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Elliptic systems in the plane, by W. L. Wendland, Pitman, London, San 
Francisco and Melbourne, 1979, xi + 404 pp., $57.50. 

Because of the close relation of elliptic equations of two variables with the 
theory of analytic functions, with variational principles, and with some 
important aspects of physics and engineering, a vast amount of literature has 
been compiled in the last decade concerning the properties of solutions, 
representation theorems, boundary value theory, constructive and computa­
tional aspects. The list of authors of important papers on the theory of elliptic 
operators resembles a "who is who" list of mathematical analysis. Various 
aspects of the theory are identified with the names of L. Bers, Agmon, 
Doughs and Nirenberg, Hörmander, Lions and Magenes, N. Levinson, 
Vekua, Bitsadze, Lavrentiev, Sobolëv, F. Browder, Miranda, Fichera, Atiyah 
and Singer, Malgrange, H. Lewy. 

In this monograph the author deliberately avoids the abstract theory of 
elliptic operators, and restricts himself to the study of the two-dimensional 
case. The problems studied are linear. A large section of the book is devoted 
to the study of the normal form 

wr — vv = Au + Bv + c, 
y ~ inG, 

uy + vx = Au + Bv + c, 
u cos r(s) — v sin r(s) = <f> on G, (1) 

where G denotes a bounded, simply connected domain in R2 with a Holder 
continuously differentiable, positively oriented boundary, G G <21+a, a > 0. 

This system of equations becomes the Cauchy-Riemann system (C.R. 
equations) which may be concisely written (3/3z)w * 0 (w = w + ID), if the 
right hand side is identically equal to zero. Because of this close relation with 
the C. R. equations boundary value problem of this type permit direct 
applications of techniques used in the theory of analytic functions, and the 
use of results concerning harmonic functions. The classical problem of 
Dirichlet and Neumann can be solved for the region G if one knows Green's 
function, which is given in terms of boundary data only (on G). Green's 
function can be found if the map <Xz) is known, where </> maps G conformally 
into the unit circle. For example for the Dirichlet problem (Aw = 0 in G, u is 
given on G) the following formulas were known almost a century ago 

and 

OKz) - <KO) 
(l - 4>(z)<KO) 

^ - ^ ^ 4 . 

The last formula indicates that the Dirichlet problem can be replaced by an 
equivalent integral equation, if integration over the boundary of G is replaced 
by an equivalent integral over the region G. 
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The codimension of the range of this integral operator T is zero and the 
dimension of its null space is finite. Thus it is a Fredholm operator. The 
Fredholm "normality condition" applies. Namely, the equation Tx = ƒ has a 
solution if and only if ƒ is orthogonal to the null space of T*, which is the 
adjoint of T. In general, equations of the form 

ux + Buy + Cu=f (2) 

which are elliptic (no eigenvalues of B arc real) can be transformed by means 
of the Green functions (or equivalcntly using the closely related concept of an 
elementary solution) to the Fredholm type integral equations. Generally the 
kernel of the integral operator is singular. 

Let p denote the eigenvectors of the transpose of B. In the 2 X 2 case (a 
two dimensional system of equations) exactly two eigenvectors exists pl9 p2* 
Letp ± stand for 

(2) *<(*)• 
The following transformation has been known for some time, and turns up 

in many classical works (for example, I. N. Vekua gives a detailed account of 
its properties in Generalized analytic functions, Pcrgamon Press, Oxford, 1962) 
w = t/ + iV = plu. 

The system (2) is transformed to an equivalent system of differential 
equations, while the boundary conditions are reduced to the form Re(2q • r)w 
= X = 0 on G, with q defined by u = 2 Re(wq). It is essential that q • r ^ 0 
on G. This is the so-called Lopatinskiï condition, which turns out to be 
equivalent to "the complementing condition" of Agmon, Doughs and Nircn-
berg, and to "the covering condition" of Lions and Magencs. Various aspects 
of this classical theory were extended while dealing with systems of the 
normal form (1) in the earlier monograph of W. Haack and the author. 

The presentation follows for a while closely the book of W. Haack and the 
author (Lectures of Pfaffian and partial differential equations, Pergamon Press, 
Oxford, 1972). Next, the author derives some generalizations of the Fredholm 
theory, using rather strongly the so-called Lopatinskiï condition. For second 
order systems having the Laplace operator as a principal part, the general 
theory presented here can be found in the monograph of Bitsadzc (A. V. 
Bitsadze, Boundary value problems (translated from Russian), North-Holland, 
Amsterdam, 1968). However, the results presented here arc more general than 
Bitsadze's. The properties of the fundamental solution for the operator d/dzj 
lead to the study of corresponding singular integral equations. The author 
follows Vekua's ideas in the proofs of analytic continuation, but treating 
some cases which require some generalizations of Vekua's techniques. 

The two currently most popular techniques of generating computational 
algorithms for solving problems described by partial differential equations arc 
(1) The Rayleigh-Ritz-Galerkin techniques, (2) Finite clement approxima­
tions. The common feature of Rayleigh-Ritz and Galerkin approach is the 
reduction of the function space (in which one approximates the solution) to a 
finite dimensional space. If the solution of a partial differential equation can 
be restated as a solution of a variational problem, the Galerkin approach 
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generally reduces it to the finding of an approximate solution by solving a 
finite system of algebraic equations. An entirely different method attempts to 
approximate the model of a continuous physical system by a system contain­
ing only finitely many elements which obey simpler physical laws. The finite 
clement method was originally introduced by engineers in the late 1930s in 
the study of shells and plates. Basically the continuous shell or plate was 
replaced by a simple structure which contained only pivoted joints. A 
remarkable connection was established in the 1950s between this purely 
engineering approach and the abstract theory of splines. 

