to the three terms 

zxz2z5, and zlz3z6. The symmetry condition /?F = F/?, however, implies 
that Ft is symmetric in z2, z6 and z3, z5. Therefore there are really only two 
covariant cubic terms, namely 

cz\zA + d(zlz2z5 + zxz3z^. 

In the other lattices (when the basis vectors cox and <c2 make an acute angle 
other than TT/6 between each other) there are no quadratic terms but again 
two cubic terms. 

The structure of the bifuration equations can in each case be determined 
by group-theoretic arguments, and the bifurcation and stability of all possible 
solutions can be considered for each of the basic lattices. The reduced 
bifurcation equations (lowest-order terms) can be obtained from the generat­
ing functions 

A6: F,(\, * ! , . . . , z6) = Xzx + az2
xzA + bzx(z2z5 + z3z6\ 

A2, A4: Fj(X, Z j , . . . , z6) = Xzx + az\z3 + bzxz2z4. 

This is the case when the quadratic term in the A6 case vanishes. (A6 denotes 
the hexagonal, A4 the square, and A2 the rhombic lattices.) If it does not 
vanish the generating function is 

A6: Fj(A, z 1 ? . . . , z6) - Xzx + cz2z6. 

The other components of the bifurcation equations are obtained by cyclic 
permutation of the variables z , , . . . , z6. The coefficients a, b9 c depend on 
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the lattice (in fact on the angle 9 between io, and «2) and on the original 
physical parameters of the problem. 

The stability of the bifurcating solutions can be determined in terms of the 
parameters a and b. (By stability here we mean the formal linearized stability 
of a solution relative to disturbances within the same lattice class. Certainly 
this is a necessary condition for stability; although a rigorous mathematical 
treatment of stability on an unbounded domain is so far nonexistent.) In 
order to obtain any results on pattern selection one must evaluate the 
dependence of the coefficients a and b on the lattice and on the external 
parameters of the problem. For the Boussinesq equations there are two 
physical parameters to the problem, the Rayleigh number and the Prandtl 
number. For simplicity let us first restrict ourselves to bifurcation of solutions 
in A6, that is, those which are invariant under translations in the hexagonal 
lattice. We analyze the linearized stability of the solutions with respect to 
disturbances in the same invariant subspace, and it can be shown that the 
pattern selection diagram in Figure 10 holds. Rolls and hexagons bifurcate 
supercritically provided a + 2b < 0, but they are not both simultaneously 
stable; their stabilities depend on the relative sizes of the parameters a and b. 

b 

FIGURE 10 
The stability results described above can all be made mathematically 

rigorous if we restrict ourselves to solutions (and disturbances) in the hexago­
nal lattice A6. This, of course, does not resolve the issue for the Benard 
problem, or other problems where Euclidean invariance is broken, for there is 
no a priori justification for the restriction to translational invariance under 
the hexagonal lattice. Nevertheless the analysis demonstrates precisely the 
concept of selection mechanisms for pattern formation and their relationship 
to group representation theory. The two parameters a and b in the bifurcation 
equations signify the existence of two independent covariant mappings of 
third order for the given representation. 

In order to give a complete resolution of the Bénard problem, or more 
generally the breaking of Euclidean symmetry, one would have to derive 
selection laws which uniquely select one stable pattern from all possible 
patterns. This means, in particular, that the stability of patterns in one lattice 
must be compared to those in another. Partial results of this type can be 
obtained from purely group-theoretic arguments [85]. 



804 D. H. SATTINGER 

THEOREM 16. There exists a function q(a) such that 
(1) q(a) = AQ + A2 COS 2a + A4 cos 4a + • • • , 
(2) a - 3?(0), £ - 6?(0) 

where 0 is the angle between the basic vectors of the lattice and the coefficients 
AQ, A2,... depend only on the basic physical parameters of the problem. 

In the case of the Benard problem, Busse considered a simplified system of 
equations obtained by letting the Prandtl number go to infinity in the 
Boussinesq equations. As a consequence, for the simplified system, one can 
show that q(a) = A + B cos 2a, and then the pattern selection diagram 
in Figure 11 is valid. 

If the quadratic term does not vanish in the hexagonal case (which happens 
if the material properties such as viscosity, specific heat, or thermal diffusivity 

FIGURE 11. 

