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FOUR-DIMENSIONAL TOPOLOGY: AN INTRODUCTION 

BY RICHARD MANDELBAUM1 

Introduction. This paper is an elaboration of the talk I gave at the 
American Mathematical Society meeting held at Memphis State University in 
November, 1977. In that talk I tried to illustrate what was special about 
four-dimensional topology and mention some of the advances in that subject. 
I have expanded upon that talk somewhat in this paper in order to give a 
clearer picture of the geometric ideas and methods currently used in studying 
four-dimensional manifolds. 

The basic problem of geometry is the characterization of spaces by means 
of algebraic invariants. In its simplest form it is the "Side-Angle-Side" 
theorem of high school geometry which characterizes triangles up to con­
gruence or the 'Angle-Angle' theorem which characterizes them up to similar­
ity. In the more rarefied realm of algebraic and geometric topology we are 
especially interested in attaching algebraic objects such as groups, rings, 
modules, etc., to a space M already known to be a compact connected 
manifold in such a way that if two manifolds M9 M' have the same objects 
associated to them then they are isomorphic (where isomorphic might mean 
'homeomorphic' or 'piecewise-linearly homeomorphic' or 'diffeomorphic'). As 
a result of the undecidability of the word problem for finitely-presented 
groups [Bo], [BHP] there is, in general, no finite procedure for deciding in all 
cases whether two groups given by finite sets of generators and relations are 
isomorphic. Furthermore, as is well known, any finitely-presented group can 
be realized as the fundamental group of a compact n-manifold if n > 4. Thus 
provided n > 4 we have no generally effective procedure for determining if 
Mi is isomorphic to M%. (Henceforth we write ' = ' for isomorphic.) 

Thus we must ask a more restricted question. In particular we can ask to 
what extent is Mn determined by its homotopy type? We thus consider the 
following question. 

Let ^V{X) denote the equivalence classes of pairs (M, ƒ), where M is a 
compact smooth (or PL) «-manifold, ƒ: M -» X is a homotopy equivalence 
and (A/,/) ~ (M\ ƒ') if and only if there is an isomorphism M-* Af' making 
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2 RICHARD MANDELBAUM 

the following diagram commute up to homotopy. 

?SW(X) is thus the set of «-manifolds in the homotopy type of X'. We 
assume ^V{X) is nonempty and ask what can be said about ^"(X)*! 

If n = 1 or n = 2, then ^\Ln{X) will consist of only one element, namely the 
abstract surface with g-handles or with A>crosscaps if n = 2 and the circle S1 

if n = 1. In fact if n = 2, G^Ct{X) is completely determined by its fundamen­
tal group irx (X), or even more computably by its first homology group 
Hx(X)l If n > 3 our question becomes much more difficult. To even begin to 
discuss it we focus our attention on the simpler situation which results if 
TTX(X) - 0. 

Thus suppose irx{X) = 0. Then if n = 3 our question is the classical 
Poincaré conjecture! Skipping n = 4 let us check what is known if n > 5. 

In this case our problem is the basic simply-connected surgery problem as 
attacked in [Br 1], [N]. Using surgery theory one can analyze the obstructions 
to deforming homotopy equivalences to isomorphisms. One obtains that for a 
given cohomology ring and choice of (rational) Pontryagin classes of a 
manifold M there exists only a finite number of manifolds ring-cohomology 
equivalent to M and having the same invariants. Furthermore fixing homo­
topy type and Pontryagin classes again gives only a finite number of isomor­
phism classes subordinate to the fixed homotopy type. 

Summarizing our discussion we arrive at the following diagram (where we 
include the equivalence relation of A-cobordism. Recall that Mn, Mm are 
cobordant if there exists a manifold Wn+l with dWn+l = M u M'. The 
triple (Wn+l, M, M') is called a cobordism. It is an A-cobordism if the 
inclusion M^> W is a homotopy equivalence and an ^-cobordism if i is a 
simple homotopy equivalence in the sense of Whitehead (see [M 5])). 

diffeomorphism 1 ̂  f A-cobordism ] ^ f Homotopy type and j <*3 
classes of mfds J I classes ƒ \ Pontryagin classes j 

Integral cohomology and 1 , . 
Pontryagin classes J 

where if n > 5 we have by the A-cobordism theorem that $ t is 1-to-l, and by 
the preceding discussion that $ 2 and <J>3 are finite-to-one. 

What happens if n = 4? Then all the techniques used to establish the 
nature of $j, $ 2 and Oa above fail. As we shall see in Chapter 1, using 
entirely different methods one can show that for a simply-connected 4-mani-
fold both 02 and 4>3 are in fact 1-to-l! However nothing is known about Q>x 

and it may even be infinite-to-one! 
It will shortly become apparent that four-dimensional manifolds occupy a 

peculiar position in the hierarchy of manifolds. On the one hand they are not 
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'sufficiently large' to allow one to use the higher-dimensional transversality 
and general position arguments which have proven so spectacularly successful 
in high-dimensional topology. Yet on the other hand their dimension is large 
enough to prevent a straightforward application of more intuitive lower-
dimensional methods. This, coupled with the great gaps in our knowledge of 
three-dimensional topology, makes the subject of 4-manifolds a particularly 
difficult, but interesting one. 

This paper attempts to separate the two approaches. The first chapter 
establishes some basic theorems about 4-manifolds, while Chapters 2, 3, and 
parts of 7 explore an approach flavored by lower-dimensional intuition and 
analogy with lower-dimensional methods. The remaining chapters discuss 
modifications of higher-dimensional methods rendering them applicable to 
dimension 4. The paper seeks to be accurate in the statement of theorems, but 
is not rigorous in their proofs. Since the article originated as a survey talk, 
proofs of many theorems have been omitted while only geometric ideas and 
constructions have been sketched for others. Only a basic knowledge of 
modern topology is assumed, hence the somewhat long introductions and 
explanations which may be common knowledge to many readers. 

This paper could not have been written without the help of many people 
who influenced me in the course of my study of 4-manifolds. First I owe a 
great debt of thanks to Boris Moishezon who induced me to study 4-mani­
folds and with whom I spent many pleasant days studying their properties. I 
also would like to thank John Morgan, Robert Connelly and Laurent Sieben-
mann for introducing me to the methods of PL-topology and showing me 
how topologists think about geometrical problems, as well as Bob Edwards, 
Cameron Gordon, Jose Montesinos, John Hollingsworth and Andrew Casson 
for many highly informative (as well as entertaining) conversations explaining 
various aspects of surgery and knot theory. In addition, thanks are due to 
Rob Kirby and his students Selman Akbulut, John Harer, Paul Melvin and 
Steve Kaplan for their invaluable aid in helping me understand the relation­
ship between link theory and 4-manifolds and to Sylvain Cappell and Julius 
Shaneson for spending much time explaining their own work on 4-manifolds 
and its relation to higher-dimensional phenomena. In addition Julius Shane-
son read the original draft of this manuscript and helped me significantly in 
producing a hopefully more intelligible final version. Without the help of 
these mathematicians this paper would never have been written. Of course, I 
alone am responsible for any inaccuracies in the exposition. 

Clearly it is impossible to include all that is known about 4-manifolds in a 
survey article. I have essentially been guided by my own taste and thus tried 
to concentrate on areas which were unique from a four-dimensional point of 
view. I have, however excluded for the most part, results on wildness and 
taming, such as in [Mt 3], and those on Group actions on 4-manifold such as 
in ([Or 1], [Or 2], [Pao 1], [Pao 2], [Fin 1], [Fin 2], [FP]). Also I have 
mentioned only a few results on knottings of S2 in S4 which has a literature 
of its own. (See [Lorn] or [Fox].) 

Notation. By way of notation we will suppose that the basic notions of 
algebraic topology and differentiable manifolds, as given for example in [Lg] 
[Spr 1], are well known to the reader. We will also assume a knowledge of at 
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least the elementary properties of piecewise-linear maps and manifolds and 
topological manifolds. 

We recall that a topological (= TOP) manifold M of dimension n < oo is a 
metrizable topological space M such that each point * in M admits an open 
neighborhood U and a homeomorphism k: U-*k(U) onto an open set of 
Euclidian space R". 

A piecewise linear (= PL), resp. smooth (DIFF), manifold structure 2 on a 
topological manifold M is a complete (= maximal) piecewise-linearly (PL), 
resp. smooth (DIFF), compatible atlas of coordinate charts K to Rn. PL, resp. 
DIFF, compatible charts are charts that are related on their overlaps by PL 
homeomorphisms, resp. diffeomorphisms. 

An H manifold where H = PL or DIFF is now defined to be a topological 
manifold M equipped with an H manifold structure 2. The symbol M2 is the 
usual notation for it; M alone is often used if this is unambiguous, as when 2 
is in some sense standard or fixed. For example, R", Sn~l are H manifolds. 

Every open subset M0 of an H manifold M has an induced H manifold 
structure; with this structure, M0 is called an open H submanifold. 

If 2 is an H structure on M and h: M -> N is a homeomorphism, the image 
H structure A2 on N has as a typical chart a composed homeomorphism 

huh^ uX ku 
where k: U-> kU is a chart of 2. 

A homeomorphism of H manifolds h: M2 -» N^ is an H isomorphism if 
2 ' = A2, or equivalently 2 = A_12'. We then write Afs ss N^; and in case 
NT is in addition an open submanifold of an H manifold N*9 we call the 
composition h+ : M2 -» N * of h with the inclusion JV2, ^ N + an H imbed­
ding. 

One can define an H map ƒ : M-*NoîH manifolds to be a map of the 
underlying sets which, when expressed locally in terms of coordin t chart 
is, respectively, continuous if H = TOP, piecewise-linear if H = PL, or dif­
ferentiate C00 if H = DIFF. There results a category of H manifolds which 
is occasionally itself denoted H. Note that its isomorphisms are as described 
above. The sign ^ indicates isomorphism in whatever category we happen to 
be working. 

A PL map that is a homeomorphism is a PL isomorphism. This is clearly 
quite untrue for DIFF in place of PL, as the map x -» x3 on Rl shows. 

A space X is said to be triangulated if it is a simplicial complex; the term is 
particularly convenient if space carries additional structure such as a DIFF 
(manifold) structure. 

A simplicial complex PL isomorphic to a PL manifold is known as a 
combinatorial manifold; it is characterized by the fact that the link of each 
simplex is PL isomorphic to a PL sphere or ball. 

As we will point out later not every triangulation is combinatorial. 
A map ƒ: X -» Y in any category H we have met (from the category of 

topological spaces and continuous maps on) is called an H trivial bundle if 
there exists an H object F and an H isomorphism 0: F X Y->X such that 
ft = Pi where p2 is the projection to Y. More generally, ƒ is called an H 
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(locally trivial) bundle or bundle projection if each point y in Y has an open 
neighborhood over which ƒ is a H trivial bundle. 

We can similarly define H structures on manifolds with boundary by 
replacing Rn by R+( = Euclidian half-space) in all our definitions above. This 
leads to some problems in the smooth case (one must consider manifolds with 
corners) which we ignore (see [KS 1] for an elegant treatment). Note that 
products always exist in H (provided we amend DIFF to allow the possibility 
of corners, as noted above). 

We define a homotopy as a map F: I X X -> I X Y such that px = pxF9 

where px denotes projection to the first factor /. In case F is an isomorphism 
it is called an isotopy. When F is an open imbedding it is called an isotopy 
through open imbeddings. 

This language applies in the several categories H we have met, not just the 
category of continuous maps of topological spaces. 

Note that F is uniquely determined by the family ft: X -* Y, 0 < f < 1, of 
maps such that F(t, x) = (*, ƒ,(*)) for all (t, x) in I X X. We often write ƒ,, 
0 < t < 1, instead of F; and we often say that F is a homotopy from f0 tofx, 
writing f0~fv Note that ft will inherit from F the property of being an H 
isomorphism or an H open imbedding. 

An H concordance T is an H structure on a product I X M where M is a 
TOP manifold, so that T gives by restriction H structures 2, X {/} on 
M X {/} for i = 0, 1; and we say that it gives an H concordance T: 2 0 =0= 2j . 

Other than the standard notation on manifolds we use the notation P\\Q to 
denote the boundary-connected sum of the manifolds (with boundary) P, Q 
and P # Q their interior connected sum. (See [Rlf] or [KM 2] for definitions.) 

We will have occasion to discuss isometries of inner-product spaces. We 
recall following [MH] that an inner-product space is a finitely generated 
projective module G over a commutative ring with unit R posessing a 
nondegenerate bilinear form X: G X G -+ R. For our purposes such modules 
will always be assumed to be free and therefore the form X will be represent-
able by a matrix Ax relative to any choice of basis of G. The nondegeneracy 
of X will then be equivalent to assuming some (and thus all) Ax has det(^4x) a 
unit in R. The symmetry or skew-symmetry of X will be defined in the 
obvious fashion. 

If (G, X), ((?', X') are inner-product spaces then an isomorphism between 
them will mean a module-isomorphism <f>: G-> G' satisfying X' ° (<f> X <J>) = 
À. This will sometimes also be called an isometry or in the case of automor­
phisms of (G, X) simply an automorphism of the form X. 

We can define orthogonal direct sums, annihilators, etc., in the obvious 
fashion and we use such concepts when necessary. A particularly significant 
invariant of a symmetric inner-product space (G, X) over Z is the signature 
a(G, X) of (G, X). This is defined as the number of positive terms minus the 
number of negative terms in any diagonalization of Ax over Q and can be 
shown to be an invariant of (G, X). (See [MH], [Hirz 2].) (One can similarly 
define the signature of a Hermitian form in a similar fashion using the 
well-known diagonalization theorem for such forms. See [MS].) The most 
significant inner-product space we will encounter is the one obtained by 
restricting the cup-product form LM of a compact orientable 4/c-dimensional 
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manifold M4k to the symmetric bilinear form: 

LM: H2k(M ; Z)/Torsion X H2k(M ; Z)/Torsion-* Z « H4k(M ; Z). 

We will discuss the properties of LM rather thoroughly (at least if k = 1) in 
Chapter 1 and merely note at this point that one defines the index or 
signature o(M) of M as the signature o(H2k(M), LM) of LM. 

Closely related to the concept of an inner product space is that of a 
quadratic inner-product space. 