Efficient methods of approximating solutions of partial differential equa­
tions by finite elements can be found in the essay of P. G. Ciarlet and P. A. 
Raviart in The mathematical foundations of finite element method with applica­
tions to partial differential equations, K. Aziz, editor, pp. 409-474, Academic 
Press, New York, 1972, or in the article of J. A. Nitsche in the same 
symposium, pp. 603-627. 

The second part of this monograph deals with numerical methods. The 
choice of topics follows closely the author's research interests in discussing 
the integral equation approach. The Galcrkin-Ritz method is reviewed, and 
Fichcra's treatment is followed to produce an asymptotic error analysis. 

In the discussion of finite difference methods the author follows Bramble 
and Hubbard in the proof of a discrete maximum principle. A discrete 
analogue of Green's formula is established by referring to the results of 
Bramble, Hubbard, and Thomée. The rate of convergence result is due to 
Ciarlet. Finite element approximations and continuous approximations are 
briefly discussed in the last chapter. Some theorems (for example, the conver­
gence of embedding Newton's method) are offered with a promise that the 
proofs will be published elsewhere. An appendix offers examples of applica­
tion in which the author points out the applicability of the results discussed in 
the text, but stops short of discussing any details. 

The editorial assessment on the inside cover states that this book is of 
interest to postgraduate research workers in pure and applied mathematics as 
well as to engineers and physicists. This assessment is somewhat optimistic. 
Unless the reader had some exposure to modern functional analysis, to 
functions of many complex variables, to singular integral equations, and to 
partial differential equations at a graduate level, he will find this monograph 
difficult to digest. For example, the reader is expected to know the definitions 
and properties of the Sobolcv spaces H\G\ Hr+l/2(G), H~l/2(G), etc. For 
some reason the space HS(G) is defined in the very last chapter of the book. 
The trace theorem is used without stating it, but with a reference to the book 
of Lions and Magencs; the Bergman-Vekua operator formula is used without 
an explanation, and so on. This level of sophistication can hardly be expected 
from an engineer or a physicist. Clearly, this book is written for mathemati­
cians. 

Two basic criticisms may be offered of this book, regarded as a mathemati­
cal text. It tries to cover too much material, and it does not cover enough 
material. These statements arc not incompatible. The chapter on finite 
difference methods could be cither shortened, or omitted while preserving 
continuity of the material. In view of the vast amounts of literature which 
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appeared in the last couple of years concerning the finite element approxima­
tion, the few pages devoted to this subject seem to be either superfluous, or 
completely inadequate even as an introduction to this topic. On the other 
hand, some topics seem to stop short of mentioning some important recent 
results. For example, the only recent results on continuation of solutions 
reported in this book seem to be restricted to the theorems of G. H. Hue and 
M. Protter. 

It was a surprise to find that Gàrding's inequality was never mentioned in a 
book on elliptic partial differential equations. 

Some minor misprints exist. For example, Carleman's name is misspelled 
on p. 212. Also, the spelling of all Russian names leaves a lot to be desired. 
Olga Ladyzenskaja is spelled as "Ladyshenkaja" in the index. Lavrentjev is 
spelled "Lavrentieff" on p. 40 and "Lavrentjev" in the index. Lopatinskiï is 
spelled in two different ways on consecutive lines in the index. The index 
seems to be a minor disaster area. Rellich's theorem is supposed to be on 
p. 379. It turns out to be on p. 369. The estimate of Astrahancev is supposed 
to be on p. 366, but it actually is quoted on p. 367. The reviewer selected 
10 items at random. Four turned out to be misnumbered in the index. On the 
positive side, this book leaves a general impression of competence, it is well 
written, contains a lot of information, and a vast amount of bibliography. 
Each chapter contains references and a list of additional references, plus 
remarks concerning the additional references. For example, the chapter on 
elliptic boundary value problems contains 116 references, and the chapter on 
singular integral equations contains 119 references. The reviewer recommends 
this book as a supplement to courses in partial differential equations and as a 
useful addition to the library of any analyst. 

VADIM KOMKOV 
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Introduction to modular forms, by Serge Lang, A Series of Comprehensive 
Studies in Mathematics, No. 222, Springer-Verlag, Berlin and New York, 
1976, ix 4- 261 pp. 

Modular forms are generalizations of the trigonometric functions which 
have proved to be very useful in number theory, physics, and geometry. In 
their most obscene generality they go by the name of automorphic forms, and 
this name refers to functions on symmetric spaces, such as the Poincaré-
Lobachevskii upper half plane H, which satisfy certain differential equations 
(usually those of Cauchy and Riemann) and exhibit invariance properties 
under a discrete group of isometries of H, such as the modular group SL(2, Z) 
of 2 X 2 matrices of determinant one and integer entries, acting on H by 
fractional linear transformation. Number theorists, as will be seen, are often 
interested in congruence subgroups such as 

T0(N) - { (* *) e SL(2, Z)|c =s 0 (mod JV)}. 


