
242 BOOK REVIEWS 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2, Number 1, January 1980 
© 1980 American Mathematical Society 
0002-9904/80/0000-0024/$02.00 

Multiple-conclusion logic, by D. J. Shoesmith and T. J. Smiley, Cambridge 
Univ. Press, Cambridge, 1978, xiii + 396 pp., $35.00. 

The subject of this book is meta-meta-mathematics; it is related to meta-
mathematics as the latter is to the rest of mathematics. The aim of mathemat­
ics is to describe interesting objects and phenomena in precise terms, ex­
pressing their basic properties as axioms, and to deduce interesting theorems 
from these axioms. Meta-mathematics is the part of mathematics where the 
phenomenon to be described is the process of mathematical deduction. Its 
basic concept is the relation of logical consequence, which holds between a 
set X of statements and a statement A (written X V A by Shoesmith and 
Smiley although X 1= A is more common) when A is true in every conceivable 
situation where all the members of X are true. Its results, such as GödePs 
completeness theorem, apply to all the various axiom systems of mathematics 
regardless of their meaning or purpose. 

The definition of h is vague in that we have not specified what situations 
are conceivable. Traditionally, one regards the meanings of the logical con­
nectives (not, and, or, . . . ), the quantifiers (for all, for some), and equality as 
fixed, so that a situation where one of these has a nonstandard interpretation 
is considered inconceivable, but the meanings of other expressions are per­
mitted to vary. The resulting h is the consequence relation of the classical 
first-order predicate calculus. If, in addition, we fix the meaning of "natural 
number", we obtain (the consequence relation of) a stronger logical system 
called co-logic. If we fix the meaning of "set" we obtain second-order logic 
(which is stronger than co-logic since the Peano axioms provide a characteriza­
tion of the natural numbers). In the other direction, if we unfix the meanings 
of the quantifiers and equality, we obtain propositional logic. 

Other consequence relations are produced by varying the meaning of 
"true". The most important of these are the constructive logics such as 
intuitionism, where "true" is taken to be synonymous with "proved" or with 
"provable". There are also many-valued propositional logics, where one has a 
set of two or more (usually more) truth values, some of which are designated 
as "true", and for each logical connective one has a corresponding operation 
on truth values. A simple but useful example has as truth values the four 
ordered pairs of ordinary truth values (true and false), with only <true, true) 
designated, and with the connectives operating componentwise. This example 
is rather special in that is has the same consequence relation as classical 
propositional logic. 

Shoesmith and Smiley develop a theory of consequence relatons in general, 
intended to be applicable to all the preceding examples (and others). They 
work, however, with consequence relations, h, both of whose arguments, not 
just the left one, are sets of statements. If A" h y were interpreted in the 
obvious way as "Any conceivable situation making all the statements in X 
true also makes all the statements in Y true", this would reduce to the 
single-conclusion concept of h since it is equivalent to "X h A for all A G F". 
In order to get an interplay between the elements of Y similar to what 
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happens in X (where all the elements of X can jointly imply things that no 
one of them could imply), it is necessary to define X Y Y as "Any conceivable 
situation making all the elements of X true also makes at least one element of 
Y true". Note that the multiple-conclusion consequence relation, unlike the 
single conclusion one, distinguishes between classical propositional logic and 
its f our-valued cartesian square described above, since A or B Y A, B (where 
the set-formation braces have been omitted in accordance with tradition) is 
correct in the former but not in the latter. (This is an instance of a general 
phenomenon explored in Chapter 17.) 

The framework on which Shoesmith and Smiley construct their theory is 
this. There is a set V whose members are called formulas. A situation is a 
partition of V into a set T of true formulas and a set U of untrue ones. A 
logical system is a family of situations, considered conceivable, and the 
consequence relation Y of such a system is defined as in the preceding 
paragraph. Of course the single-conclusion consequence relation can be 
extracted from the multiple-conclusion one by considering singletons on the 
right of h 

Part I of Multiple-conclusion logic (Chapters 1-6) is about general proper­
ties of consequence relations. It contains, among other things, a direct 
characterization of consequence relations, a discussion of compact con­
sequence relations (those for which X V Y only if X' Y Y' for some finite 
subsets X\ Y' of X, 7), and a discussion of the (usually large) collection of 
multiple-conclusion consequence relations with a specified single-conclusion 
part. 

Part II (Chapters 7-12) is about proofs. The question considered here is: 
Given that a consequence relation Y holds between certain pairs (Xi9 Yt}9 

how can one prove that it also holds between {X, Y}1 One expects a proof to 
be some arrangement of formulas showing how to get from I to Y in a 
number of steps, each step being from some Xt to the corresponding Yt. Some 
caution is needed, however, to prevent the juxtaposition of the correct (in 
classical logic) inferences {A or B) Y A, B and A, BY (A and B) to yield the 
incorrect A or BY A and B. The authors depict arrangements of steps using 
graphs. They represent steps by horizontal strokes and formulas by circles 
(except that the elements of X are drawn as V and those of Y as A), and they 
draw a line to (resp. from) each stroke from (resp. to) each premise (resp. 
conclusion) of the corresponding step. Thus, the incorrect juxtaposition above 
would be drawn as in Figure 1. 

AoxB 

AmdB 

FIGURE 1 



244 BOOK REVIEWS 

(Undirected lines are assumed to be directed downward.) A moment's reflec­
tion will lead the reader to suspect that the problem with this argument is the 
presence of a circuit in the graph. (What are commonly called circular 
arguments involve directed circuits; we see here that undirected circuits can 
also mean trouble.) And Theorem 8.1 confirms this suspicion by asserting 
that for an argument to be valid it suffices that it have no circuits and that it 
be "standard", i.e. that every formula occurring in the argument but not in X 
(resp. Y) be a conclusion (resp. premise) of some step in the proof. Yet, 
surprisingly, this sufficient condition is nowhere near necessary. The invalid 
argument above becomes valid when an appropriate directed circuit is added 
(as in Figure 2) or when several copies of it are appropriately joined together 
(see Figure 3). 