We say \i: G -» R is a quadratic form if fi(ax) = a2ii(x) and fi(x + y) — 
ix(x) — p(y) = x -y defines a bilinear form • on G. Clearly if X is a bilinear 
form on G then q(x) = X(x, x) is a quadratic form on G. We say (G, M) is a 
quadratic inner-product space if the bilinear form • on G X G defined by M 
is nondegenerate. Notice that any inner-product space (G, X) has an 
associated quadratic form M such that x • y = À(.x, ƒ) + A( j>, x). One then 
immediately sees that if 2 is a unit in R then symmetric bilinear forms 
correspond bijectively with quadratic forms (up to units). Furthermore as 
long as 2 is not a zero-divisor in R then any symmetric bilinear form X 
satisfying X(x, x) = 0 mod 2R arises from a unique quadratic form. 

We shall pay particular attention to inner-product spaces over Z and over 
Z2. As 2 is not a zero-divisor in Z we shall generally only speak about 
Z-bilinear forms with the associated quadratic form being understood to be 
the canonical one. For spaces over Z2 we shall generally specify both 
quadratic and bilinear forms and their relationship. In Chapter 1 we shall 
discuss the classification of inner-product spaces and their relationship to the 
theory of 4-manifolds. Generally rather than speak about classifying the 
space (G, À) we shall refer to classifications of the form \ . 

In Chapter 5 we shall also speak about Hermitian forms on G. If R has an 
involution a -» â then a Hermitian form on G will be a form X: G X G -> R 
satisfying X(y, x) =X(x,y) and linear in the first variable. Note that 
X(ax, fiy) = aX(x, y)fi. X will be called nondegenerate if the Hermitian 
matrix corresponding to it is nonsingular. 

In the course of our article we will have occasion to discuss cobordisms and 
bordism groups. The definition of these concepts will be recalled in Chapter 
1. It would take us too far afield to go through a complete definition of 
simple homotopy equivalence and Whitehead groups Wh(A), and for these 
we refer the reader to [M 5]. Since most of the examples we give will have 
fundamental groups IT with Wh(^r) = 0 the reader will not suffer if he regards 
all homotopy equivalences as simple in any example he encounters. We shall 
consider the definition and properties of vector bundles and their characteris­
tic classes (Pontryagin, Steifel-Whitney and Chern) to be part of the subject 
matter of elementary algebraic topology (see [Spr 1] for example) and thus 
known to the reader. (See [Hus], or [MS] for a very pretty and straightforward 
exposition.) We will therefore use without comment the notion of classifying 
spaces B0(n)9 BSÇKn) for smooth, resp. smooth oriented, vector bundles and the 
bijective correspondence between VectAl(A

r) and [X, B^] where Vect/J(x) are 
the «-plane bundles over the CW-complex X and [A", Y] denotes the homo­
topy classes of maps of X into Y. [There is a corresponding bijection for 
smooth oriented vector bundles as well.] We shall discuss in Chapters 6 and 7 
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the corresponding bijections for the piecewise-linear and topological cate­
gories. We note in this regard that DIFF, PL and TOP will stand for the 
categories of smooth manifolds and smooth maps, PL manifolds and PL 
maps, and topological manifolds and topological maps; 5TOP(w), resp. 5PL(/I), 
will then refer to the classifying spaces for the topological, resp. PL, analogue 
of n -plane bundles. [We recall that the notation B^ comes from the 
homotopy equivalence between DIFF(n) = {smooth origin-preserving diffeo-
morphisms of Rn} and O(n) •* {n-dimensional orthogonal group}.] 

We will also use some elementary facts about stable vector bundles and 
their PL and TOP analogues. Here [Hus] is a good reference for the smooth 
case with the PL and TOP categories behaving similarly. Whenever we refer 
to a stable bundle over an n-dimensional manifold Xn the reader can simply 
think of a fc-plane bundle £ over X with k » n. Stable bundles have classify­
ing spaces which we write as B0, 2?PL, BTOF but here again the corresponding 
BcKky Bpi+k» Bjop{k) s e r v e a s weM if & is sufficiently large. (We note for the 
convenience of the reader that if £* and ^ are a fc-plane and an /-plane 
bundle over X then they are stably equivalent if there exist trivial bundles 
em~k, em~l over X of fiber dimension m — k > 0 and m — / > 0 such that 
£* 0 em~k is isomorphic to £' © em-'.) 

For the convenience of the reader we also recall that if X is a manifold 
then the characteristic classes of X always refer to the characteristic classes of 
the tangent bundle 5^. Then we have, writing wé(X)9 ct(X), pt(X) for the 
Steifel-Whitney, Chern, Pontryagin classes, respectively, of X that: 

(1) X is orientable iff wx(X) = 0. 
We can always interpret wx(X) as an element in H o m ^ ^ X ) , Z2) sending 

loops preserving orientation to -hi and those reversing orientation to -1 
(Z2 = {±1}). 

(2) We say X is a spin manifold if w2(X) = 0. wx(X) is the obstruction to 
orienting the tangent bundle ^x of X while w2(X) is the obstruction to 
putting a spin structure on 9^, i.e. lifting 

«p ^ S P I N 

x% BSO to * : ^ T I 

If X is a 4-manifold then w2(X) is the unique class in H2(X; Z^ such that 
w2(X) u Y - Y u Y for all Y G H2(X; zy. 

(3) If Cx[X]mod2 is a mod 2 reduction of cx[X] G H2(X; ZJ to a class in 
H2(X; Z2) then cx[X]mod2 = w2[^]. One also has that under the isomorphism 
H\X; Z) « Z, for almost complex manifolds X we have c2[X] goes to 
X\X] - 2J5(-iy rk H\X; Z) and under H4(X; Z^ « Z2, w4[*] = c2[*] 
(mod 2) (if X is almost complex = x[X] m °d 2). 

(4) For oriented 4-manifolds px[X] = 3a(Ar), o ^ ) the signature of the 
cup-product pairing on X, and by [Frk], w2[X] is always the reduction of an 
integral class so that its dual homology class is always representable by an 
oriented submanifold. 

We shall also consider the Poincaré duality theorem for orientable mani-
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folds with Z-coefficients and all manifolds with Zj-coefficients as being 
known to the reader. (See [Spr 1], [MS], or [Br 1].) 

In Chapter 5 we shall consider Poincaré complexes. The reader can either 
replace the word Toincaré complex' by 'topological manifold' wherever he 
finds it or refers to [Br 2], [Wa 3] for definitions. We shall sometimes also 
speak of twisted Z-coefficients in the context of duality or isomorphism 
theorems. Here again the reader may either substitute Z, resp. Z2, for twisted 
Z in the orientable, resp. nonorientable, case or refer to [Wa 3] for definitions. 

Lastly we will on occasion make use of transversahty, general position and 
local-flatness arguments. The full statement of the transversahty theorem we 
use can be found in Chapter 5. However, intuitive concepts of transversahty 
and general position will usually suffice to follow our arguments. 

We shall say that a proper PL or TOP embedding Mm *•> Nm+q is locally 
flat if each point/? G M has a neighborhood U in Nm+q such that (AT, M) n 
U is isomorphic to Dm X Dq

9 Dm X 0. Note that smooth embeddings are 
clearly always locally flat [Lg] while any embedding is locally flat if q > 3 
[RS, Chapter 7]. 

If P and Q are submanifolds of a given manifold M we will use the 
notation P rji Q to mean that P intersects Q transversely. Note that P fjl Q 
must then always be a submanifold of M. 

The specific contents of our paper can be elucidated from the following 
table of contents. 

TABLE OF CONTENTS 

Chapter 1. The basic structure of 4-manifolds 
1.1 The theorems of Whitehead and Wall 
1.2 Four manifolds and symmetric forms 
1.3 Almost complete decomposability and analytic surfaces 
1.4 Rohlin's theorem 
1.5 Aspherical 4-manifolds 

Chapter 2. Complex surfaces 
2.1 Classifying complex surfaces 
2.2 Decomposing surfaces. I 
2.3 Decomposing elliptic surfaces 
2.4 Surfaces of general type 

Chapter 3. Four-manifolds and the calculus of links 
3.1 Framed links and the Kirby calculus 
3.2 Handlebody decompositions of 4-manifolds 
3.3 Special handlebody-decompositions 

Chapter 4. The ju-invariants, homology spheres and fake 4-manifolds 
4.1 The ̂ -invariant 
4.2 Fake 4-manifolds 
4.3 Triangulating high-dimensional manifolds 

Chapter 5. Surgery theory and its applications 
5.1 Surgery theory in higher dimensions 
5.2 Surgery and the smoothing and triangulations of manifolds 
5.3 Triangulating 4-manifolds and some consequences of Rohlin's theo­

rem 
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CHAPTER 1. THE BASIC STRUCTURE OF 4-MANIFOLDS 

1.1 The theorems of Whitehead and Wall. Consider the following diagram 
of equivalence classes of simply-connected compact n-manifolds Mn\ 

Isomorphism \ *i f A-cobordism \*2 f Homotopy type and 1 ** 
classes J I classes J \ characteristic classes J 

{ Integral cohomology and 1 
characteristic classes J 

where the $, are the obvious forgetful maps. Then if n > 5 one can show that 
$j is 1-to-l and <J>2, $ 3 are both finite-to-one. 

What happens if n = 4? We then have the following result of Whitehead 
[W 2] as sharpened by Milnor [M 1]. 

THEOREM 1.1. Suppose Ml9 M2 are compact simply connected smooth 4-mani­
folds. Let LMi, LMi be the symmetric bilinear forms on H*(MX), Jfl

r*(Af2) 
induced by the cup-product pairing. Then Mx is homotopy equivalent to M2 if 
and only if (H*(Mj), LM^ is isomorphic to {H*{M^)y LM^. 

PROOF. [We outline the proof given in [MH]J Let M be a simply-connected 
4-manifold and let M' be M - {4-ball}. Then it is not difficult to see that M' 
has the homotopy type of a wedge of r 2-spheres, where r •• rank H2(M; Z). 
Thus M has the homotopy type \/rS

2 Ug D
A where g: 3D4 -» V S2 is some 

attaching map. In particular then the homotopy type of M is completely 
determined by [g] G n3(\/rS

2). Let K - X 'iftCP00), and note that the 
inclusion \/rS

2<L+K gives us isomorphisms ir3(\/rS
2) a* IT4(K9 \/S

2) a* 
H4(K, \/S2)zz H4(K), where the last isomorphisms arise from the relative 
Hurewicz theorem and the homology exact sequence of (K, \/S2). But 
calculating H4(K) we find that its elements consist precisely of the isomor­
phism classes of bilinear forms on H2(\/

r
imalS

2) « H2{M). Thus the attaching 
maps [g] E ir3(\/S

2) are in 1-to-l correspondence with the appropriate 
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isomorphism classes and so the theorem is proven. 
In dimension 4 we can therefore now contract our diagram to 

f diffeomorphism 1 *i f A-cobordism 1 *'2 [ Homotopy 1 ®* 
I classes J I classes J ~* { type ƒ ~* 

ƒ Cohomology \ ( . 
I ring j W 

and note that $3 is always 1-to-l. (We note that in dimension 4 the only 
nontrivial Pontryagin class p4(M) of M is uniquely determined by the 
signature a(M) of M which in turn is uniquely determined by LM. Thus we 
need not bother with Pontryagin class data in (2).) 

What about $2? We have the following improvement of Whitehead's result 
by Novikov and Wall [N], [Wa 2]: 

"$i above is 1-to-l". 

More precisely 

THEOREM 1.2 [N], [Wa 2]. Suppose that Mv M2 are compact simply-connected 
4~manifolds. Then Mx is h-cobordant to M2 if and only if LMj is isomorphic to 

PROOF. We shall divide the proof up into a few steps. As a preliminary step 
we review the definition of the bordism groups ö^°, fi*PIN. Recall that fi*° 
(Q*PIN) is the group of oriented (spin) cobordism classes of oriented (spin) 
manifolds. That is, elements of S2̂ ° (Q^PIN) are equivalence classes of oriented 
(spin) manifolds under the equivalence Aff ~ M2 if there exists an oriented 
(spin) cobordism between them (i.e., the manifold Wn+l with dW = Mx u 
M2 is an oriented (spin) manifold and the boundaries have the induced 
orientations. Thus dW = Mx — M2 as oriented manifolds). The group opera­
tion in Q^° (0^PIN) is disjoint union and the identity element can be taken to 
be a point. Inverses are obtained by reversing orientation. S2|° (fl*PIN) is a 
graded group, 0* = © Qf, Qf is the group of cobordism classes of /-dimen­
sional S-manifolds (S = SO or SPIN). (Note that the identity element in Q, is 
just S* and since S" bounds Di+l saying that Af' is cobordant to zero is 
equivalent to saying that Mi is the oriented boundary of a manifold Wi+ !.) 

By a direct calculation using the methods in [Thm] one can show Q40 « Z; 
Q f I N « Z and the "forgetful map" QfIN->Bf> is essentially Z-^ Z. (The 
isomorphism a above is simply M -* o(M) G Z.) 

Now clearly if Mx is A-cobordant to M2 we have LM is isomorphic to LM. 
Therefore to prove the converse let us suppose a: H2(MX) -> H2(M^) is an 
inner-product isomorphism. Let N = Mx # (-M^. Then H2(N; Z) » 
H2(MX; Z) 0 H2(M2; Z) and LNi c~ LMx 0 (-LM). Thus o(N) - o(Mx) -
o(M2) = 0. Therefore N is cobordant to S4 and thus bounds an oriented 
5-manifold Z. Furthermore by our remarks on the map Q4(Spin) -» Q4 we see 
that if N is spin we may assume that about Z also. 

Step (1). We may without loss of generality suppose that Z has the 
homotopy type of a wedge of 2-spheres. 

PROOF. Recall that if Mn is an «-manifold and ƒ: Sp x Dn~p is an 
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embedding with a being the homotopy class represented by f(Sp X 0) then 
the spherical modification of Mn along a is the manifold 

X(M) - M-f(Sp XDn~p) Us,xSn-,->Dp+l X S»-*-1. 

It is easy to see that a goes to zero in x(^0 a n d in [M3] it is shown (see also 
Chapter 5) that if dim V > 4 any manifold V can be modified by a sequence 
of spherical modifications to obtain a 1-connected manifold V\ Note that 
such modifications do not affect 9K. (Spherical modifications are also called 
surgeries.) Thus we can always so modify Z until it is 1-connected. We 
continue to call the modified manifold Z. Clearly what must first be shown is 
that further spherical modifications can be performed on Z until H2(Z, N) 
vanishes since by duality this would mean H3(Z) = 0. 