In the sector between the lines B = 'S A and A + B = 0, 
rolls are the only possible doubly period solutions which can 
be stable. That is, if for a given set of external physical 
conditions the pair (A9 B) lies in this sector, then rolls are the 
only solutions which can be stable when tested against all 
disturbances in the three lattice classes. In the sector 2A < B 
<\A < 0 hexagons may be stable while rolls are unstable. 
Squares, however, are also stable in this region, as are 
rectangles in the rectangular lattices with angle 0 > IT/3. In 
general, ^-rectangles may be stable in the sector 

^ ( l - 2 c o s 2 0 ) < J g < - ( 1 + 2
3

C O s 2 g ) ^ 
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vary, when the density-temperature relation is nonlinear, or when surface 
tension drives the convection) then one obtains the branching of subcritical 
solutions in the hexagonal lattice. These solutions are invariant under the 
entire symmetry group of the hexagon and are unstable on both sides of 
criticality. The eigenvalues of the linearized equations about the bifurcating 
solution are, up to a scalar multiple at lowest order, — 1, 3, 2, 2, 0, 0. The two 
zero eigenvalues arise because of the presence of the two-parameter transla­
tion group. The fact that one eigenvalue is negative means there is one 
unstable mode on the subcritical branch. These results can be obtained 
entirely by group theoretic arguments. Since the subcritical branch has one 
unstable mode it can "bend back" and regain stability, as sketched in Figure 
4. There is, of course, no general proof that this branch must bend back, as in 
the diagram. 

It may be useful to compare the foregoing analysis with the earlier work on 
bifurcating solutions of the Benard problem by Iudovic [36] and Rabinowitz 
[69]. These authors construct doubly-periodic solutions by symmetrizing 
within a given, fixed lattice class but without regard to the stability of the 
solutions. Within a given lattice they considered the subspace of functions 
which are completely invariant under the symmetry group of the lattice, on 
which the branch point is simple. But at a simple eigenvalue, as we have seen, 
supercritical solutions are stable and subcritical solutions are unstable, so 
when the analysis is carried out in this fashion one is led to the erroneous 
conclusion that any solution which bifurcates supercritically is stable. 
Altogether different conclusions are obtained, and a mechanism for pattern 
selection is possible, if the symmetrization argument is avoided. 

Busse, in his work, does not a priori make the symmetrization argument, 
but, due to other assumptions, he is led to the conclusion that only rolls can 
be stable. I believe that a valid theoretical explanation of the mechanisms for 
pattern selection does not yet exist. 

I want to emphasize that I do not claim the Benard problem to be resolved 
by the above considerations, though I do think the analysis sheds some light 
on the complexity of the problem. In any event, the group-theoretic approach 
to a bifurcation problem is very nicely illustrated by the Benard problem. 

5. Bifurcation in the presence of the rotation group. Now let us consider the 
derivation of the bifurcation equations when the symmetry group in question 
is 0(3), the group of rotations of the sphere in R3. Busse [8] was the first 
person to consider a general bifurcation problem in the presence of 0(3). 
Such bifurcation problems arise, for example, in the onset of convection in a 
spherical mass or the buckling of a perfectly uniform spherical shell. In these 
cases, complete rotational symmetry is broken by the bifurcating solutions. 
The irreducible representations of SO(3) are denoted by Dl for / « 
0, 1, 2 , . . . and are of dimension 2/ + 1. They arise when one considers the 
transformation properties of the spherical harmonics Yl

m{Q> I) = 
Pttm(cos 9)einU, — / < m < /. Let the infinitesimal generators of SO(3) be 
L,, Lj, and L3; these satisfy the commutation relations 

where eiJk is the completely antisymmetric tensor. Putting J± « ± L2 + iX,, 
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J3 = — /L3 we obtain for ƒ,, J2, and / 3 the commutation relations 

[ / + , / - ] - 2 / 3 , [/3,/±] - ± / ± . (6) 

LEMMA 17. Lef V be a real vector space which transforms irreducibly under 
the rotation group according to the representation Dl. Then there exists a basis 
Um) for *he complexification of V such that 

hL - "*ƒ„, (7a) 

J±fm~P±Jm±\. (7b) 

- / <m < / and pm= V ( / - m)(l + m + 1) . ƒ/! addition, the fm can be 
normalized so that 

À . - ( - i ) 7 — (8) 
The relations (7a), (7b) can be derived entirely from the commutation 
relations (6) by standard methods [64]. We shall work with representations of 
0(3) such that Dl(R) - -D'(R) for a reflection of R (see [64]). 

