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technical proofs of embedding theorems might have been referenced rather 
than proved. 

Each chapter ends with bibliographical comments. As some sections of the 
book closely follow the original papers these comments should have pointed 
out exactly who proved what, but often fail to do so. 

There are the usual wealth of misprints and a few errors. For example, on 
page 3 a result of Browder is "proved". However, as soon as they deviate 
from Browder's correct proof they say "Since a normed linear space is 
separable if and only if its dual is, (Dunford and Schwartz p. 65) . . . ", which 
is false. The cited reference states the correct version. The proof on page 16 
contains a slip (misprint?) and on page 281 it is stated that the truncation of a 
function in the Sobolev space Wm,p also lies in the space: this holds only if 
m = 1 (or 0). 

The book contains much material previously unavailable in book form. 
Some of the subjects are far from closed and developments have occurred 
since the book's publication. The book can well be read by someone who 
wishes to "get into" this subject. Whether it can be used in university courses, 
as the authors hope, is less clear. 
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Differentiation of real functions, by Andrew M. Bruckner, Lecture Notes in 
Math., vol. 659, Springer-Verlag, Berlin and New York, 1978, x + 246 pp., 
$12.00. 

For most of us, the extent of our knowledge of the differentiation theory of 
real functions is quite limited. The standard information may be classified as 
follows: 

(i) Derivatives share some of the properties of continuous functions, e.g., 
they have the intermediate value (Darboux) property. 
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(ii) The primitive can be reconstructed from a derivative if the derivative is 
summable. 

(iii) Monotone functions are differentiable a.e., but continuous functions 
are typically (except for a subclass of first category) nowhere differentiable. 

This is not to belittle the state of our knowledge. Items (ii) and (iii) 
subsume many topics, e.g., absolutely continuous and singular functions, the 
Lebesgue decomposition theorem, and many facts about Dini derivatives and 
right and left derivatives. However, this constitutes a small portion of the 
state of the theory as presented in the Theory of the integral by Saks [13] more 
than forty years ago, and this theory has expanded greatly in the interim, 
particularly after the seminal paper of Zahorski in 1950 [18]. 

Zahorski hoped to characterize classes of derivatives by conditions on their 
associated sets, i.e., sets of the form {x: f(x) > a) and {x: f(x) < a}. He 
succeeded in characterizing the associated sets of certain classes of deriva­
tives, and the wealth of new ideas and new perspectives he brought to these 
problems greatly stimulated work in differentiation theory. It is fortunate, 
therefore, that he did not observe at the onset of his investigations that the 
problem posed was not solvable. If A is a homeomorphism of R onto R, say h 
increasing, then {JC: h ° f(x) < a} = {x: f(x) < h~l(a)}. Thus if a class of 
functions is to be characterized in terms of associated sets, the class must be 
closed under outside composition with homeomorphisms. It is not difficult to 
see that the various classes of derivatives are not closed under such composi­
tions. 

The derivatives (A) are in Baire class one (%x) and, therefore, their 
associated sets are of type Fa. Zahorski defined hierarchies of six classes of Fa 

sets, Mk9 k = 0, 1 , . . . , 5, and the six corresponding classes of functions ty(lk 

given by ƒ E <D\ik if its associated sets are in Mk. The sets Mk are defined in 
terms of the "density" of a set E E Mk at each of its points. For example, 
E E M0 if every x E E is a point of bilateral accumulation of E, and 
replacing "accumulation" by "condensation" yields the definition of Mv A 
set E is in M5 if it is an open set in the density topology, i.e., x E E implies 
lim(/|_,0|/ n ^ | / | / 1 -> 1 where I is an interval containing x. This is the same 
as saying E has metric density one at each of its points. The approximately 
continuous functions (6£) are then seen to be those which arc continuous in 
the density topology. If fy denotes the class of functions with the Darboux 
property, it is easily seen that 

It can be shown that A g (DH3 and, letting b denote the class of bounded 
functions, b A g (3ïl4. Actually, 9H4 is the class of associated sets of the 
bounded derivatives, but this does not say that ƒ is a bounded derivative if its 
associated sets are in 9H4. Preiss [12] has recently characterized the associated 
sets of the finite derivatives. Lipinski [6] had shown that they are a proper 
subset of (3H3. 

The problem of characterizing derivatives, i.e., of finding a condition on ƒ 
which is necessary and sufficient for ƒ to belong to a certain class of 
derivatives, has not been "satisfactorily" solved. It is useful, in considering 
this problem, to think of how the Lebesgue integral is characterized. The 
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Lebesgue integral is characterized by the property of absolute continuity. 
Another type of characterization is given by the Banach-Zarecki theorem [8]: 
F is an integral if and only if F is continuous, of bounded variation, and 
maps zero sets into zero sets (Lusin's condition N). This last result is 
interesting in that it shows exactly how a continuous function of bounded 
variation can fail to be absolutely continuous. 