Consider the homology exact sequence 

0 -» H3(Z) -> #3(Z, N) -» H2(N) -» H2(Z)J-$ H2(Z,N)-»0. 

It is not difficult to show using w2(N) = 0=> w2(Z) = 0 that if yl9. . . ,yt 

generate the infinite part of H2(Z, N) then there exist elements xl9..., xt G 
H2(Z) representable by embeddings ft: S2 X Z>3-»int(Z) and such that 
j*(xi) * JV Surgering Z along xt has the effect of 'killing' all the xt and thus 
all the^ . We can thus assume without loss of generality that Z has been so 
modified. Thus H2(Z, N) is a finite group. Note that since N is simply 
connected, H2(N) has no torsion and by Poincaré duality and the universal 
coefficient theorem we may assume H2(Z) is infinite. 

One can now show that, provided H2(Z, N) =£ 0 , there exist elements 
ut E H2(Z) representable by embeddings gt: S

2 X D3 -> int(Z) with ut gener­
ating an infinite direct summand of H2(Z) andy^(wl) ^ 0. Again via surgery 
we can 'kill' ut and thus j+iu;), thereby reducing the order of H2(Z, N). By 
induction one can thus reduce i/2(Z, N) to the zero group. (There is actually 
a small technical difficulty here if rk H2(M^ = 1 which we suppress. See [Wa 
2, pp. 143, 146] for details.) Again call the modified manifold Z and note that 
H2(Z) now must be a free abelian group and so Z has the desired homotopy 
type. 

Step (2). There exists a manifold H, diffeomorphic to a boundary-con­
nected sum of D3-bundles over S2, embedded as a deformation retract in Z. 
Furthermore, the closure of Z — H gives an A-cobordism of N to dH. 

PROOF. TO construct H, first embed a disc D5 in Z and then embed discs 
D2 in Z with interiors avoiding D5 and boundaries lying on it such that their 
homology classes represent generators of H2(Z). (Such embedding are always 
possible via a general position argument which also guarantees that we may 
take the D2 disjoint.) Let H be a neighborhood of D5 U U tD

2. Then it is 
easy to see that H is as claimed above. A straightforward calculation of 
homology groups shows that Z — H is an A-cobordism. 

Step (3). There exists a unique nontrivial orientable S2-bundle over S2 

(which we denote by S2 X S2) and dH is diffeomorphic to a connected sum 
of S2 X S2's and S2 X S2's. If w2(H) = 0 then H - # ; : ; ( S 2 X S% while 
if w2(H) * 0 then if = #£ï (S 2 >< S2),. 

PROOF. We note that orientable S2- and D3-bundles over S2 are classified 
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by 7r!(SO(3)) « Z2 and thus there is only one nontrivial bundle of that type, 
which we denote by S2 X S2, resp. D3 X S2. See [Stn, §26]. (If P denotes 
the complex projective plane CP2 with its standard orientation and Q denotes 
CP2 with orientation opposite to the usual, then a straightforward construc­
tion shows that S2 X S2 « P # g.) We note that w2(S

2 X S2) = 0, 
vv^S2 X S2) ¥* 0. Thus if 4̂ is any connected sum of orientable S2-bundles 
over S2

9 then w2(A) = 0 if and only if A = # ; i i 5 2 X 52 . We also note that 
if M is an arbitrary 4-manifold with w2(M) ^= 0 then M # (S2 X S2) is 
diffeomorphic to M # (S2 X S2). See [Wa 1]. Thus any connected sum A of 
S2 X S2 and S2 X S2 with w2(A) ^ 0 is diffeomorphic to a connected sum 
# 5 2 X S2. Clearly the boundary of a boundary-connected sum of /^-bun­
dles over S2 is a connected sum of S^-bundles over S2 and thus dH is as 
desired. 

Step (4). Af j is A-cobordant to M2. 
PROOF. (SEE FIGURE 1.1.) Let W be the closure of Z - i/. Thus W is an 

A-cobordism between N and dH. Now N = Mj - D4 u (S3 X I) u (M2 -
Z)4). We can thus attach a D4 X ƒ to W 'filling in' the tube S3 X I of the 
connected sum above and obtain an orientable 5-manifold W' with dW' 
having Ml9 M2 and dH as disjoint boundary components. Thus to construct 
an A-cobordism we will need to attach H to W' along dH using an autodif-
feomorphism ƒ such that if Rf = W' Uf H then H^Rf, Mx) = 0. (This condi­
tion on homology groups guarantees of course that Mx <=-» Rf is a homotopy 
equivalence.) Let K be the subgroup of H2(dH) « H2(N) « H2(MX) © 
^2(M2) equal to {(X, aX)\X G /^(Mj)} (recall a: H2(MX) -* i/2(M2) is our 
original isometry). Let L be the kernel of H2(dH)-+ H2(H), where i is the 
inclusion map. Notice that both K and L satisfy rank K = rank L = | rank 
H2{MX) and Z • Z = 0 for any Z G AT or Z E L (where • is the intersection 
pairing on H2(dH) œ H2(N)). A straightforward calculation on homology 
shows that if K = L then H+(R9 Mx) = 0 and we have the A-cobordism we 
sought. Thus the proof reduces to showing that there is an autodiffeomor-
phism ƒ: dH -» dH with f+(K) = L. This is demonstrated in Chapter 6, 
Theorem 6.26. 

Thus Theorem 2 shows us that for simply-connected 4-manifolds their 
integral cohomology alone determines their A-cobordism type. This is defi­
nitely false in higher-dimensions. See [Wa 3]. 

FIGURE 1.1 
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Step (3) in the above proof is important enough to extract as a separate 
lemma. The proof is straightforward except for (iv)c which we prove in 
Chapter 6. 

LEMMA 1.3. (i) There exist two distinct orientable S2-bundles over S2. The 
trivial one S2 X S2 and the nontrivial one S2 X S2. 

(ii) S2 X S2 is diffeomorphic to P # g , where P = CP2 with its usual 

orientation and Q is CP2 with orientation opposite to the usual. 
(iii) w2(S

2 X S2) = 0, w2{S2 X S2) ^ 0. 

(iv) If M is any compact connected 4- manifold then 
(a) w2(M) = 0 => w2(M # S2X S2) = 0, 
(b) w2(M # S2 X S2) ¥> 0, 

(c) w2(M) ^ 0 = ^ M # S 2 X S 2 = M # S 2 X S2. 

Lastly let us consider 

$ P {diffeomorphism classes} -» { A-cobordism classes} 

for simply-connected 4-manifolds. (We recall that by a theorem of Cairns [Ca 
2], [Ca 3], [Hi 1] every PL 4-manifold has a unique DIFF structure and so in 
dimension 4, PL = DIFF and we shall use the two interchangeably.) Now in 
dimension n > 4 the map $[ above is 1-to-l as a consequence of the 
A-cobordism theorem (see [Sm], [M 4] in the smooth case and [Z 1], [St 1] in 
the PL case. We shall continue our discussion in the PL case but our 
theorems and proofs could be redone in the other categories also. We follow 
the treatment in [RS].) 

We have 

THEOREM H (A-COBORDISM THEOREM). Let (Wn+\ M£, M") be an h-cobor-
dism with irx{Wn+x) = 0. Then if n > 5, Wn+l is isomorphic to M£ X ƒ. 

We will run through a PL-version of the proof of Theorem H. Thus we will 
use handles and handlebody-decompositions. (A proof of the smooth version 
using Morse functions can be found in [M 4].) 

We recall that if Wm is an m-manifold (all our manifolds and maps are PL) 
and H an m-ball with W n H c dW then H is called a /^-handle on W if 
there exists an isomorphism h: Dp X Dq -+H with h(dDp X Dq) = H n W. 
Clearly then setting ƒ = h\dDp x Z ) 9 w e sec that W' = W KJ H œ W \JfD

m 

is also an m-manifold. We say W' is formed from Wby attaching a/?-handle 
and sometimes write W' = W \jf H(p\ We refer to h(Dp X 0) as the core 
and h(0 X Dq) as the cocore of H. h(dDp X 0) is the attaching sphere 
(ö-sphere) and h(0 X Dq) the belt sphere (6-sphere). h is called the character­
istic map and ƒ the attaching map. Now if (W, Af0, M{) is a cobordism and H 
is a handle on W then H is a handle on the cobordism if H n W C Mx. 
Letting Af2 = dW' - M0 where W' = W u H we obtain a new cobordism 
(W\ M0, M2) (see Figure 1.2) which we say is obtained from the original 
cobordism by attaching a handle. We will sometimes write a cobordism 
W' = W u # ( r i ) U H^ u • • • U # ( r J to mean W' is a cobordism ob­
tained by successively adding the handle H^ to the cobordism W U iJ ( r | ) 

U • • • U H{rJ~x). (Note that if W = FT U # r as above, then M2 can easily 
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lxS ,-rDr X S"" 

be seen to be diffeomorphic to 

x(Mx) = Mx-f{Sr-xXDn-r+x)u* 

where ƒ is the attaching map of Hr.) (See Figure 1.2.) Thus attaching a handle 
to W along Mx has the effect of surgering Mx alongf(Sr~l X Dn~r+l). If 
W'n+l « W u # ( r ) U # ( r + 1 ) then if S f ' - è-sphere of # ( r ) - Mr>(0 X 
9Z)"-'+1) and S£ = a-sphere of # ( ' + 1 ) - /*<r+1>(air+1 x 0) then Sx and 52 

lie in M2 = 9(JF u i/(r)) — M0 and have complementary dimensions. Thus 
we can define e(#(r), H<r+l>)9 the incidence number of H(r) and if(r+1) as the 
algebraic intersection number Sx • S .̂ (See [RS, p. 77] for details.) Now if Sx 

and $2 intersect transversely in only one point we say that Hir) and H(r+l) are 
complementary handles. If Sx and S2 have algebraic intersection ± 1 (so that 
5! and S2 by general position intersect transversely in 2m + 1 points (for 
some m > 0) with m pairs of (+1 , -1) intersections), we shall say H(r) and 
Ij(r+1) a r e algebraically complementary. 

f Hr 

Mx x 1 

^Mt x 0 

W' 

W 

Note that M2 = X(Ml)=Ml -f(Sr'1 x D " " ^ 1 ) U ^ ^ . , / ) ' x S*"'. 

FIGURE 1.2 

If Wn + l is a closed manifold, then a handle-decomposition of W is a 
decomposition W = i/0 u 7^ U • • • \jHt where H0 is an (w + l)-ball and 
Hi+l is a handle on W ^ = U ,<,#,. If (W, M0, M^ is a cobordism then a 
handle-decomposition of W on M0 is a decomposition JT = Af0 X I u ^ 
U • • • U Ht where M0 X I is regarded as a cobordism in the obvious fashion 
and HJ+X is a handle on the cobordism M0 X I u U ,<,#/• Using the 
PL-structure on W it is possible to show that every PL manifold or cobordism 
admits a handle-decomposition. (This is not true for TOP manifolds, see 
Chapter 5 and [Sb 1].) 

There are a few basic geometric principles involved in manipulating han­
dle-decompositions. 

PRINCIPLE 1 (REORDERING). If W' = W u Hir) u H^s) with s < r then 
W'c^W u i/ ( j ) U # ( r ) with ƒ/<*> disjoint from #(r>. 
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PRINCIPLE 2 (HANDLE ADDITION). Let Wn+l = W u Hir~l) u H[ u Hr
2 

with r > 2 and « > r + 1. Then d(W U Hir~l)) - M0jis simply-connected 
implies that there exists a new handle-decomposition fT""*"1 = W u # (r~I) 

U Jïf U #3 of W"+lwiih 

e(H$9H^) - e(Hi9H<'-») ± e(H'l9H<'-») 

(JÏ3 is called the handle obtained by adding H[ to (or subtracting H[ from) 
ff*)-

PRINCIPLE 3 (GEOMETRIC CANCELLATION AND INTRODUCTION). If W = W 

U H{r) u i / ( r + 1 ) and # ( r ) and JET(r+1) are complementary handles then there 
is an isomorphism h: W' -±W which is the identity outside a neighborhood 
of H(r) u # ( r + 1 ) . Conversely if W'n+l - W U £"+ 1 , where 5 " + 1 is an « + 1 
ball with Bn+l n W= Bn+l n M , = a face By of 5, then we can write 
W' = W U Hir) u # ( r + 1 ) with 7/(r) and ^ ( r + 1 ) complementary. 

PRINCIPLE 4 (ALGEBRAIC CANCELLATION) [RS, p. 79]. Suppose W = Wn+X 

U # ( r ) U # ( r + 1 ) and Mj is simply-connected, n - r > 3 , r > 2 and n > 5. 
Then if // ( r ) and //<r+1> are algebraically complementary then W' es W. 

There is a fundamental difference between Principles 1, 2, 3 and Principle 
4. The first three principles are proven using rather elementary techniques of 
PL-geometry such as general position and regular neighborhoods [see RS pp. 
76-80]. They are true without any dimensional restrictions. Principle 4, 
however, is somewhat deeper and is not universally true. Its proof is a 
consequence of the Whitney trick which states 

WHITNEY LEMMA (SIMPLY-CONNECTED) [RS, p. 68], [Whit 1]. Suppose Pp
9 

Qq
9 are oriented submanifolds of the oriented manifold Mm and that p 4- q = 

m. Suppose further that Pp rfl Qq andp9 q G Pp n Qq with (P • Q)p = - (P • 
Q)q9 where (P- Q)x is the algebraic intersection index of P and Q at x. Then if 
p > 3, q > 3 and ^(M) = 0 orp = 2, q > 3 and mx(M — Q) = 0 there exists 
an isotopy of M carrying P to P' with P' ffi Q and P'nQ^PnQ- {p} 
— (q). Moreover the isotopy has support in a compact set not meeting any other 
intersection points. 

COROLLARY WL1. Under the above hypothesis P can be isotoped to P' with 
P' <\i Q and if n = P-Q then P' n Q = {xlf..., x,„,} with (P' • Q\ -
sign n if n ^ 0 and P' n Q = 0 if n = 0. 

Thus the Whitney trick tells us that with suitable dimensional restrictions 
we can always replace algebraic intersection by geometric intersection. 

We can also use the Whitney trick to eliminate self intersections of 
homology classes. More precisely we have 

COROLLARY WL2 [M 3]. Suppose W is a simply-connected manifold and V is 
a compact, connected manifold. Then (i) If 2 dim V < dim W9 any map ƒ: 
V —» W is homotopic to an immersion ƒ': V ->W having only a finite number of 
transversal double points as singularities. 