Let 91 be the kernel of the linearized operator L0 = Gu(\c, 0). Identify 91 
with linear polynomials in the variables z_h . . . , zt which transform under 
the Lie algebra according to (7). The algebra K[z_h . . . , z7] of polynomials 
in the variables z_h . . . , zt is isomorphic to the algebra of symmetric tensors 
over 91. Extend the operators Jv J± to be derivations on the algebra K: 

J(af + fy) - aJf + £/g, J(fg) - ( # ) g + / ( /g ) 
where a, /? are scalars and ƒ, g are polynomials in K. Let the bifurcation 
equations be 

Fm(A, z _ „ . . . , z,) « 0. 
These will be covariant with respect to Dl provided the Fm transform as the 
zm\ that is, 

J3Fm "• mFm> J±Fm " P±mFm±i 

where /3, / + , and 7_ act as derivations on Fm. For example, the quadratic 
polynomials Fm are obtained as follows. The action of J3 on ZjZk is 

HVki - (M)z* + zyfe) Œ O* + *)zyz* 
so J3ZjZk — mzjZk if and only if j + k = m. Therefore 

In particular, when / is even, 

Fi - « o ^ o + a i* / - i* i + • • • + Ö / / 2 ( * / / 2 ) 2 -

Furthermore, /+ƒ} = /},ƒ} = 0 and this condition gives us a set of linear 
equations for the coefficients a0,..., a//2. In the case / = 2, 

F2 = az2z0 + èz?, 

J + F 2 - apoZ2zx + 2bfixzxz2 - (aj80 + 2b0x)zxz2 - 0, 
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so a/3Q + 2£/J, = 0. The last equation determines the coefficients a and b, 
hence F2, up to a scalar multiple. Once Ft is known we get / } _ , from 

and so forth. In this way we construct all the Fm
9s. 

This procedure extends immediately to higher-order terms. For example, to 
get third-order terms we write 

*/ - 2 ^jkzizjzk 
i+j + k~l 

and apply J+Ff = 0 to get a linear system of equations for the aiJk. For / = 1 
there is only one solution but f or / = 3 there are two independent solutions 
[86]. 

For even / the quadratic terms of the covariant mapping are given by 

where 

/ J\ h h \ 
\ml m2 m3) 

are the Wigner 3/ symbols for the rotation group. For odd / the covariant 
quadratic mappings are antisymmetric, and one must go to third-order terms 
in the bifurcation equations. For even / the quadratic terms possess a gradient 
structure, as follows. Consider the homogeneous polynomial of degree 3, 

I i 
p(z_h . . . , Z,) - - 2 Fm*m* 

0 - I 

restricted to the real subspace of 91 for which zm — (-l)mz_m . There we 
have 

p{z _„..., z^=\^{-\)mFmz_m 
•* - / 

Z Z , 

For even / the 3, symbols are completely symmetric in mx, m2, m3 and 
therefore 

*P - r ( \ 
"ÔI tm\Z-l> • • • » Zl)* 
QZtm 

Therefore the reduced bifurcation equations (linear plus quadratic terms) take 
the form 

which are the Euler-Lagrange equations for the variational problem 
Max^j,!/? where |z|2 = S'./— l)mzmz_m. The function/? is the third-order 
invariant for Dl; that is, p(Dlz) — p(z) and the Euclidean norm \z\2 is the 
second-order invariant. 



808 D. H. SATTINGER 

Leon Green and I have succeeded in casting this variational problem in a 
slightly different way. For even / we have the Clebsch-Gordon series 

D1/2 ® D1/2 = z>' e z)'-1 © • • • 

and the associated representation 

U^ - D"\g)AD>/\g-*) 

®DC (9) 

on (/ + 1) x (/ + 1) matrices A. This representation is unitary relative to the 
inner product 

<A,B) =4tr AB* (10) 

where B* is the Hermitian conjugate of B. The third-order invariant (there is 
only one since Dl ® Dl ® Dl contains D° only once) is 

p{A)=\\xA2A*. 