Neugebauer [9] has obtained a beautiful theorem which not only char­
acterizes A but also tf) %l and shows exactly how a function in <3) %x can fail 
to be in A. It is "unsatisfactory" only in that the conditions involve the 
introduction of an auxiliary function, a function of intervals. Iff is defined on 
a closed interval 70, then ƒ G ty %x on 70 if and only if every nondegenerate 
closed interval I c I0 contains an interior point x7 such that for every x G 70, 
x G ƒ and | / | -> 0 implies f(x7) -» f(x). The function ƒ G A on I0 if and only 
if ƒ G 6D%1 and, whenever ƒ, J, H are subintervals of I0 for which 7 = ƒ u 
H and / and H are nonoverlapping, then, with Xj defined as in the condition 
for <3)®j, we have 

ƒ(*/)-(A*/)M+X*i,)l#l)/M. 
Much detailed study of the behavior of derivatives has been done. One way 

to do this is in the context of examining closely related classes of functions. 
We have observed that A c 6 ! ) . There are, however, striking differences 
between these classes. While a derivative need not be continuous and need 
not assume extrema on compact sets, it does map connected sets onto 
connected sets and has a connected graph. Further, A is closed under 
addition and uniform limits, but not under multiplication or composition. A 
Darboux function need not have a connected graph. The sum of a continuous 
function and a Darboux function need not be in tf) and, even more remark­
ably, every function is the sum of two functions in ̂ D. 

We have observed that A c ® , and so it is natural to consider the class 
^DSj. For a function ƒ G &,, ƒ G D̂ if and only if ƒ has a connected graph. 
Note that a function in fy ®2 need not have a connected graph. Functions in 
<*D®i combine better than do functions in D̂ and 6Ù%1 is closed under 
uniform limits. 

There are the following additional relations between the classes we have 
discussed: 

b& £6A, & c ^ ) ® ! , & £A. 

It is interesting that if lower (or upper) semicontinuity is hypothesized, then 
b& = Z>A. 

Although a derivative may be discontinuous a.e., it must be continuous on 
a dense set of type Gs. In fact, every Gô-set which is dense on an interval is 
the set of points of continuity of a derivative. Nevertheless, a typical bounded 
derivative is aproximately discontinuous on a dense set (here èA is topolo-
gized by the sup norm). 

One class of derivatives which has been characterized is that of a.e. 
derivatives. If ƒ is the derivative of a function a.e., then ƒ is measurable and 
a.e. finite. Conversely, if ƒ is measurable and a.e. finite, then there exists a 
continuous F such that F' = ƒ a.e. For ƒ E: L\ this follows from the Funda-



BOOK REVIEWS 235 

mental Theorem of Calculus; for Denjoy integrable ƒ it follows in the same 
manner. That it is true without additional hypotheses is a theorem of Lusin 
[13]. 

We have already made mention of the effect on differentiability of com­
position with homeomorphisms. This problem has been much studied re­
cently. A function F is said to satisfy condition S' if for every interval J in 
the range of F we have 

0 < inf{|JE|: measurable E with F(E) D J }. 

For continuous F, Fleissner and Foran [3] have shown that F satisfies S' is 
equivalent to each of the following: 

(i) There is an h such that (h ° F)' E 2>A. 
(ii) There is an h such that (h ° FJ E A. 

Here h denotes a homeomorphism of R onto itself. 
Composition on the inside with homeomorphisms (change of variable) has 

also proven interesting. Bruckner and Goffman [2] have shown that, for F 
defined on [0, 1], the necessary and sufficient condition for there to exist a 
homeomorphism of [0, 1] onto itself such that (F ° h)' E bA is that F be 
continuous and of bounded variation. Laczkovich and Petruska [5] have 
characterized the h such that ƒ o A E A for each ƒ E A. 

Many notions of generalized derivative have been defined. One notion 
arises from the question: Given a function ƒ and a real sequence hn -» 0, 
hn 7* 0, when does there exist an F such that (F(x + hn) - F{x))/hn ->f(x)l 
For any/, there is a continuous F such that this holds with {hn} depending on 
x. This is a consequence of a theorem of Jarnik [4]. If it holds with a 
continuous F and {hn} depending only on/, then ƒ E %x. It is not known if 
for every f EL %x there is a continuous F and a {hn} such that this holds. 
Some remarkable results concerning this notion of differentiability are known 
however. 

Sierpinski [14] has shown that for every ƒ finite on R and every {hn} there is 
an F such that (F(x + hn) — F(x))/hn ->ƒ(.*) for every x. A later result of 
Eilenberg and Saks shows that finiteness is not necessary. Marcinkiewicz [7] 
has shown that there exist universal generalized antiderivatives, i.e., given {hn}, 
there is a function F such that, for any a.e. finite and measurable ƒ, there is a 
subsequence {hnk} such that (F(x + h„k) — F(x))/hnk -*f(x) a.e. In fact, a 
typical continuous function is such a function F. 