(ii) If dim W > 5 then f' is in turn homotopic to an embedding. 

The Whitney trick does not work however if p = q = 2. This is the cause 
for the anomalous behavior of dimension 4 in general, and the breakdown of 
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the proof of the A-cobordism theorem in particular. We shall discuss further 
implications of the failure of the Whitney trick in §6.7. At this point we shall 
go through the proof of the A-cobordism theorem and see where the Whitney 
lemma is used. 

Thus suppose (Wn+l
9 MQ, MX) (n > 4) is a simply-connected A-cobordism. 

Then Wn+l has a handle-decomposition which, using Principle 1 and the 
triviality of the product cobordism, can be written as 

w»+l
 = M 0 X / U ( U ^ ° ) U ( U #/) 

u--- u (ü f i r ; )u (ü^; + l ) (3) 

where H™ is an m-handle and all the handles we added are disjoint. Then 
using the connectedness of Wn+l we can show that every 0-handle can be 
cancelled by an appropriate 1-handle. Thus we can cancel the a0 0-handles by 
a0 1-handles (for homological reasons we have ax > a0) to obtain a new 
handle-decomposition with no 0-handles and ax — a0 1-handles. 

Now notice that if W = M0 X I u Hx U • • • U Ht is a handle-decom­
position of W then we can add on the trivial cobordism Mx X I to W without 
altering it. Thus W = M0 X I u Hx U • * • U Ht U Mx X I. Furthermore, 
using the interchange automorphism t: lp X Iq -» Iq X Ip we define W +̂i = 

Mx X ƒ u U {Hj\j > i + 1} and see that we can regard the/?-handle Hj as a 
^-handle H? on Wf+ x with charactereristic map hf = ht ° /. Thus W\ gives a 
dual handle-decomposition of our cobordism wherein every /^-handle be­
comes an (n 4- 1 — />)-handle. In particular then cancelling 0-handles by 
1-handles in the dual handle-decomposition translates into cancellation of 
(n + 1)- by «-handles in the original decomposition. Thus by using the 
connectivity of W we can always assume (provided M0 ^ 0 , Mx ^ 0 ) that 
our cobordism has no 0- or (n 4- l)-handles. Using the simple-connectivity 
and Principle 2 (but not necessarily the Whitney trick) we can also always 
exchange 1-handles for 2-handles and «-handles for (n - l)-handles and thus 
we can always assume that ax = an = 0 in (3) above. To proceed further we 
must now resort to a use of Principle 4. Using the fact that W is simply-con­
nected and M0 °-> W is a homotopy equivalence we can show that, for every s, 
2 < s < n - 3, if Hs is an ^-handle then by handle additions and subtrac­
tions (Principle 2) of (s + l)-handles we can produce an (s + l)-handle 
/ƒ(*+!) which is algebraically complementary to H^s\ Now if n > 5 we can 
resort to Principle 4 which will then allow us to cancel Hs and Hs+l. Thus we 
can get rid of all the ^-handles 2 < s < n — 3 until we are left only with 
(n — 2)-handles and (« — l)-handles. By the fact that M0*-* Wis a homotopy 
equivalence there must be exactly as many (n — 2)-handles as (n — 1)-
handles left and dualizing the above procedure we can add and subtract the 
(n — 2)-handles among themselves until they are all algebraically complemen­
tary to (n — l)-handles. Applying Principle 4 then eliminates all the remain­
ing (n - 2) and {n — l)-handles and we are thus left with Wn+1 « M0 X / as 
desired, provided n > 5. 
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What happens if n = 4? Then we can still eliminate 0-, 1-, 4- and 5-handles 
to get 

kx k2 

W5 = M0Xlu IJ HÏ U U Hf (30 

and since M0 <=-» W5 is a homotopy equivalence we must have kx = k2. Note 
that we have, even in principal, no control of how large kx must be in order 
that (3') be valid. 

Actually by being more careful in our proof we could have proven the 
following .s-cobordism theorem. 

THEOREM S O-COBORDISM THEOREM). Let (Wn+X
9 Af0, Mx) be an s-cobor­

dism. Then if n > 5, Wn*x is isomorphic to M£ X I. 

The basic modification in our proof consists of: 
(1) using a non-simply-connected version of the Whitney lemma to obtain 

a non-simply-connected version of the algebraic cancellation principle, and 
(2) taking care of base points in all our definitions and operations. 
We will not go through the proof here but refer the interested reader to 

[RS, p. 88]. We will, however, state for future use the non-simply-connected 
version of Whitney's lemma on which the proof is based. See [RS, p. 72]. 

We first must redefine the notion of an algebraic intersection. Recall that if 
Mm is an oriented manifold and Pp, Qq (p + q = m) are oriented submani-
folds then P • Q is essentially the homological intersection of the homology 
classes [P], [Q] in Hm(M; Z) « Z. 

More geometrically, we can by general position always suppose that P and 
Q intersect transversely in a finite number of points jPi , . . . ,/?„. Then we 
define the intersection number e(/?,) of P and Q at/?, as being +1 if the local 
orientation of P and Q at/?, give the orientation of M at/?, and -1 otherwise. 
Then P • Q = S ^ l e(/?,) and (P • Q)Pi = e(/?,). Now suppose irx{M) ¥* 0 and 
P, Q are simply-connected and oriented. Let * be a base point for M and eP, 
eQ fixed paths in M to the base points of P, Q. Fix a local orientation <$ for 
M at *. We then define e(x) f or x G P n Q as the elements ±g, where 
g G ITX(M) is the element determined by ePpreQl

9 p a path in P from its base 
point to x and T a path in Q from x to the base point of Q. The ± depends 
on comparing the local orientation $> of M at p obtained by transporting * 
to x via ePp with the local orientation given by P and Q at x. Then we define 
c(P, Q) G ZK(M)] to be 2x€EPnQe(x). 

Then the non-simply-connected version of Whitney's lemma is 

WHITNEY LEMMA (NON-SIMPLY-CONNECTED VERSION) [RS, p. 72]. Suppose 
Pp

y Qq are oriented connected locally flat submanifolds of the connected mani­
fold Mm with m=p + q. Suppose Pp ffl Qq and e(x) for x G P n Q is 
defined as above. Let x9y G Pp n Qq with e(x) = -e(y). Then if either p > 3, 
q > 3 or p = 2, q > 3 and ^ ( M ) = irx{M — Q) there exists an isotopy of M 
carrying P to P' with P' (\\ Q = P C\ Q ~ {x} ~ {y}. The isotopy has support 
in a compact set not meeting any other intersection points. 

One also has the obvious analogues of Corollaries WL1 and WL2. 
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One then must replace Principle 4 by 
PRINCIPLE 4'. Suppose W' = Wn+l u # ( r ) u # ( r + 1 ) and <nx{Mx) ^ ^(Mj) 

« ^ ( 0 0 where M2 - 3(»T U H(r)) - M0 and Mj = 9W - M0. If 2 < r < 
/i - 3 and e(H(r+1), if(r)) = ± g, where g G TT, then W « W. 

Let us now return to the case of 4-dimensional manifolds. In particular 
what information can be extracted from (3') above? We have the following 
theorem of Wall [Wa 2]. 

THEOREM 1.4. Suppose Af0, Mx are h-cobordant simply-connected compact 
4-manifolds. Then there exists an integer k > 0 such that Mx # k(S2 X S2) is 
diffeomorphic to M2 # k(S2 X S2). 

PROOF. We first require a lemma. 

LEMMA 1.5. Suppose X is a 4-manifold and c is a null homotopic circle in X. 
Letf: Sx X D3->Xbean embedding with f(S , X 0 ) = c. Let Y be X surgered 
along c via ƒ. Then Y = X # S2 X S2 or X # S2 X S2. We can always 
choose f so that Y = X # S2 X S2. ~ 

PROOF. Since A" is a 4-manifold we may by [RS] assume that c lies in a 
4-discZ)4 c X. Then 

Y = X - D4 U D4 - f(Sl X D3) \J D2 X S2 

- X - D4 U (D2 X S2 U5.x52 D2 X S2) - D4. 

But D2 X S2 \jsiXS2 D2 X S 2 is simply an orientable S2-bundle over S2 and 
thus equals either 5 2 x 5 2 o r S 2 X S2. Thus Y is as desired. Clearly we can 
always modify ƒ by adding an additional twist in D3 as we go along Sl so 
that the bundle obtained is trivial. 

Suppose now that ( W5, M0, Mx) is the requisite A-cobordism. As a con­
sequence of our discussion above W5 admits a handlebody-decomposition 

k k 

W5 = M0X I u U H2 U U H? u MXX L 
/ = i i = i 

Let 
k k 

Wx = M0XI U U H2
9 W2 - (J H? U Mx X I. 

i = i i = i 

Dualizing W2 we obtain a cobordism W% = Mx X I u U k
issX{H3) where 

each (H?) is a 2-handle attached to Mx X I along Mx X 1. Clearly dWx - M0 

- 3 ^ 2 - Mj. Set M ~dWx- M0. 
Now since W is an A-cobordism we must have that irx(M) — nx(M0) = 

7rx(Mx). Thus the attaching map ƒ: Sl X Z>3-» Mi[ of any 2-handle in the 
cobordisms above is null-homotopic. But as we mentioned before adding a 
2-handle to a cobordism (F5 , N0, Nx) along JVj gives rise to a new cobordism 
( V', N0, N2) with N2 = x(^i) = ^ i surgered along the image of the attaching 
map. Thus by Lemma 1.5 above we have that 
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M0 # kx(S
2 X S2) # k2(s

2 X S2) 

- M = Mx# k[(S2 X S2) # fci(s2 X S2) 
with kx + fc2 = A:; + A:̂  = A:. 

Furthermore, since W is an /i-cobordism w2(M0) = >v2(M) = w2(Af j), so by 
Lemma 1.3 we have that, for some k, 

M0 # k(S2 X S2) = Mx# k(S2 X S2) (4) 

as desired. 

COROLLARY 1.6. Let Mx, M2 be h-cobordant simply-connected compact 
smooth A-manifolds. Then there exist integers kx, k2 such that 

Mx # kxP # k2Q = M2 # kxP # k2Q. (4') 

Furthermore for any simply-connected such M there exist integers lx and l2 

such that 

M # lxP # l2Q « aP # bQ (5) 

where a - /, + \(b2(M) + a(M)) and b = l2+ \{b2(M) - a(M)). 

PROOF. We note that it is not difficult to check that S2 X S2 # P = 
(P # Q) # P = 2P # Q. Thus adding # ? to both sides of (4) above 
immediately gives us result (4'). Result (5) follows by noting that any 
1-connected 4-manifold M will be cobordant to o(M)P (where we identify 
-nP with nQ). Using Theorem 1.2 we can always obtain an A-cobordism 
between M # n(S2 X S2) and n(S2 X S2) # o(M)P for some n > 0. How­
ever, S 2X S2 = P # g. Thus M # nP # nQ is A-cobordant to 
nP # nQ # o(M)P and (5) follows from (4'). We note that kx (or lx) can be 
taken as A;2 + 1 (or l2 + 1) in (4') (or (5) above). 

REMARK 1. The existence of k above was demonstrated in a highly 
nonconstructive fashion. To quote Wall, "our result is a pure existence 
theorem; we have obtained, even in principle, no bound whatever on the 
integer &." It is of course a question of some interest to obtain bounds on k. 
(If the A-cobordism conjecture were true in dimension 4, then k could of 
course always be taken to be zero. However its validity is of course not 
known, and in what follows we will discuss at length attempts to estimate fc.) 

REMARK 2. We will discuss to what extent Theorems 1.2 and 1.4 can be 
generalized in the non-simply-connected case in §6.4. Roughly speaking, we 
can obtain generalizations for 4-manifolds X with 7r,(X) = Z or 7rx(X) = 
Z2k+X or for any manifold with H2(X, Z2) = 0 and Ls(irx(X)) = 0. However 
the theorems do not generalize for ITX(X) = Z2 or TTX(X) = Z4. In particular, if 
X * RP 4 we have the following remarkable theorem of Cappell and Shane-
son [CS 2] 

THEOREM (SEE CHAPTER 4), [CS 2]. There exists a compact smooth 4-mani­
fold X such that X is simple homotopy equivalent to RP4 but RP4 # k(S2 X 
S2) is not diffeomorphic to X # k(S2 X S2) for any value of k. In fact> 
RP4 # A;(AS2 X S2) is not smooth or PL h-cobordant or normally corbordant to 
X # k(S2 X S2)for any k. (X is topologically h-cobordant to RP4 but it is not 
known whether X and RP4 are homeomorphic or not.) 
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Using either the techniques of [CS 1] or extensions of [Nor] one can 
actually prove the following. (See also [Law 1], [Law 2], [Law 3] and [Q] and 
Chapter 6 of this paper.) 

THEOREM 1.7. Suppose (W5, MQ, Mx) is an h-cobordism between compact 
4-manifolds. Then for some k > 0, W # k(S2 X S2 X I) is diffeomorphic to 
(M0 # k(S2 X S2)) X I. In particular, M0 # k(S2 X S2) is diffeomorphic to 
Mx # k(S2 X S2). 

REMARK 3. As we have mentioned the proof of the A-cobordism theorem 
breaks down when we have a 5-dimensional A-cobordism between 4-dimen-
sional manifolds. Thus if V5 is an A-cobordism between Mx and M2 with 
^(AQ = 0 we can not conclude that Vs is diffeomorphic to a product. 
However if it is known that Vs induces a diffeomorphism between its ends 
then a theorem of Barden ([Bd], [Sh 1]) does indeed let us conclude that 
V5 « Mj X I. Although properly a result about 5-dimensional manifolds we 
will sketch a proof in §6.6. 

Returning to our main line of thought we shall call a manifold M com­
pletely decomposable if /, = l2 = 0 in (5) above (i.e. M = aP # bQ for 
appropriate P and Q). Now although it is not unreasonable to conjecture that 
kl9 k2 equal 0 in (4') for all A-cobordant simply-connected Mi9 a similar 
conjecture in (5) about the lt (i.e., that all such simply-connected 4-manifolds 
are completely decomposable) is clearly false. In fact any 4-dimensional spin 
manifold (such as 5 2 X S2 or k(S2 X S2)) can never be completely decom­
posable. In fact if M is Spin it can never even be homotopy equivalent to a 
connected sum of the form aP # bQ. To see this clearly, we digress to 
discuss the classification of bilinear forms. As the bilinear forms arising from 
the cup-product on compact 4-manifolds are symmetric and unimodular we 
restrict our attention solely to such forms. 