The highest weight space, the one that transforms like Dl in (8) consists of 
Hermitian symmetric matrices, so we may rephrase our variational problem 
as Min j tr A3 subject to 

±txA* 1 and trAB.^O 

where the Bj are symmetric matrices which lie in the lower weight invariant 
subspaces. In particular, tr^47 = tr A = 0 . For / « 2 (9) reads Dl ® Dl » 
D2 © D1 © D° but the matrices transforming as Dl are antisymmetric; so 
we have only the constraints trA = 0 , trA2 = 2, and the Euler-Lagrange 
equations are A2 = XA + y I where A and ƒ are 3 X 3 matrices. (The gradient 
of the functional ^ tr^43 is the mapping A-*A2.) These equations can be 
completely solved as follows. 

Taking the trace we get y = §. When / = 2 ,4 is a 3 X 3 symmetric matrix, 
and we can choose a rotation g such that D\g)AD\g~x) is diagonal, since 
D \g) ranges over all orthogonal matrices as g ranges over 0(3). So, assum­
ing A is diagonal, we arrive at the equations 

ti^Xto + § , # - 1 , 2 , 3 

where /i>. are the eigenvalues of A. The constraints are 

M? + À + /*f " 2> Mi + Mi + Ma - 0. 

There are two sets of solutions to these equations, namely, 

A - ~ 
V3 ' 

1 

n 
0 

0 

0 

1 
V3 

0 

0 

0 

2 
V3 



BIFURCATION IN APPLIED MATHEMATICS 809 

and 

A = 
VI' 

A = 

1 

V3 

0 

0 

0 

1 
V3 

0 

0 

0 

2 

V3 
The order of the eigenvalues of the diagonal of A is immaterial, for any 
permutation of the diagonal entries of A produces a point on the same orbit. 
Indeed, any such permutation is accomplished by the operation PAP'1, 
where P is a permutation matrix, and such a P is an element for 0(3). One of 
the orbits above gives the maximum of the functional \ \x A* on the sphere 
\ trA2 = 1; the other orbit gives the minimum. The isotropy subgroup in 
each case is 0(2) (rotations which leave 

0 
0 

.1 
invariant), so each extremal is axisymmetric. The case / = 2 was first treated 
by Busse by another method. The above method, while quite straightforward 
in the case / = 2, becomes extremely complicated already in the case / = 4 
and so does not seem to be a practical approach to the resolution of the 
bifurcation equations in the general case. 

Busse has found a series of special solutions of the reduced bifurcation 
equations for all even /. These solutions belong to one of two special classes: 

z0 =̂  0, zn,z2n¥s0, \l<n <\U zm = 0otherwise; (1 la) 

z0 *£ 0, zn T£ 0 for a single n > 1/2, *m = 0 otherwise. (1 lb) 

The axisymmetric solutions never give a minimum to the variational problem 
except in the case / — 2. 

The stability analysis of the bifurcating solutions yields the following result 
[77], [86], [87]. 

THEOREM 18. Suppose the reduced bifurcation equations have a gradient 
structure and that a solution v0 is obtained as a maximum of the corresponding 
variational problem. Then one eigenvalue of the Jacobian Q^(OQ, V0) is negative 
and the rest are nonnegative. 

Accordingly, from Corollary 5, it follows that the corresponding bifurcating 
solution has one subcritical unstable mode (the branch is transcritical, that is, 
it appears as in Figure 4). Thus, for / even the bifurcating solutions are 
unstable on both sides of the branch point. The solution branch with one 
unstable mode, however, may "bend back and regain stability", as indicated 
in Figure 4. There is no general theorem to this effect, but it is a common 
feature of nonlinear problems. In such a situation there exists the possibility 
of a discontinuous jump from the symmetric (rotationally-invariant) state to 
the nontrivial branch possessing a smaller symmetry group. Such a situation 
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in an elastic structure would take the form of a sharp buckling below the 
critical parameter value (at subcritical loads). 

6. Bifurcation of waves. We have seen how group-theoretic methods can be 
applied to analyze the bifurcation of stationary solutions at a multiple 
eigenvalue when the multiplicity is due to symmetry. The same methods are 
applicable when eigenvalues cross the imaginary axis but are multiple due to 
spatial symmetries in the problem. In this case we should expect to see 
symmetry breaking in space-time, which would manifest itself as the onset of 
wave-like phenomena. The relevant invariance group would be the group 
G x R + where G is the group of spatial symmetries and R+ is the group of 
time translations / -* / + S (but not t -> -t\). This is the natural generaliza­
tion of the Hopf bifurcation theorem to group-invariant problems. 