The approximate derivative is probably the most extensively studied gener­
alized derivative [13, Chapter 7]. We say that lim apJC_>Xo F(x) = c if there is a 
measurable set E of density one at x0 such that limJC_ ĴC(̂ Jce£: F(x) = c. Then 
the approximate derivative of F at x0 is defined by 

^aP(*o) = lim ap(F(x) - F(x0))/ (x - x0). 
x-+x0 

Assuming that the approximate derivative is finite, the class of approximate 
derivatives is in 6il%l> in fact, it is in (DH3, and it contains the finite 
derivatives properly; an approximate derivative is an ordinary derivative on a 
dense open set and will be a derivative if it is bounded either above or below 
by a derivative. From the Darboux property we see that if F^p(x) exists and is 
finite for all x on an interval ƒ, then to a, b E /, there corresponds a c 
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between a and b such that (F(b) - F(a))/(b - a) = F^(c), the Mean Value 
Theorem for approximate derivatives. Weil and O'Malley [10], [11], [15], [16] 
have studied {x: a < F^p(x) < /}} and obtained deeper results on the oscilla­
tory behavior of the approximate derivative. Whitney [17] has shown that F is 
approximately differentiable a.e. on I if and only if for every c > 0 there is a 
closed set E c / and a 61 function G such that 11 - E\ <e and F = G on is. 

In our remarks above we noted that the typical continuous function is a 
universal generalized antiderivative. This result and many others concerning 
such topics as monotonicity and nondifferentiability lead one to the study of 
level sets of typical continuous functions. Bruckner and Garg [1] have gone 
beyond this question to produce an elegant determination of the exact 
manner in which a typical continuous function intersects nonvertical straight 
lines. If a countable set of exceptional directions is omitted, then the level sets 
in any direction are nowhere dense perfect sets except for the extreme level 
sets, which are singletons, and the level sets on a countable dense collection 
of levels, which are each the union of a nowhere dense perfect set and an 
isolated point. The level sets in the exceptional directions are also completely 
characterized. 

The book under review provides a lively exposition of all the topics 
mentioned above and many more. The first third of the book is largely 
devoted to a careful discussion of basic properties of derivatives and Dini 
dérivâtes. It is not only a review of classical results; modern material is 
presented and the new is well integrated with the old. Next the reconstruction 
of the primitive is discussed. The main result here is that for a finite derivative 
on an interval, a primitive can be constructed in an at most countable 
number of steps. The method relies on the ideas of the Denjoy-Khintchine 
construction of an integral. The Zahorski classes and the problem of char­
acterizing derivatives are discussed in the next two chapters. Almost every­
where derivatives and other generalizations follow. The remaining chapters 
deal with transformations via homeomorphisms, generalized derivatives, 
monotonicity, stationary and determining sets, behavior of typical continuous 
functions, and miscellaneous topics. 

This book presents, in a masterful way, a complete but concise develop­
ment of the present state of knowledge of the subject and, as such, is 
invaluable to all who work in this field. But this book is invaluable in another 
respect. It not only offers a wealth of new problems, but the author shares so 
well with the reader the patterns of thought which give rise to these problems, 
that even a novice should be able to formulate meaningful conjectures of his 
own. This methodology is made particularly clear in the chapters on mono­
tonicity and transformations via homeomorphisms. 

We recommend this book strongly to anyone with an interest in real 
analysis. An expert in this area will surely find much that is of value, while 
the novice will find clear paths for the exploration of new and exciting vistas. 
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Elements of homotopy theory, by George W. Whitehead, Graduate Texts in 
Math., vol. 61, Springer-Verlag, New York and Berlin, 1978, xxii + 744 pp. 

Good news! George Whitehead has completed Volume 1 of the great 
American encyclopaedic treatise on homotopy-theory. 

The approach adopted in this book is well described by the author. 
"As the title suggests, this book is concerned with the elementary portion of 

the subject of homotopy theory. It is assumed that the reader is familiar with 
the fundamental group and with singular homology theory . . . . 

"Anyone who has taught a course in algebraic topology is familar with the 
fact that a formidable amount of technical machinery must be introduced 
and mastered before the simplest applications can be made. This phenome­
non is also observable in the more advanced parts of the subject. I have 
attempted to short-circuit it by making maximal use of elementary methods. 
This approach entails a leisurely exposition in which brevity and perhaps 
elegance are sacrificed in favour of concreteness and ease of application . . . . 

"It is a consequence of this approach that the order is to a certain extent 
historical... . 

"As I have stated, this book has been a mere introduction to the subject of 
homotopy theory. The rapid development of the subject in recent years has 
been made possible by more powerful and sophisticated algebraic techniques. 
I plan to devote a second volume to these developments." 