1.2 Four-manifolds and symmetric forms. Let M be an orientable closed 
4-manifold. Then M has a symmetric cup-product pairing 

H2(M; Z) X H2(M; Z ) ^ H4(M; Z). 

Furthermore if H2(M; Z) « H\M\ Z)/Torsion then we shall let H\M\ Z) 

X H\M\ Z) -» Z denote the induced form. By Poincaré duality it is a 
nonsingular form and we can therefore represent LM by a symmetric unimod­
ular integral matrix AM. Clearly isomorphism classes of the LM are in 1-to-l 
correspondence with congruence classes of the matrices AM. 

If M has a boundary 8M ¥= 0 one still has a pairing 

ƒƒ 2(M, 3M; Z) X H2(M; Z) -* H\M, 3M; Z) » Z 

and using the homomorphism H2{M, 3M; Z)-> H2{M\ Z) one again obtains 
a bilinear form H2(M; Z) X H2(M; Z)-»Z which will bejionsingular on 
H2(M; Z)/torsion. We continue to use the terminology LM, LM for the 
pairings in this case also. We shall discuss the classification of the LM 

following [MH], [Ser 1], and [Ser 2]. 
Thus we shall say a symmetric bilinear form L: H X H ->Z is of type II 
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(or is even) if its associated quadratic form QL takes on only even values 
(which is equivalent to some associated matrix AL having only even entries on 
its diagonal). Otherwise we say L is of type I. Now every QL can be 
diagonalized over the rationals and thus we define o(L)9 the signature of L, as 
the signature of QL over the rationals (= number of positive terms/? minus 
the number of negative terms n in the diagonalization of QL). Now rank 
QL = dim H (since L is assumed to be nonsingular) and if this in turn equals 
\o(L)\ we say L is definite. If \o(L)\ < dim H9 L is said to be indefinite. An 
element x EL H is called primitive if there exists a, y E H such that L(x9y) = 
± 1. If x G H is such that L{x9y) = QL(y) (mod 2) for all.y G H9 then x is 
said to be characteristic, otherwise it is ordinary. It is easy to see that 
characteristic elements always exist and are unique (modulo 2H). (We use the 
nonsingularity of Q here.) 

We shall also have occasion to consider quadratic forms over free Z2-mod-
ules H. Thus suppose jr. H -» Z2 is a quadratic form with associated symmet­
ric bilinear form X: H X H -» Z2 (the relationship between À and /i is given 
by X(x9 y) = [i(x + y) - \x(x) — [x(y)9 of course). Suppose \JL is nonsingular. 
Then there exists a basis ai9 bi9 i = 1 , . . . > n9 for H such that \(ai9 aj) — 
\(bi9 bj) = 0 and X(ai9 bj) = ôêJ ([Br 1, p. 54]). We define the Arf invariant 
c(jtx) G Z2 by c(jut) = ^n

i=xq{a^q{b^ (mod 2). Then one can show: See [Br 1, 
p. 55] 

(1) c( /i) is independent of the choice of basis of H. 
(2) If (Hv ftj), (H2, fi2) are quadratic Z2-inner-product spaces, then (Hl9 JÛ ) 

is isomorphic to (i/2, JU2) if and only if rk Hx = rk H2 and c( jit!) = c( /A^. 
(3) Let / / = Z2(a) © Z2(6) and define quadratic forms q09 qx on H by 

%{à) = q0(b) = 0, ^,(a) = qx(b) = 1, %(a 4- b) = ^j(a + 6) - 1 (note that 
for both qQ9 qx we have that the associated \ 9 \x satisfy \(a9 b) = \x(a9 b) = 
1 and X0(a9 a) = Xo(é, b) = \x(a9 a) = X^è, 6) = 0). Then if (H9 JU) is a 
quadratic Z2-inner-product space we have dimZ2 H = 2m for some m > 0, 
and 

(a) c( /x) = 0 implies (i/, /x) is equivalent to (H, m#0), 
(b) C(/A) 7̂  0 implies (^, /A) is equivalent to (/f, qx + (m — 1)^0) 

where we note that 2#0 is always equivalent to 2qx. 
For closed manifolds M4, we take H = H2(M; Z) and L the cup-product 

form. Then x G H is characteristic if and only if its mod 2 reduction is the 
second Steifel-Whitney class w2(M). It is then clear that L is of type II if and 
only if w2(M) = 0, that is if and only if M is spin. (We note that in our 
situation spin is equivalent to almost parallelizable. (See §4.1 for a definition.) 
To see this we note that if ^T: Af—»BSO is the map corresponding to the 
tangent bundle, then the obstruction to homotoping ?T to a constant lies in 
H\M9 TT,(BSO)). Now w$(M) = ^*(<o2) where <o2 G H2(BSO) « TT2(BSO) « 
Z2 is the generator. Thus w2(M) = 0=> ̂ M\K^ is trivial (where K^ is the 
3-skeleton of M). Thus ?TM \M — {pt} ̂  0 and so M is almost parallelizable.) 

As we have just noted spin manifolds have forms of type II and thus can 
never be isomorphic to connected sums of P's and ö's which are of type I. 
To formulate a more realistic conjecture about decomposability we continue 
our discussion of bilinear and quadratic forms. 

We first define a few canonical forms. We let ± / be the form with matrix 



22 RICHARD MANDELBAUM 

representatives ±<1>, U the form represented by (? J) and E% the form with 
matrix representative 

2 
1 
0 
0 
0 
0 
0 
0 

1 
2 
1 
0 
0 
0 
0 
0 

0 
1 
2 
1 
0 
0 
0 
0 

0 
0 
1 
2 
1 
0 
0 
0 

0 
0 
0 
1 
2 
1 
0 
1 

0 
0 
0 
0 
1 
2 
1 
0 

0 
0 
0 
0 
0 
1 
2 
0 

0 
0 
0 
0 
1 
0 
0 
2 

By a misuse of notation we shall let ± /, I/, E% represent the corresponding 
inner-product spaces. 

(More generally if n = 4k let Tn be the subspace of Rn generated by all 
linear combinations of the vectors ± et ± eJ9 \^2%\er Let Vv . . . , Vn be any 
vector basis of Tn and let Mn be the corresponding intersection form. Then En 

is the bilinear form with matrix representative congruent to Mn. We note that 
a straightforward calculation shows that Mn is unimodular and definite; and 
of type II if and only if k is even.) 

We note that /, U, Es are all unimodular and I and Es are definite. We 
then have the following classification theorems. 

LEMMA 1.8 (VAN DER BLIJ). SEE [MH, p. 24]. Let L be a symmetric 
unimodular form on H X H. Then there exists u E H such that u is character­
istic and u- u = o(L) (mod 8). 

In particular if L is of type II, a(L) = 0 (mod 8). 
If L is indefinite we obtain 

THEOREM 1.9 (SERRE) [Ser 1] [Ser 2]. Let L be an indefinite unimodular 
symmetric form of rank r = p + n and signature o =* p — n(p,n > 0) 

(1) if L is of type I then L œpl © n(-I), 
(2) if L is of type II then L œ aE% © bU where a = \a and b = \{r — \o\) 

(a E Z by the lemma given above). 

We will not attempt a sketch of Serre's proof of the above theorem but 
refer the reader to [MH] for both Serre's classification theorem and van der 
Blij's lemma. If L is definite then a complete classification as above is not 
known. For what partial results exists see [MH] and [Ser 1]. 

Now suppose that L is a symmetric unimodular form. When will there exist 
a compact 1-connected manifold M whose cup-product LM is isomorphic to 
L? 

Clearly we must have dim(M) = 4k. Now if we allow k > 1 then we have 
a great deal of flexibility in finding the appropriate M4k. In fact if L is a form 
corresponding to a 'weighted tree' as described in [Hirz 2] then L can always 
be realized by a 4A>dimensional PL-manifold for every k > 1. More particu­
larly for every k > 2, there exists a (2k — l)-connected closed ^-dimen­
sional PL spin-manifold Mfk with o(M$k) = 8 and even more explicitly every 
form ESn can be realized by a (2k — l)-connected closed 4/c-dimensional 
PL-manifold M*k for every k > 2. To construct Mfk we can proceed as 
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follows: Let Yk c C2*+1 be the locus 2^7 !Z,2 + Z\k + Z*k+l - 1. Let 5 be 
a large ball about the origin such that dB intersects Yk transversely and let 
Vk = Yk n B. Then 9 ^ is a homology sphere, and if k > 1 it is also simply 
connected. Therefore by the generalized Poincaré conjecture [Sm] Hk = dVk 

is PL-isomorphic to S4k~l and thus the cone on Hk, cHk, is PL-isomorphic to 
D4k. Letting M4k = Vk u cHk we obtain a PL-manifold of dimension 4k, 
which is (2k — l)-connected and has an associated quadratic form isomor­
phic to Es. (We note that 'coning off is a piecewise-linear operation and thus 
as defined M4k is not a smooth manifold. We shall see later in this chapter 
that the M4k can not admit any smooth structure and thus furnish us with 
examples of nonsmoothable PL-manifolds.) 

Now if k = 1 it is possible to show that Wx is, in fact, the Poincaré 
homology sphere P with fundamental group A5 = binary icosahedral group. 
Attempting to build an M4 = Vx U cP gives us a 1-connected Poincaré 
complex realizing the form 2s8. The complex has a nonmanifold point at the 
vertex v of cP. However recent results of Edwards and Cannon [Ed 1], [Can] 
show that for any homology 3-sphere H, cH X Rn is a topological manifold 
for all it > 1. Thus although M4 is not a manifold, M4 X Rn always will be! 
We will use these results later to exhibit compact topological manifolds which 
admit no PL-structure! 

Whether or not there exists a 4-dimensional simply-connected closed mani­
fold M with LM « Es is an unresolved question. However the following 
remarkable theorem of Rohlin [R 1] shows that were such a manifold to exist 
it could not have a PL (or smooth) structure. 

THEOREM 1.10 (ROHLIN). Let M4 be a compact oriented PL-manifold with 
w2(M

4) - 0. Then a(M4) = 0 (mod 16)! 

(Thus the 4-dimensional case presents a definite anomaly from the PL 
point of view.) We postpone a discussion of the proof of RohHn's theorem to 
§1.4 and limit ourselves here to a discussion of its consequences for our 
classification problem. 

We first note that RohHn's theorem implies that if M4 is a spin manifold 
with indefinite intersection form then LM = a'(Es © £8) © bU, where a! = 
Ö/2 , a, b as in Theorem 1.9. So subject to this new restriction we still ask 
which forms can be realized. We note that if M = CP2 = P then LP = I and 
similarly LQ = - / and so any form, indefinite of type I, can be realized as a 
connected sum of P's and ö's. Now if M = S2 X S2 then LM = U. So 
suppose L is of type II and indefinite, with o(L)/16 E Z. Then were there to 
exist a simply-connected PL spin-manifold V with b2(V) = o(V) = 16 we 
could assert that a'V # b(S2 X S2) realizes L, where a' = a(L)/16 and 
b = ^(rk L - |a(L)|). However no such manifold V is known to exist! In fact 
no closed 4-manifolds (TOP or PL) with definite intersection forms other 
than # P or #Q are known to exist! 

The simplest known 4-manifold with |a(Af)| = 16 known has b2(M) = 22 
and o(M) = -16. The Kummer or K3 surface [Spr 2], [K 3] is such a 
manifold and by a theorem of Kodaira [K 1] is diffeomorphic to the 
projective algebraic variety V4 c CP3 (V4 the nonsingular quadratic hyper-
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surface in CP3 with equation 23»0Z* = 0> where (Z0 : Zx : Z2 : Z3) are 
homogeneous coordinates in CP3). 

Thus the most that can be said about realizing type II intersection forms is 
that if L is such an indefinite form with a\ b as above, and if in addition 
b > 3|a'|, then ML - a'(-V4) # b\S2 X S2) realizes L, where V" - 6 -
3|a'|. Thus any simply-connected smooth 4-manifold Af with form L is 
A-cobordant to ML. However if M is an arbitrary simply-connected closed 
4-manifold then either Af # P or (-Af ) # P has an indefinite form of type I. 
Thus either Af # P or (-Af ) # P is A-cobordant to a completely decompos­
able manifold. (We say Af is completely decomposable if it is diffeomorphic 
to a connected sum of P's and g's.) If Af # P is completely decomposable 
we shall say that Af is almost completely decomposable (ACD). 

We then conjecture that 
CONJECTURE I. Let Af4 be a simply-connected compact PL manifold. Then 

either Af or -Af is almost completely decomposable. 

13 Almost complete decomposability and analytic surfaces. Before tackling 
this conjecture we recall a few lessons from the classification theory of 
compact orientable 2-manifolds. 

We recall that every such 2-manifold Fg is topologically just a connected 
sum #f«1(3n2); of 2-tori (where the empty sum F0 is defined to be S2). Now 
although this classification can be done in a purely topological fashion, one of 
the beautiful things about orientable 2-manifold is that every such manifold is 
diffeomorphic to a nonsingular algebraic curve in CP3. (In fact, every such 
manifold is diffeomorphic to a hypersurface in either S2 X S2 or P # Q.) 

Thus the topology of orientable 2-manifolds can be studied by algebraic or 
analytic methods and in fact it can be shown that if Af is a compact complex 
1-dimensional manifold, then Af = Fh; where h is the complex dimension of 
the space of holomorphic 1-forms on Af. 

Now if n = 4 it is of course not the case that all 4-manifolds, even all 
simply-connected 4-manifolds, admit complex structures. For example neither 
S4, nor Q, nor S2 X S2 # S2 X S2 admit such structures. However the 
compact algebraic surfaces do provide a wide variety of examples of 4-mani­
folds. (It can in fact be shown ([Shaf 1]) that given any finite group G there 
exists a compact algebraic surface VG with 7rx(VG) = G.) Furthermore as a 
consequence of a theorem of Yau ([Y]; see also [Reid], [My]) all simply-con­
nected analytic surfaces other than CP2 have indefinite intersection forms. It 
is therefore reasonable to conjecture that 

CONJECTURE I'. Let V be a simply-connected compact analytic surface. 
Then V is almost completely decomposable. 