The analysis of bifurcating waves at the onset of instability has at this point 
not yet been fully developed, although there has been some initial work on 
the subject. Turing [96] discusses the possibility of traveling wave solutions to 
a particular system of reaction and diffusion equations on a circle. Such 
solutions have been obtained in a model chemical reaction analyzed by 
Auchmuty and Nicholis [3]. Both rotating and standing wave solutions have 
been obtained by Erneux and Herschkowitz-Kaufman [27]. 

J. T. Stuart formally obtained traveling wave solutions (Tollmien-Schlicting 
waves) in his analysis of the onset of instability in plane Poiseuille flow [90]. 
Auchmuty [1] has obtained rigorous results on the bifurcation of waves in 
circular geometries. 

To illustrate the use of group-theoretic methods in the analysis of bifurcat­
ing waves let me take the simple problem treated by the aforementioned 
authors and derive the structure of the bifurcation equations. Consider a 
bifurcation problem which is invariant under space and time translations and 
spatial reflections. The group operations are Tyx = x + y, Rx = -x9 and 
S8t = t + 8. If the null functions have wave number k and frequency co then 
the null space for the linear operator is four dimensional and is spanned by 
^ _ em^\ ^2 « £-«**+«o ^ . £+Kfar-«o ^ » e-Kkx-ut) R e l a t i v e t o 

4>l9..., 1̂ 4 the group operations have the matrix representations 

T = 
Y 

, * Y 0 
-iky 

9 iky 

-iky 

9iad 

,-iuÔ 

-iioô 

o/wô 

R = 

1 

0 1 
1 0 

The problem can be reduced by the Lyapounov-Schmidt method to a 
system of bifurcation equations, and these must take the form 

JF)(A, <O, ZV . . . , z4) = 0 , i - 1, 2, 3,4. 

Since we are looking for real solutions we want z2 = zv z4 « z3 and F2 = Fv 
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F4 = F3. The symmetry RF = FR leads to 

F4(X, co, z„ . . . , z4) = F^X, <o, z4, z3, z2, z,), 

F3(X, co, z„ . . . , z4) = F2(X, co, z4, z3, z2, z j . 

Therefore it is enough to find Fl9 for the other components can be found by 
applying R or taking complex conjugates. 

Suppose Fj contains a term zxz2z3z
d. The symmetry TyF = FTy implies 

eiky{aa
xz^zc

3zf) = {eikyzx)
a • • • = e^ f l -* + c - '>(zfz£#t f ) 

hence a — b + c — d= 1. Similarly the symmetry SSF — FSS leads to a — 6 
— c? + J = 1. Combining these two equations we get a = b + 1, c = </ so Fj 
has the general term zx(zxz2)

b(z3z4)
d, or z|z|2*|w|21* where z = zx and w = z3. 

The most general Fx is therefore 

F,(X, co, z, z, co, cô) « zg(X, co, |z|2, |co|2). 

Then F4 must be of the form 

F4(X, co, z, z, co, cô) = cog(X, co, |co|2, |z|2). 

The other two equations are complex conjugates of these so nothing new is 
obtained, and the bifurcation equations are 

zg{\ co, |z|2, |co|2) - 0, wg(X, co, |w|2, |z|2) - 0 

and the elements of the null space are of the form z\f/x + z\f/2 + w\p3 + w//4 = 
2 Re[z^, + w\p3]. There are two basic solution types: 

(i)|z| = |Handg(X,co,|z|2, |z|2) = 0; 
(ii) w = 0 and g(X, co, |z|2, 0) = 0. 

The case z = 0 is equivalent to w = 0 under the reflection R. 
If \z\ = \w\ we take z > 0 by a suitable translation in x and then w = zeiy. 

Then the solution to first order is 

z(^j + \p2 + eiy\p3 + e~'V4) = 2z(cos(A:A: + coO + cos(A:x - œt + y)). 

By suitable translations in x and t this is equivalent to 4z cos fcx cos cof; these 
waves appear as standing waves. In case (ii) with w = 0 we get i/>, + \f/2 = 
2 cos (&* + co/), which are traveling waves. The possibility of two distinct 
modes of bifurcating waves was observed by Erneus and Herschkowitz-Kauf-
man and has also been discussed by Cowan and Ermentrout [12]. 