FIGURE 2 

A or B AoxC B or C 

AoiB A and C B and C 

FIGURE 3 

Even more surprisingly, there are correct inferences that cannot be obtained 
from circuit-free arguments (Theorem 8.10). Most of Part II is concerned with 
classes of arguments that are small enough to contain only valid arguments 
but broad enough to contain a proof of X h Y from any hypotheses that 
actually imply it. Theorems 10.3 and 10.4 describe one such class, the class of 
standard arguments in which every (undirected) circuit contains a "corner", 
i.e., a formula A whose two incident edges in the circuit are both directed 
toward A or both directed away from A. For example, the result proved in 
Figure 2 (one of whose circuits has no corner) is also proved by the 
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cornered-circuit argument (Figure 4) from which Figure 2 can be obtained by 
identifying the two occurrences of A. 

— A and£ 

A rS I IX A and£ 

FIGURE 4 

Note, incidentally, that the question whether a given graph argument for 
A" h y is valid is equivalent to whether a certain formula of propositional 
logic (in conjunctive normal form) is inconsistent; the formula contains as 
conjuncts (a) all the members of X, (b) the negations of all the members of Y, 
and (c) for each inference Xt h Yt used in the argument, the disjunction of all 
the members of Y, and the negations of all the members of Xr Several of the 
results in the book are more intuitive when viewed in this way; for example, 
Theorem 7.6 reduces to the truth-table method of testing consistency. 

Part III (Chapters 13-19) is concerned with systems of many-valued logic. 
Typical theorems arc 15.2, which gives a criterion for a compact consequence 
relation to come from a many-valued system, and 17.11 and 17.12, which 
together say that an anti-well-ordered set of truth values, with the connectives 
given by its pseudo-Boolean algebra structure and with only the highest 
element designated, is uniquely characterized by the consequence relation it 
defines if and only if it is countable. (The importance of countability here is 
artificial, being traceable to the assumption that there are only countably 
many propositional variables, but the situation is in marked contrast to 
Theorem 17.16 which says that almost no many-valued systems are char­
acterized by their single-conclusion consequence relations.) 

Finally, Part IV (Chapter 20) is an attempt to develop natural deduction 
systems for the classical and intuitionistic predicate calculi in the framework 
of multiple-conclusion logic. For classical logic things work smoothly, but the 
intuitionistic case requires the introduction of a rather unnatural notion of 
"sound proof'. Perhaps, however, this is to be expected since the partitions of 
V into the true and untrue statements in various situations, which are 
fundamental to the approach developed here, are highly discordant with the 
intuitionistic view of mathematics. 

Although this book is about mathematics, it may well be more at home on 
the bookshelves of philosophers than of mathematicians. The subject matter 
is motivated by philosophical considerations, especially in the first two parts 
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of the book. Applications are drawn primarily from many-valued logic, an 
area traditionally (though perhaps unjustly) linked to philosophy. Trains of 
thought that would naturally occur to a mathematician (or, at least, did occur 
to me) are omitted entirely. For example, there is no mention of the fact that, 
in discussing graph arguments from X to Y, one loses no generality by 
assuming that X and Y are both empty. {X V Y follows from a set of 
inferences Xt h Yt if and only if 0 h 0 follows from these inferences along 
with 0 h A (resp. A V 0 ) for every formula A in X (resp. Y); in other words, 
V and A can be replaced with <5" and £ respectively.) And, finally, the detailed 
motivations of concepts and theorems go well beyond the norm to which 
mathematicians are (unfortunately) accustomed. 

ANDREAS BLASS 
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Invariant theory, by T. A. Springer, Lecture Notes in Math., vol. 585, 
Springer-Verlag, Berlin, Heidelberg, New York, 1977, 111 pp., $8.00. 

Invariant theory. The very words recall potent historical forces. Hubert [10] 
viewed mathematical theory as the sum of three stages of development: the 
naive, the formal, and the critical periods. The progenitors of these periods 
come to mind. The Naive Period of invariant theory is represented by Boole, 
Sylvester, and Cayley, those conjurers of catalectants and other invariants of 
special quantics. The Formal Period arrived with the work of the Italian 
school of Cremona, Beltrami, and Capelli and the German school of 
Aronhold, Clebsch, and Gordon, whose symbolic method exposed the power 
of duality in algebra. In the Critical Period the heretic Hilbert reigned, armed 
with his homological methods; ultimately Noether, Van der Waerden and 
Artin enlarged on his ideas to found modern algebra. 

Although Hilbert declared the subject dead in 1893 [9], rumors of its 
demise were greatly exaggerated. Soon after, Reverend Young, alone and 
unnoticed, was divining the secrets of the symmetric group from his diagrams. 
At the same time, Weitzenböck, Study, and Littlewood unmasked tensor 
analysis as invariant theory in disguise. Soon after Molien, Frobenius, Cartan, 
Schur, and Weyl in generalizing invariant theory, ensconced it within a new 
subject, representation theory. No wonder Dieudonné could jest, "Invariant 
Theory has already been pronounced dead several times and like the phoenix 
it has been again and again arising from its ashes," [3]. 

Has it been laid to rest? Hardly! The recent International Congress of 
Mathematicians in Helsinki included at least three forty-five minutes 
addresses devoted largely to recent progress in the field. Invariant theory is 
like the roots of a great tree, whose branches touch all of mathematics; still in 
its prime, it is bearing beautiful fruit. Consider some applications of invariant 