The bulk of the next chapter will analyze what progress has been made on 
Conjecture I' and related questions. Before beginning our discussion we 
would like to (1) indicate just how badly the A-cobordism conjecture could 
conceivably fail in dimension 4, and (2) sketch some proofs of Rohlin's 
theorem and its generalizations. 

To this end let A = {(/?, m, n) G Z3| p > 0, m > 1, n > 1 and g.c.d. 
(m, ri) = 1}. 

Let A' = {(/?, w, ri) G A| p is odd and m + n is even} and let A" = A — 
A'. 
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Lastly for every p > 0 let Â , = {(m, n)\(p, m, «) E A}; Ap = Ap n A'; 
A; = A^ n A". Then we have 

PROPOSITION 1.11. Let p be an integer > 0. Let ~h denote "is h-cobordant 
to". Then 

(1) If p is odd then for every (m, n) E Ap there exists a compact algebraic 
surface 

* W ) ~ A ((/> + 1)/2)F4 # ((/> - 1)/2)(S2 X S2) - Wf 

such that if {m, n} ^ [m!, n'} then it is not known whether or not V^pm^ = 
y 
r (p,m\n'Y 

(2) If p is > 1 then for every (m, ri) E Ap there exists a compact algebraic 
surface 

V(p,m,n)~h (2P + 1)P # (10/> + 9)g = Wx
p 

such that if {m, n} j£ [m\ n'} then it is not known whether or not V^pmri) == 
y 
r (p,m\ny 

(3) If p = 0 and m > 2 and n > 2 then the conclusions of (2) above hold 
unchanged. If however either m = 1 or n = 1 then in fact F(0 m ^ = F(0 j n) = 
P#9Q=Wl 

We note that a(K(/,,w>w)) - - (8/7 + 8), 62( K(p>lflfll)) - 12/7 + 10 and Vip>m^ 
is spin, in case (1) and not spin in cases (2) and (3). All of the above surfaces 
are in fact algebraic elliptic surfaces and will be discussed at length in the 
next chapter. 

We note further that by Theorem 4, there need not exist any finite k such 
that for fixed p every V,pmw) with (w, n) E Ap (resp. Ap) satisfies 
V{n,m,n) # KS2 X S2) - Wf #k(S2 X S2) (resp. V{p>m>n) # k(S2 X S2) -
w; # KS2 x s2)). 

Thus in dimension 4, the higher-dimensional surgery classification of [Br 1], 
[N] can fail completely and there might in fact be infinite families of 
A-cobordant simply-connected manifolds (all diffeomorphic to projective 
algebraic varieties), no two of which are diffeomorphic. 

1.4 Rohlin's theorem. Let M4 be a closed, orientable PL 4-manifold. Let 
a • b denote the intersection pairing (dual to the cup-product pairing) on 
H2(M; Z)/torsion X H2(M; Z)/torsion to Z. As before we say that co E 
H2(M; Z)/torsion is characteristic if its mod 2 reduction is Poincaré dual to 
the second Steifel-Whitney class w2(M) of M. Now if co E H2(M; Z)/torsion 
then one can always represent <o by an orientable 2-manifold K. When K is 
characteristic (i.e., represents a characteristic homology class) it is possible to 
associate a quadratic form q: HX(K; Z2)-»Z2 to K and an Arf invariant 
<KM, K) E Z2 to the pair (M, K) (See [FK].) 

We can then state the following generalization of Rohlin's theorem. 

THEOREM 1.12 (GENERALIZED ROHLIN AS IN [FK], [CS 2], [R2], [R3]). Let 
M4 be a closed, orientable PL 4-manifold. Let K be an orientable 2-manifold 
embedded in M and representing a characteristic homology class. Then (K- K — 
a(M))/8 = <KM, K) mod 2. 
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COROLLARY 1.13 (SEE THEOREM 1, [KM 1]). If K above is a 2-sphere then 
KK- a(M) = 0 (mod 16). 

COROLLARY 1.14 (ROHLIN'S THEOREM). If w2(M) = 0 then a(M) = 0 
(mod 16). 

The full proof of Theorem 1.12 can be found in [FK]. We will give a rather 
detailed outline of Matsumoto's proof [Mt 1] of Theorem 1.12 in the case 
when HX(M) = 0. (The major simplification in the case when HX(M) = 0 
arises in the definition of q) We will also recall the homotopy theoretic proof 
of Rohlin's theorem as found in [MK]. We note that the basic germ of the 
more geometric version of the proof of Rohlin's theorem is due to Andrew 
Casson [Cas 1]. (A similar geometric construction showing how Corollary 1.13 
implies Theorem 1.12 can also be found in [CS 2].) 

Firstly assuming Theorem 1.12 we see that if AT is a 2-sphere HX(K) = 0 
and so <j>(M, K) = 0. Corollary 1.13 then follows by checking that if 
w2(M) = 0 we can take K = 0 so that K- K = <t>(M, K) = 0. 

Now assume that M4 is compact, PL with (or without) boundary 3Af 4 and 
that HX(M4) = 0. Let K be an orientable characteristic surface properly 
embedded in M4 with dK = 0 or dK = S\ (Note that if dK^ 0 we have 
K e H2(M, dM) and K characteristic then means that K- X + X • X = 0 
(mod 2) for X e H2{M\ where KX is the pairing on H2(M, dM) X 
H2(M).) We define q: HX(K; Z2) -* Z2 as follows: Suppose u G HX(K; Z^ is 
represented by an embedded circle ô c K. Using HX(M) = 0 we can find an 
orientable embedded surface A c M such that 3A = 8 and int(A) intersects K 
transversely. 

Then set qK(8) = 0(A) + card(Int A n K) (mod 2), where 0(A) G ^(SO^ 
« Z is the obstruction to extending the normal 1-field of 8 c K over A (i.e., 
0 (A) = A • A', where A' is obtained by 'deforming' A slightly, using the 
normal 1-field of 8, such that 3A n 3A' = 0) . 

It is then straightforward to verify that 

q(8x + 82) = q(8x) + q(82) + 8x-82 

(• is intersection of 1-cycles on K (mod 2)). q is thus a well-defined quadratic 
function and has an associated Arf invariant Arf(^) = 2?» !§(«,-) * 5(A) 
where the ai9 A> *' =* 1> • • • > 8> a r e a n y symplectic basis of HX(K; Z2) (i.e., 
ar<xj - firfij = 0,<v£, = -fij-a, - Sy). 

We define Arf(AT) = Arf qK and verify that 
(i) If dK = 0 , Arf(AT) depends only on [AT] e H2(M). 
(ii) If 3A" = S\ Arï(K) depends on [K, dK] G #2(M, 3M) and on the 

isotopy class of dK -» 3M. 
We now demonstrate that 

( [ * ] ' [ * ] " a ( M ) ) / 8 - Arf(tf) (mod 2). (*) 
First we recall that if T is the 2-torus Sl X Sx then letting (1, 0), (0, 1) 

denote the obvious basis of HX(T, Z2), we have that (/?, q) G HX(T) can be 
represented by an embedded circle if and only if p = q = 0 or g.c.d.(/?, #) = 
1. If g.c.d.(/>, #) = 1 we let T denote any embedded circle representing 
(P> 4) where we think of T<^> S* by the standard embedding. Tpq is called a 
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torus knot of type (p, q) and we also recall [Rlf] that Tpq is ambient isotopic 
to TpW in S3 if and only if (/>, q) = ± (/>', 4') or (/>, $)'= ± (?',/>'). 

Now if L is any tame knot sitting in S3 we can by (ii) above define Arf(L) 
as Arf(F), for any surface F c D4 with 9F = L c 3D4 = S3. We then can 
show by direct calculation that ifp is odd and q even, 

Arf(T^) - Arf(r^) = (1 - />2)/8 (mod 2). 

Now to demonstrate the validity of (*) we first note that we can surger M 
without affecting (*) until it is 1-connected. Then by Corollary 1.4 there exist 
integers ll9 /2, a, b such that (5) holds. (I.e., M # lxP # l2Q « aP # bQ.) 
Let 7} G H2(P) = Z, fj G H2(Q) « Z be the generators. We note that v\ (rj) 
are characteristic elements of H2(P) and that both are representable by 
embedded spheres. Furthermore since TJ • rj = + 1 (ff - ff = —1) it is im­
mediately evident that the pair (P, TJ) [(Q, yf)] satisfies the equality (*). 
However all the quantities in (*) are additive with respect to connected sum. 
Thus utilizing (5) it is easy to see that (*) is true in general if and only if it 
holds for characteristic elements of CP2. Now sy G H2(CP2) is characteristic 
if and only if s is odd. Let Cs: X2 + A^" 1 ^ = 0 be the algebraic curve 
representing STJ. Then Cs is homeomorphic to S2 and smoothly embedded 
except at (0 : 0 : 1), where it has a cusp singularity. Then letting B be a small 
4-ball centered at the origin it is clear that Arf(Çy) = Aiî(dB n Cs) and 
(dB n Cs) is isotopic to T(s, s - 1), s odd. But Arf(Q == (1 - s2)/S (mod 2) 
which is precisely what (st] • srq - <J(JP))/8 is (mod 2). Thus (*) is demon­
strated. 

The original proof of Rohlin's theorem was more homotopy theoretic. In 
outline we proceed as follows: Recall the homomorphism / : fl*_i(SOm)-» 
7Tm+^1(5w) defined by 

[ƒ] G ^ ( S O J - > / [ ƒ ] G 7rm+k_x(S
m) 

where /(ƒ): Sm+k~l -» Sm is the map induced from (ƒ, id):*?*"1 X Sm~l ~» 
S m _ 1 given by (ƒ, id)(.x,>0 = f(x) -y by passing to 

j(f\ 

sk~l * sm~l - sm+k~l V 2 sm~l - sm. 
Then using Steenrod algebra calculations we can show that ^(SO^)-» 
7Tm+3(S

m), with m large, is onto. But TT3(SOW) œ Z and ^^3(5"") « Z24. Thus 
for JC G 7T3(SOm), Jx = 0 =» x = 0 (mod 24). 

Now suppose M4 is a closed smooth 4-manifold with w2(M) = 0. Then as 
we mentioned previously M is almost parallelizable. Thus the stable principal 
normal bundle vs is trivial on M4 - {pt} and the obstruction to extending a 
cross section ƒ of vs\M4 — {pt} to a cross section of vs defines an element 
©(?,ƒ) G H\M4

9 7r3(SOm))« 7T3(SOm) - Z. We can then verify that 
J 6 (v, f) = 0. Thus 0 (*>, y) is divisible by 24. Now we can relate 0 (*>, ƒ) to the 
Pontryagin numbers of M and we find that px(M) = ± 2 0 (*%ƒ). Thus 
px(M) = 0 (mod 48). But by Hirzebruch's identity [Hirz 1] we have/^(Af) = 
3a(M) so we obtain a(M) = 0 (mod 16) as desired. 

The argument relating almost parallelizability to J 6 = 0 generalizes 
straightforwardly to higher dimensions. In fact the following can be shown. 



28 RICHARD MANDELBAUM 

THEOREM 1.15. Let M4n be an almost parallelizable smooth 4-manifold. Then 
a(M4n)/8 is divisible by In = 22n~2(22n-1 - \)an {numerator BJAri), where Bn 

is the nth Bernoulli number and 

_ ƒ 1 ifn is even, 
a" " [2 if nis odd. 

(We note: Bx-^9 B2=*^ B3-^, B4-^, B5-^, £ 6 = 273ô, Bi**z> 
J> _ 3617 x 

Then if the numerator (Bn/4n) = Nn we have NY = N2 = N3 =* N4 = N5 

- 1, N6 « 691, N7 = 1, AT8 = 3617. Thus if n = 1 we get that a(M4)/8 is 
divisible by 2 which is Rohlin's theorem again. 

If n > 1 we see that Theorem 1.15 provides us with necessary conditions 
for an almost parallelizable manifold to have a smooth structure. In particu­
lar all the PL-manifolds M4/c with a(Af 4*) = 8 will not admit smooth struc­
tures. Thus the generalized Rohlin theorem shows us that there exist PL 
manifolds which can not be smoothed! 

Rohlin's theorem also provides us with a tool to show that there exist TOP 
manifolds (of dimension > 5) which admit no PL structures. In our discus­
sion of the construction of the M4* we mentioned that although M4 is not a 
manifold, the double suspension theorem of [Ed 1], [Can] shows that M 4 X 
Rl and thus Af 4 X Sl will, in fact, be a topological manifold. Now for k > 0 
let Q4+k = M4 X Sk. We claim Q4+k is then a compact topological (4 + &)-
manifold which admits no PL structure whatsoever. To see this suppose that 
Q4+k did admit a PL structure. Then by PL transversality we could define a 
m^p ƒ: Ô4+* -* Sk such that / - 1 (*) is a PL manifold X4. But then we would 
have o(X4) = o(M*) = 8 which contradicts Rohlin's theorem! Thus no PL 
structure can exist on Q4+k. 

As mentioned previously the existence of a closed, compact TOP 4-mani­
fold with form realizing Es is unknown. In fact in dimension 4 there are no 
known examples of a compact TOP manifold which is not smoothable. 

The anomalous nature of the PL category in dimension 4 as exhibited by 
Rohlin's theorem provides us not only with a tool by which to create non-PL 
manifolds but serves also to show that the PL .s-cobordism theorem must be 
false for cobordism of dimension either 4 or 5 (or both). We shall discuss this 
application further in Chapter 6. 

1.5 Aspherical 4-manifolds. At the other end of the spectrum from the 
simply-connected compact 4-manifolds lie the aspherical ones. We recall that 
a connected compact manifold M is aspherical if its universal covering 
manifold M is contractible. Thus M is a K(<n, 1) with m = TTX(M). 

By a well-known theorem of homotopy theory the K(TT, 1)'S are unique up 
to homotopy equivalence. The basic question we must then ask is: Suppose/: 
M -» M1 is a homotopy equivalence between aspherical 4-manifolds. When 
can ƒ be deformed to a diffeomorphism? This in turn is equivalent to the 
following problem. 

Suppose M and Af are aspherical 4-manifolds with isomorphic fundamental 
groups. Are they diffeomorphic? It turns out (see [CR 1], [CR 2], [CR 3]) that 
the methods used to study this problem are not unexpectedly essentially 
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independent of the fact that the manifolds in question are of dimension 4. 
Instead general methods have been developed [CR 3] which apply simulta­
neously to all such finite-dimensional manifolds. As a result of this we do not 
devote any time to explaining the methods involved but refer the reader to 
[CR 3]. As a contrast to the general 4-dimensional situation we will mention 
some of the theorems arising in the study of such manifolds. 