A stability theory has not yet been worked out for such bifurcating waves, 
but a stability analysis may produce a mechanism which will select one or the 
other mode of propagation, depending on the sizes of other parameters in the 
problem. 

Symmetry breaking in natural phenomena. In this section I wish to discuss a 
variety of scientific disciplines in which spontaneous symmetry-breaking 
manifests itself as a primary feature of the problem. 

1. Morphogenesis. A striking example of symmetry breaking in a biological 
system is the breakdown of rotational symmetry in the Fucus seaweed egg 
[53]. At a critical stage in the development of the egg a transition is made 
from a spherically symmetric membrane potential distribution to a polarized 
state with an axial symmetry, and a net transcellular current leaving one pole 
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(®) 
FIGURE 12 

Self-electrophoresis currents in the Fucus egg 
and entering the opposite. This phenomenon is termed "self-electrophoresis'\ 
According to Larter and Ortoleva [53], who are conducting a theoretical 
investigation of this effect, "The net transcellular potential gradient is 
believed to be essential in the development of the asymmetry which leads to 
dramatically different rhizoid and thallus cells after the first division of the 
egg". Larter and Ortoleva base their theory on models which allow for the full 
electrochemical nature of cellular phenomena. For slow processes these 
equations reduce to Poisson's equation and a system of rate-reaction equa­
tions: 

AK = — — 2 ZjCp 
8 . 7 * 1 

?£i = divf 2 % grad Cj + MyCj grad v\ + Gé(C) 

where 3F is Faraday's constant, e the dielectric constant, C, are species 
concentrations, z, are valences, ^ is a matrix of diffusion coefficients, My a 
matrix of mobilities, and G,(C) are chemical reaction rate terms. 

The symmetry breakdown in the Fucus egg is of the form rotational 
invariance to axial invariance. That is, prior to self-electrophoresis the solu­
tions are invariant under the entire rotation group 0(3), while the bifurcating 
solutions are invariant only under a subgroup of rotations about a fixed axis. 
The solutions thus appear in two-dimensional orbits with one-dimensional 
isotropy subgroup. This, however, is by no means the only symmetry break­
down which can occur in rotationally-invariant systems; and more com­
plicated symmetry breakdowns are relevant in geophysical problems. 

2. Dynamo problem. One problem in which nonaxisymmetric solutions are 
of interest is the Dynamo problem: By what mechanism is the earth's magnetic 
field sustained? The current consensus among geophysicists is that the mag­
netic field is sustained by electric currents flowing in the electrically conduct­
ing earth's core which interact with the convective fluid motions of that core. 
It is known (Cowlings theorem) that purely axisymmetric magnetic fields 
cannot satisfy the dynamo equation. The dynamo process in generators 
depends on a multiply-connected distribution of electrical conductivity, 
which permits a simple rotational motion. The uniform conductivity of a 
homogeneous, spherical dynamo may require a more complex velocity field 
for dynamo action. Thus the question of nonaxisymmetric flow patterns 
appearing at the onset of convection becomes extremely interesting for the 
Dynamo problem. The equations of dynamo theory are the convection 
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equations plus an equation governing the magnetic field: 

^ + (w-V)w+2ŒXt/= -V/> - $?0 + Mi? + - ( V x i ) X Z?,(12a) 

divw = 0, (12b) 

^ + ( « V ) Ô = - « • Vr0+KAÔ, (12c) 

dB 
-^- - curl(w X B) + TjAi? (12d) 

where r0 is the base temperature profile in the absence of convection and 
2Ü X û is the Coriolis term. 

When no magnetic field is present the quadratic term ( V X E) X B in the 
first equation vanishes, and we have a pure convection problem. When the 
convective velocity u reaches a magnitude and configuration which can 
sustain a growing magnetic field in (12d) then a bifurcation may take place 
and a nontrivial magnetic field may be sustained. Equation (12d) is linear so 
for a given u one should expect an exponentially growing magnetic field B\ 
but the nonlinear coupling between B and it via (12a) may be expected to 
prevent unlimited growth, so that a stable equilibrium is attained. Since (12d) 
is homogeneous in B some external magnetic field (for example, the Sun's) is 
required to "seed" the dynamo process. For further discussion and a survey 
of the literature, see the articles by Busse [9] and Roberts [72]. 