We first note that the most obvious examples of aspherical 4-manifolds 
arise as quotients of Euclidian 4-space Rn or hyperbolic 4-space H4 by proper 
discontinuous groups of isometrics. As a result of the rigidity theorems of 
Mostow (see [Most]) we obtain that such closed hyperbolic 4-manifolds are 
determined up to isomorphism by their fundamental groups. Similar results 
hold for quotients of R4 by isometries. 

Another major class of aspherical 4-manifolds is given by the aspherical 
Seifert fibrations. We recall that (X9 <j>) is a (locally injective) Seifert fibration 
if and only if 

(1) <j>: JV-»Aut(Z*) is a homomorphism of a discrete group N into 
Aut(Z*) - Aut(Tk, 1) (k > 1), where Tk = (Sl)k is the fc-torus. 

(2) There exists an epimorphism X: n^X, A )̂ -> N -* 1 such that on the 
covering space X' corresponding to the kernel of X, there exists a structure of 
a principal fc-torus bundle which is compatible with the group of covering 
transformations N on X'. That is for all / E Tk, x' G X\ a G N we must 
have 

('<>« = (<K«~0(0)(*'«) 
(3) X'/ Tk » W is simply connected. 
We note that induced on W is an action ( W9 N) of N so that the 

corresponding natural maps 

(Tk,X\N) U (W9N) 

\ "' I 
{X = X'/N) -» W/N 

commute. 
We call the mapping /x: X -> W/N a Seifert fibering. 
We may construct Seifert fiberings with given <j> as follows. 
Let N be a discrete group with <f>: N -» GL(fc, Z) a homomorphism and 

suppose N acts in a proper discontinuous fashion on the simply-connected 
space W. Set X' = Tk X W. Then in [CR 1], [CR 2] it is shown that there is a 
1-to-l correspondence between actions of N on X' which are compatible with 
the obvious toral actions and elements of H%(N, Zk). For each such free 
action Tk ° N form X = X'/N and let /r. X -* W/N be the obvious map. 
We have thus constructed a Seifert fiber space corresponding to <j>. If W is 
contractible then as in [CR 3] it can be shown that A" is a K(TT, 1). 

Now suppose W = 3C2 = upper half-plane with the Poincaré metric and N 
is a discrete subgroup of PSL(2, R) with W/N compact. We then call X a 
Fuchsian Seifert fibering. We then have 



30 RICHARD MANDELBAUM 

THEOREM 1.16 [CR 2], [CR 3]. Let (X, <J>), (X\ <f>') Z>e Fuchsian Seifert 
fibrations with k = 2. 

77*etf A" w diffeomorphic to X' if and only if irx(X) is isomorphic to TTX(X'). 

D 
We note that the class of Fuchsian Seifert fibrations include most of the 

4-manifolds with torus or circle action discussed in ([OR 1], [OR 2], [Pao 1], 
[Pao 2]) as well as all of the aspherical elliptic surfaces of ([K 1], [K 2]). 
Restricting attention to such surfaces we obtain: (See [K 1] or Chapter 2, for 
definitions.) 

COROLLARY 1.17 [CR 2], [CR 3]. Let V, V' be elliptic surfaces with no 
degenerate fibers and suppose neither V or V' have coverings of the form 
S1 X S 3 or Sl X Sl X S2. Then V is diffeomorphic to V' if and only ifir^V) 
is isomorphic to iri(Vf). 

Note. It can be shown that the elliptic surface V is aspherical if and only if 
it has no degenerate fibers and no coverings of the form Sl X S3 or 
T2 X S2. 

CHAPTER 2. COMPLEX SURFACES 
2.1 Classifying complex surfaces. In the last section we conjectured that all 

simply-connected complex manifolds of real dimension 4 were almost com­
pletely decomposable. To begin our study of such manifolds we recall the 
simply-connected version of the Kodaira-Enriques classification theorem for 
analytic surfaces. (Henceforth by analytic or complex surfaces we shall mean 
nonsingular compact complex spaces of pure complex dimension 2.) 

THEOREM 2.1 (KODAIRA, ENRIQUES), [K 1], [K 2]. Let M be a simply-con­
nected analytic surface. Then M is diffeomorphic to a projective algebraic 
variety which is either (1) rational or (2) elliptic or (3) of general type. 

Thus when considering simply-connected complex manifolds we can 
analyze them category by category. We therefore recall the definitions of the 
various categories and introduce some numerical invariants to distinguish 
them. Before doing this we simplify the topological nature of our classifica­
tion process by introducing minimal models. 

We recall [K 1] that if V is an analytic surface and/? G V there exists a new 
analytic surface V and a map o: V-> Ksuch that if o~l(p) = L, then L is an 
embedded CPl(= S2) in V with L- L = -1 and o\ V - L is a biholomorphic 
map between V — L and V — p. F is said to be obtained by blowing V up at 
the point p or by a a-process on V at p. Topologically we can build V by 
replacing a disc D4 about/? in V with a Hopf disc-bundle H (whose boundary 
is also S3) arranging orientations so that L2 = - 1 . 

Noting that H u D4 is just Q we see that V = V # Q. This decomposi­
tion immediately shows us that b2(V) = b2(V) + 1, o(V) = o(V) — 1 and we 
can calculate that c2(V) = c2(V) — 1. We shall sometimes denote such a V 
by oV and if we perform n a-processes successively we shall denote their end 
product by on V. The a-operation preserves analytic structure so that V # Q 
has analytic structure if V does. Topologically we can form V # P in the 
same local fashion as we formed V # Q. This has the effect of replacing a 
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pointy G F by an embedded 2-sphere L with L • L = +1 and we denote the 
resultant 4-manifold by öV and call the process a â-process. Even if F is a 
complex manifold it is not difficult to deduce that not only can V # P not 
have a complex structure but it does not even admit an almost complex 
structure [Pit]. 

Now what about going the other way. Suppose we knew that the complex 
manifold V admitted an analytically embedded 2-sphere L with L2 = - 1 . 
Could we conclude that V = opWfor some analytic Wwith/? G W1 (That is, 
if we know V = W # Q topologically when can we say it equals W # Q 
analytically?) 

The positive answer to the above question is provided by the Castelnuevo 
criterion which guarantees the existence of the desired analytic surface W. 

We call L as above an exceptional curve and note that any analytic 
manifold V is biholomorphic to on V' = V' # nQ for some n > 0 and some 
V' without any exceptional curves. We call such a V' a minimal surface and 
note that for purposes of topological classification it suffices to consider 
minimal surfaces. 

We now define the various categories of surfaces. 
We recall that any surface S has associated to it a field of meromorphic 

functions 91Ly analogous to the field of meromorphic functions associated to 
a Riemann surface (algebraic curve). (See, for example, [K 1], [Zar 1].) 

Then 
DEFINITION 2.2. (1) S is a rational surface if and only if (3HS is isomorphic 

to C(x, y) = the field of rational functions in the variables x andy. 
(2) S is an elliptic surface if and only if for some Riemann surface R, there 

exists a holomorphic map/: S -» R such that ƒ _1(x) is a nonsingular elliptic 
curve (i.e., a 2-torus T2) for all but finitely many x G R. There is an 
equivalent definition in terms of the fields ^Ity, ?fHR. 

(3) S is of general type (in the simply-connected case) if it is neither 
rational nor elliptic. 

The above definitions prove a bit tedious to check in individual cases. We 
thus provide some numerical criteria for distinguishing classes by introducing 
some analytic invariants of the various classes. 

Let F be a complex surface and denote its tangent bundle by T(V) and its 
cotangent bundle by T*( F). Recall that any complex surface has a sheaf of 
germs of complex functions (its structure sheaf) associated to it and denote 
this by Qv. Lastly if L is any vector bundle over L let QV(L) denote the sheaf 
of germs of holomorphic sections over L. 

We now set K = A2r*( F). K is thus a complex line bundle over F called 
the canonical line bundle. 

We let nK denote K ® • • • ® K, i.e., the «-fold direct product. 
Now define the geometric genus of F, 

Pg[ V] - P* = d i m c H°(v> M * ) ) - dimc H\K ev) 

= C-dimension of the space of holomorphic 2-forms on F. The plurigenii Pn 

of F are defined as 

Pn = dim c i /°(F, 6v(nK)). 
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Also associated to V are its Chern classes 

Ci[V] - cx[T(V)] - -cx[T*(V)] - -c(tf) 

and 

c 2 [ F ] = X ( F ) = 2 ( - l ) ' rk i f ( . (F ;Z) . 

The basic theorems relating the analytic and topological invariants of V are: 
(1) The Riemann-Roch theorem, which for simply-connected surfaces re­

duces to the Noether equality 

c ? [ K ] + x ( K ) - 1 2 ( / V + l ) 

or 

b2{V)-l2pt+W-c*[v]. 

(2) The Hodge index theorem 62
+(K) = 2pg + I where 62

+(F) = |(£2(F) + 
o(V)) or using (1) above if V is simply-connected 

o ( K ) - c ? [ F ] - 8 ( / , , + l) 

implying 

c ? [ F ] = 2 x ( F ) + 3a(F). 

Recalling our discussion of the homotopy types of simply-connected 4-mani-
folds, we see that V is thus determined up to homotopy type (A-cobordism 
type, really) by pg{ V), c\[ V] and the mod 2 reduction of cx[ V] = w2[ V] which 
determines the type of Lv. 

A numerical criterion for rationality is due to Castelnuevo. It is [K 2]: 
CASTELNUEVO CRITERION. An analytic surface V is rational if and only if 

bx(V) - P2(V) - 0. 
Minimal rational surfaces have been completely classified, and if F is a 

minimal rational surface it is diffeomorphic to either P or S2 X S2. Thus we 
have (see [Zar 2] or [Shaf 21) 

THEOREM 2.3. Let V be a rational surface. Then V is diffeomorphic to either 
S2 X S2 or P # nQ for some n > 0. In particular, all rational surfaces are 
ACD. 

The elliptic and general type surfaces are not so easily classified but they 
too have numerical criteria by which they can be recognized. More particu­
larly for simply-connected surfaces 

(1) F is elliptic if and only if V' is a minimal model for V implies 
c?(K0 = 0. 

(2) V is of general type iff V' is a minimal model for V implies c\(V) > 0 
and/^(F') 7*0. 

There is, in addition, a theorem of Yau [Y] and Miyaoka [My] which says 
that for all analytic surfaces V, c2( V) < 3x( V) with equality holding only if 
V = CP2. Combining this with the above equations we can deduce that: 

(1) all simply-connected complex surfaces V other than CP2 have indefi­
nite LVy and 
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(2) every simply-connected complex spin manifold V satisfies 

b-\{b2{V) - | o ( F ) | ) > 3a' - 3|o(K)|/16 

and thus is homotopy equivalent to a'V4 # b'(S2 X S2) (V4 the nonsingular 
quartic in CP3); V = b - 3a'. 

2.2 Decomposing surfaces. I. Rather than proceeding directly to the case of 
elliptic surfaces we first prove 

THEOREM 2.4 (MANDELBAUM-MOISHEZON) [MM 1], Let Vn be a nonsingular 
hypersurface of CP3. Then Vn is almost completely decomposable. 

PROOF. We will need the following two facts. 
FACT (1) Let Wn be a hypersurface of CP* (k > 3). Then Wn is simply-

connected. (This is essentially Lefschetz's first theorem: see ([AF], [Wlc], or 
[Zarl]).) 

FACT (2) Suppose Wn9 W'n are nonsingular, degree n, hypersurfaces of CPk. 
Then Wn is diffeomorphic to W'n. 

PROOF. One constructs a mapping CP* X CPN{k)X CP"(*> (N(k) = ("£*) 
— 1) whose fibers consist of all possible degree n hypersurfaces in CPk and 
checks that the critical values of $ correspond precisely to those hyper­
surfaces which are singular. 

We note also that if n is small the topological structure of Vn is completely 
determined. Thus Vx = P, K2 = S 2 X S 2 , Vz - P # 6Q. V4 has already 
been described as the 'simplest' known spin manifold of index ±16. It 
satisfies o(V4) = -16 and b2(V4) = 22. If n > 5, the homotopy structure of 
the Vn is still known. We have b2(Vn) = n3 - An2 + 6n - 2, a(Vn) -1/*(4 -
n2) and Vn is of type II if n = 0 (mod 2). Thus homotopically we have 

r2m+i~rmP#tmQ, 

rm - f [(2i«+ l)(2m2- 4m+ 3)] - 1, tm =f(m)(8/n2+ 1), 

v2m~«mv*#Pmv2, 
am - \m{m2 - 1), fim - | (m - 2)(13m2 - 22m + 3). 

Whether any of the Vn (n > 4) can be decomposed as a nontrivial connected 
sum homeomorphically or diffeomorphically is unknown (see [MM 1]). In 
terms of classification of surfaces we have that if n > 4 then Vn is a 
nonrational minimal surface with c2[ Vn] = n(n — 4)2. Thus Vn (n > 4) is of 
general type while V4 is diffeomorphically of elliptic type. As noted above Vv 

V2, V3 are rational surfaces (with V3 not a minimal model). 
Our proof is now an inductive one. To relate the topologies of Vn and Vn„x 

we first embed Vn in a family Vr t E D2, of complex manifolds with Vt a± Vn 

for t ¥* 0 and V0 consisting of two components Xl9 X2 intersecting trans­
versely in, say, C. In such a case we can show that 

VH*tVt-Xx- TXC UdTX2 - T2C9 (*) 

where TtC are the obvious tubular neighborhoods. 
We then analyze such decompositions and relate the topologies of Vt to 

those of Xx and X2. 
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Let us see how this sort of procedure works one dimension lower in the 
case of nonsingular algebraic plane curves (i.e. hypersurfaces of CP2). To 
analyze X3 c CP2 say, we first find a degenerating family such that X(t) = 
X3> t ¥* 0, and X(0) = Xx U X2 intersecting transversely in two disjoint points 
pvp2. Then 

X3œXx- T(pvp2) U X2 - T(pl9p2) 

« S2 - Dx U D2 U S2 - D[ U D2 » r 2 

since Â  « X2 = S2. More generally the same procedure shows us that 

*n « Xn-X ~ ?XPl> • • • »A-l) U Jf, " ?XPl> • • • ,P*-l) 

which shows that genus (Xn) = |(n - l)(n - 2) as expected: 
Now let us return to dimension 4 and hypersurface of CP3. 
We proceed as follows: 
(1) We construct a system Vn{i) of hypersurfaces of degree n, parametrized 

by t G De - {z G C| |Z| < 6} such that Vn{i) « F„ f or t ¥= 0 and F„(0) is 
the union of two components Xl9 X2 with transversal intersection Xx n Â 2 = 
C, C an algebraic curve of degree n — 1, such that A"j « Vx and A"2 « K„_i. 