3. Wave propagation in neural networks. Bifurcation phenomena in simple 
mathematical models of excitatory inhibitory neuro-networks have been 
discussed recently by Cowan and Ermentrout [12]. Neural networks are 
aggregates of nerve cells which interact with other neurons in the network in 
either an excitatory or inhibitory way, and so it is plausible to expect these 
networks to exhibit such nonlinear collective phenomena as bifurcation, 
threshold effects, and hysteresis. Cowan and Ermentrout model these net­
works by a system of equations 

liY - -Y + S(KY + P) (13) 

where y is a two-component vector, S is a nonlinear vector-valued function, 
K is a linear convolution operator, and P is the external stimulus. Equation 
(13) may be studied in one, two, or three dimensions. 

Cowan and Ermentrout seek to model the patterns of activity of the central 
nervous system by showing how organized space-time neuronal activity 
patterns can arise through the mechanisms of bifurcation from an initially 
uniform resting state. They investigate the structure of the bifurcation point 
when two pairs of complex conjugate eigenvalues cross the imaginary axis 
simultaneously. In that case one gets secondary bifurcation as some of the 
parameters in the problem are varied. 

Cowan and Ermentrout have also treated hallucinatory phenomena from 
the standpoint of symmetry breaking bifurcations [13]. Recent experiments on 
mescaline induced hallucinations have led to the conclusion that most simple 
hallucinations could be classified into one of four categories: "(a) grating, 
lattice, honeycomb or chessboard; (b) cobweb; (c) funnel, tunnel, cone or 
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vessel; (d) spiral". Cowan and Ermentrout base their analysis on the conten­
tion that "simple formed hallucinations arise from an instability of the resting 
state leading to concomitant spatial patterns of activity in the cortex. This 
instability arises from a combination of enhanced excitatory modulation and 
decreased inhibition. [We] demonstrate that such spatial patterns are a 
property of neural nets with strong lateral interactions acting to provide a 
dominant negative feedback. [We] formalize these postulates into a simple 
mathematical model and then use bifurcation theory to demonstrate the 
existence of the relevant spatial patterns". 

The relevant spatial patterns are none other than those crystallographic 
patterns which have already made their appearance in the Bénard problem, 
with one additional factor. Experimental observations have established that in 
primates there is a conformai transformation from the retinal field, which is 
circular, to the cortical field, which has Cartesian (rectangular) symmetry. 
This implies that the transformation from retinal polar coordinates to cortical 
rectangular coordinates must be essentially logarithmic in nature. Such a 
logarithmic transformation would take a tunnel pattern consisting of con­
centric circles of activity to a pattern of rolls parallel to the y axis. Similarly, 
spirals are transforms of rolls with some other direction. Thus the patterns 
observed in hallucinatory phenomena are images under the log transforma­
tions of the cellular patterns familiar in the analysis of the Bénard problem: 
hexagons, squares, rectangles, and rolls. Cowan and Ermentrout then assume 
that, as some parameter X increases, the strength of the excitation increases 
until, beyond some critical value XQ9 the rest state becomes unstable and gives 
way to the stationary patterns of spatial activity. Thus, according to their 
theory, the drug-induced hallucinatory patterns are precisely those which one 
would see when Euclidean invariance is broken. 

4. Phase transitions in statistical mechanics. The notion of symmetry break­
ing is fundamental to phase transitions, yet much harder to treat mathemati­
cally. Until the renormalization theories developed in recent years, the 
primary approach to phase transitions was, in one way or another, a mean-
field approximation coupled with a bifurcation analysis of the mean-field 
equations. The simplest mean-field theories for critical phenomena were the 
scalar equations of state, such as the Van der Waals equation for a gas of the 
Curie-Weiss model for a ferromagnet. In more elaborate theories the state of 
the ensemble is described, for example, by a single particle density function, 
and an integral equation is derived for this function by some kind of closure 
hypothesis for the hierarchy of higher-order (multiple particle) correlation 
functions. This line of analysis was first pursued by Kirkwood and Monroe, 
[48] and more recently by Raveché and Stuart [70], and Rice and his 
coworkers. (See [50], [101].) Nevertheless, these approximations are still 
mean-field theories, and depend, for their validity, on the assumption that 
fluctuations are negligible; the major difficulty is that in many cases, large 
fluctuations become important precisely at the critical point. In fact, at a 
critical point the fluctuations very often diverge to infinity, making the 
mean-field approximation invalid, and it is this fact which accounts for the 
deviation of the critical exponents from the "classical exponents" predicted 
by bifurcation (mean-field) models. All this notwithstanding, the bifurcation 
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models do have some areas of validity, and are generally successful in 
predicting the symmetry changes actually observed. Landau's [6], [56] theory 
of second-order phase transitions is a phenominological description of phase 
transitions which is essentially a theory of "symmetry-breaking bifurcations". 

This point of view has been expressed very concisely by Tareva and 
Trapezina [92], [93]: "The generalized mean-field approximation usually 
brings us to the formulation of the broken-symmetry problem in terms of the 
bifurcation on a nonlinear integral equation solution for the Bogolyubov 
quasi-average. Particularly in a number of papers the liquid-solid phase 
transition is considered as a bifurcation of the solution of the equation of 
Hammerstein type 

<&(/-,) - |« ƒ K{rx, rJWrJ, r2) dr2 - 0". 

The phase transitions of the ensemble are described in terms of bifurcations 
of this integral equation. See also the review article by Kozak [50]. 

In the area of nonequilibrium thermodynamics the operation of the laser 
can be described by a mean-field theory which is amenable to a bifurcation 
analysis. In the Dicke-Haken-Lax model of the laser it is possible to describe 
the many body photon field by a mean-field theory as N (the number of 
degrees of freedom) tends to infinity. Thus it is possible in this case to solve a 
nonlinear quantum mechanical model, far from equilibrium, by reducing the 
problem to a system of ordinary differential equations for the expectation 
values of the extensive variables. (See Haken [23], and Hepp and Lieb [26].) 
The onset of laser action in these theories is then described by the bifurcation 
of time-periodic solutions from the equilibrium solution, that is, so-called 
Hopf bifurcation. 

5. Symmetry breaking in elementary particle physics. The notion of "sponta­
neous symmetry breaking" plays a fundamental role in quantum field theory. 
It is not possible for me to discuss this in depth here, but let me briefly 
describe the work of Michel and Radicati [61], [62], [63] in symmetry breaking 
in elementary particle theory. They study the adjoint action of 5(7(3) on the 
vector space Q of traceless Hermitian matrices A. The inner production on Q 
is (A,B)=± tr AB*, and the group action is A -» UAU* where U G SU(3). 
This action leaves the inner product invariant. There are two third-order 
invariants of this action, namely 

{A, B, C) = | V 3 Xv{AB + BA)C, {A, B9 C) - ^ tr[A, B]C 

where { , , } is completely symmetric and [, , ] is antisymmetric. These two 
third-order invariants induce two algebras on Q via the following device. The 
form C -» {A, B, C} is a linear functional on Q, so may be represented in the 
form {A, By C) = (A V B, C) where A V B is an element of Q depending 
on A and B. It is clear that A V B is bilinear and so defines a multiplication 
from Q X Q to Q. It is easily seen that A\/ B must take the form 

A\JB= ^-(AB + BA) - -^— XrAB. 
1 V3 

The operation V is commutative but not associative. The other algebra is 
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induced by the antisymmetric third-order invariant. This induces a skew 
product A-

M 5 = y [ ^ , B]9 [A, B, C]-(A/\ B, C). 

The algebra Q with product A is a Lie algebra. 
The important physical quantities in Gell-Mann's "Eight fold way", namely 

the electric charge, hypercharge, etc., correspond to solutions of the equation 

Q V q + V(q)q - 0 (14) 
where -q(q) is a real number. A solution q of this equation is an essential 
idempotent of the V algebra. These essential idempotents are the directions of 
symmetry breaking for the adjoint representation: that is, they are the critical 
points of the invariant functional {A, A, A) on the unit sphere {A, A) = 1. 

Equation (14) is mathematically identical to the reduced bifurcation equa­
tions which we have already encountered, and in fact are the SU(3) equiva­
lent of the equations which arise in the analysis of bifurcation from rota-
tionally-invariant states. A general algebraic theory of such equations and 
their solutions would be extremely useful. 

I regard the problem of developing algebraic algorithms for finding all 
solutions of (14), their stability, and their symmetry, for a general irreducible 
representation of a compact group, as the most important problem to be 
resolved in the theory of symmetry breaking. 
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