(2) We modify our system to obtain a complex 3-manifold W and a 
holomorphic map $: WK-> De such that <b~\t) = Kn(0 for f ^ 0 and * - 1(0) 
is the union of oXl9 X2 with transversal intersection aXx fjï X2 = C « C, 
where aA^ = Vx blown up at the n(n — 1) distinct points in Xxr\ X2D Vn(t) 

(3) We then use a deformation theorem [MM 2] to conclude that 

K, « F„(0 « a ^ - TXC U, Vn.x - T2C, 

7JC an open tubular neighborhood of C in AQ, and ƒ: 37^ -*3 7^ an ap­
propriate identification map. 

Thus far we have essentially imitated the 2-dimensional case. However in 
that case the tubular neighborhoods which we removed from our manifolds 
were 2-balls and thus the transition to connected sums was fairly easy. Here, 
however, the TtC are nontrivial 2-disc bundles over compact orientable 
2-manifolds! Thus to go to the connected sum we resort to the irrational 
connected sum theorem of [Man 1] which says that if a simply-connected 
4-manifold F admits a decomposition V'» oXx - TXC U X2 — T2C where C 
is a compact orientable 2-manifold and oXx = Xx # kQ, k > 0, then 

V # PœXx # X2# (k- l)g # 2 g ( P # Q). 
Therefore we have 

Vn # P = F„_, # Vx # [n(n - 1) - l ] g # 2gc(P # g ) 

where 2gc — \(n — 2){n — 3), and by induction 

Vn#P = knP# lnQ 
where k„ =\n(n2 - 6n + 11), /„ = | ( n - l)(2n2 - An + 3). Thus K„ is al­
ways ̂ 4 CD. 
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The deformation and irrational connected sum theorems we used state 

THEOREM 2.5 (DEFORMATION THEOREM [MM 2]). Suppose Wn is a connected 
complex n-manifold and TT\ Wn -» D is a proper holomorphic map onto a 2-disc 
about the origin in C whose only critical value is at 0 E D. 

Suppose that 7r-1(0) = Xx U X2 with Xx ffi X2 = C, Xv X2 being connected 
compact submanifolds of Wn {of multiplicity 1 in 7r_1(0)) and C being the 
connected transversal intersection. 

Then there exists a diffeomorphism ƒ: dTxC -* dT2C where TtC are {small) 
tubular neighborhoods of C in Xt such that, for all t E D — {0}, Vt is diffeomor-
phic to Xx - TlCufX2- T2C 

(If W is as above we refer to the { Vt}tŒD as a nicely degenerating family.) 

THEOREM 2.6 (IRRATIONAL CONNECTED SUM) (MANDELBAUM) [Man 1]. 

Suppose M„ M2 are oriented compact 4-manifolds and SX9 Sy are oriented genus 
g compact 2-submanifolds of M„ M2, respectively. Let M2 -> M2 be M2 blown 
up by a a-process at some point p E S2 and let S2 =o~l{S2 — p). Let Tx, T2, 
T2 be tubular neighborhoods of Sx, S2, S2 in Mx, M2, M2, respectively, and set 
Hx == dTv H2 = dT2. 

Suppose rj: Hx^> H2 is a bundle diffeomorphism of Hx onto H2 that reverses 
orientation. 

Let V = MX - TXUV M^- Tj. Then 
(i) V # P is diffeomorphic to Mx - T\*\JV M2- T$ where Tf is a regular 

neighborhood of St — {2-disc} in Mi and y* is a diffeomorphism dT\*-*dT$ 
induced by 17. 

Furthermore noting that T? has a wedge K of 2g 1-spheres as a deformation 
retract in Mi we also have 

(ii) if M2 is simply-connected then V # P « M2 # XK(MX) {where XK(MX) is 
Mx surgered along disjointly embedded circles ea> a = 1, . . . , 2g, in Mx such 
that if Kx = VS* then ea is homotopic to Sa

l in Mx) and 
(iii) if M2 is also simply-connected then V # P œ Mx # M2 # 2g{P # Q). 

Before discussing these theorems we go back to steps (1) and (2) of our 
program. 

Thus f or t E C let 

Y»{t) = {x E CPN\t^Xp + ( 2 A r ! ) ( 2 * i ) - 0}. 

Then it is readily verifiable that 1^(0 indeed has the properties required of 
the system whose existence was needed in step (1). The question then is how 
to make the transition from (1) to (2). For this transition step we shall need 
one additional proposition. 

We introduce some more terminology. Thus suppose W c CPN{z) is a 
compact complex manifold and Y0,..., Ym are hypersurfaces of CPN of 
degree r with defining equations ht{z) = 0, i = 0 , . . . , m. For t E CPm let 
Ht{z) = 2 ttht{z) and let Yt be the hypersurface given by Ht{z) = 0. Let Wt be 
the W n Yr Then we shall call the collection {Wt) a (linear) system of 
hypersurfaces (hypersurface sections) of W. (If m = 1 we shall refer to the 
system as a pencil.) Thus for example Y*{t) is a pencil of hypersurfaces of 
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CPN (more precisely, Y*(t) is the restriction to C (obtained by setting 
tm = 1) of a pencil). 

Now suppose Wt is a pencil such that 
(1) Wt is nonsingular for f sufficiently small but nonzero, and 
(2) W0 is the union of two nonsingular components Xx, X2 of multiplicity 

one such that 

Xx « W n (hypersurface of CPN of degree r - / }, 

X2œ W n {hypersurface of CPN of degree / }, 

and Xx intersects X2 transversely, and 
(3) for / sufficiently small, / ¥" 0, Vt intersects Xx, X2 and Xx n X2 trans­

versely (we say in such a case that Vn Xx, X2 intersect normally). We shall 
then call Wt a nicely degenerating pencil of hypersurfaces. We have 

PROPOSITION 2.7. Let Wt be a nicely degenerating pencil of hypersurfaces of 
the compact complex manifold W3 c CPN. Then there exists a complex mani-
fold X and a proper surjective holomorphic map X —» De (some e > 0) such that 
&~l(t) « Wt is nonsingular for t E De, t =̂ 0 and <b~\0) = X[ U X'2 is the 
union of two nonsingular components of multiplicity one with X[ intersecting X2 

transversely in X[ n X2 « Xx n X2 and X[ œ Xv X2œ aX2 where oX2 is X2 

blown up at the (distinct) points in Wt n Xx n X2. 

We call the collection * - 1 ( 0 = Xt a nicely degenerating family of complex 
manifolds (over De). 

Thus using our last three theorems we see that if we can find an ap­
propriate nicely degenerating pencil in which to embed a given complex 
surface V we can then decompose V as in (4) and hopefully thereby prove V 
is A CD using induction. 

For complete proofs of 2.5 and 2.7 we refer the reader to [MM 2] while a 
proof of 2.6 can be found in [Man 1]. We note here that the proof of 2.5 is 
essentially based on repeated use of transversality while 2.7 can be reduced to 
2.5 by a series of 'blowing up' operations. The proof of 2.5 is based on 
elementary general position and surgery arguments. An elementary outline of 
the geometrical ideas behind the proofs of all three of these theorems can be 
found in [Man 4] and we therefore do not repeat it here. As an immediate 
consequence of these theorems we have the following. 

Suppose Vx> . • . , Vk are hypersurfaces of CPN (n > k). Let X = Vx 

H • • • n Vk be a submanifold of CPk+2 such that for each x E X there 
exists a coordinate neighborhood U B x in CPk*2 and local coordinates 
Z - (Z„ . . . , ZN) in U with Z(x) = 0 such that V; n U = {Z E U\Zt - 0}. 
We then call X a (scheme-theoretic) complete intersection of hypersurfaces of 
CPN. Then 

THEOREM 2.8. Every simply-connected complex surface which is diffeomorphic 
to a complete intersection of hypersurfaces in some CPN is almost completely 
decomposable. 

THEOREM 2.9 (BRANCHED COVERS). Let X c CPN be a compact complex 
surface and suppose M -* X is an r-fold cyclic branched covering manifold of X 



FOUR-DIMENSIONAL TOPOLOGY: AN INTRODUCTION 37 

whose branch locus is homeomorphic to X C\ Hr, for some hypersurface Hr of 
degree r of CPN. Then if X is almost completely decomposable so is M. 

To prove both of these results it suffices to display appropriate nicely 
degenerating pencils. To do this in Theorem 2.8 we first invoke some 
commutative algebra which enables us to replace the Vv . . . , Vk with hyper­
surface V{9. • . , Vk such that V, the complete intersection of Vv . . . , Vk is 
diffeomorphic to the complete intersection of K ( , . . . , V'k and such that, in 
addition, the complete intersection of V{,..., Vk_x is a complex manifold W. 
Then if Vk has degree r in CPk+1 we can use Y,+\t) to produce the desired 
pencil connecting W n {hypersurface of degree r — 1} with V = W n Vk. 
Then Theorems 2, 5, 6, 7 and a multiple induction conclude the proof. 

To prove Theorem 2.9 we construct a projective bundle over X in which M 
embeds as a hypersurface section. We can then degenerate M via a pencil 
with singular fiber X u Mr_v Mr_x an (r - l)-fold cyclic cover of X. Again 
an induction eventually shows that M # P œ rX # aP # bQ for some a, b 
> 0. If X is ̂ 4CZ> this completes the proof. 

If X is not known to be ACD let k(X) be the minimum integer such that 
X # k(P # Q) is v4CZ> (we call fc(AT) the resolving number of X). The same 
reasoning as above then shows that if M is ACD so is any (r •+• s)-cyclic cover 
M' of the above type. If we keep track of the obtainable values of a and b in 
the downward induction from M # P to rX # aP # bQ we obtain the 
following generalizations of Theorem 2.9. 

THEOREM 2.10. Suppose X c CPN is a simply-connected complex surface 
and suppose M —> X is an r-fold cyclic branched covering manifold of X whose 
branch locus is homeomorphic to X n Hr for some degree r hypersurface Hr of 
CPN. Let k = k(X) be the resolving number of X and suppose b = degree X 
and g is the genus of X n Hl9 Hx a hyperplane of CPN intersecting X 
transversely. 

Then if either (1) r3 > 3k/b or (2) r2 > k/g, M is almost completely 
decomposable. 

COROLLARY 2.11. Suppose X is as above. Then there exists an integer m0 > 0 
such that for any m > m0 there is 

(1) a hypersurface H2m C CPN of degree 2m, intersecting X transversely in 
an irreducible nonsingular curve Cm = H2m f) X, 

(2) a unique algebraic 2-fold covering manifold Mm ofX with branch locus Cm 

such that Mm is almost completely decomposable. 

This method gives us other results for which we establish some additional 
terminology. A field F is called an algebraic function field of two variables 
over C if F is a finitely generated extension of C of transcendence degree two. 
Let i& denote the collection of all such fields. Then f or F E $ there exists a 
nonsingular algebraic surface whose field of meromorphic functions is F (see 
[Zar 2]). We shall call any such nonsingular surface a model for F. It is then 
easy to sec that given any two such models VXy V2 for F their fundamental 
groups are isomorphic. Thus we define the fundamental group nx(F) for any 
F G f as the fundamental group of any model V for F. We then let % be 
the subcollection of simply-connected F in <$. For F G % we let /A(F) = 
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inf{A:|3 a model V for F such that V # kP is completely decomposable}. 
Using the results of Chapter 1 it can be seen that JU,(F) is finite for any 
F E %. If F is a pure transcendental extension of C, JU,(F) = 0. If JLI(F) < 1 
we shall call F a topologically normal field. We now need 

DEFINITION 2.12. Let L, K E F. Then L is a satisfactory cyclic extension of 
K if there exist models VL, VK for L, A', respectively, and a morphism <&: 
FL -» VK with discrete fibers whose ramification locus R is a nonsingular 
hypersurface section of VK whose degree is a multiple of deg(<3>). 

We can then restate Corollary 2.11 as: 

THEOREM 2.13. Let K E %. Then there exists a satisfactory cyclic extension 
L E % of K which is of degree 2 over K and topologically normal. 

In [Man 1] it is further shown that if K itself is topologically normal then so 
is any satisfactory cyclic extension. These two results motivate a partial order 
in % defined as follows: 

For L, K E % we shall say that L is a satisfactorily resolvable extension of 
K if and only if there exists a finite sequence of fields L0,. . . , Ln in % with 
L0 = K, L l+1 a satisfactory cyclic extension of Lt and Ln = L. We write 
K < L if L is a satisfactorily resolvable extension of K. Then < induces a 
partial ordering on S^. Our above results then say that in terms of this partial 
ordering every sufficiently "large" field L is topologically normal. 

Lastly we mention a purely topological counterpart of Theorem 2.13. 

THEOREM 2.14. Suppose X is a smooth simply-connected 4-manifold. Let 
F E H2(X, Z) with F2 ^ 0 and F divisible by some integer m > 2. Then there 
exists a smooth compact simply-connected 4-manifold X and a map <&: X —> X 
exhibiting X as an m-fold branched cover over X whose branch locus R is a 
nonsingular representative of F such that 

(1) if F2 > 0 then X # P is completely decomposable, and 
(2) if F2 < 0 then X # P is completely decomposable. 

We note that both the classes of complete intersections and branched cyclic 
coverings contain the hypersurf aces of CP3 as special cases. For complete 
intersections this is obvious since a hypersurface of CP3 is a complete 
intersection by definition. As far as realizing hypersurf aces as branched cyclic 
covers we simply note that Vn = {x E CP3\2X? = 0} is realized as an «-fold 
cyclic cover of CP2 branched over Cn = {x E CP2\2X? = 0} by virtue of 
the obvious projection map IT: CP 3 -»CP 2 restricted to Vn. Fact 2 above 
then shows that all hypersurf aces can be so realized. 

In fact an adaptation of the above then shows that every complete 
intersection is in fact diffeomorphically a cyclic branched cover and so 
Theorem 2.8 in its entirety is really a special case of Theorem 2.9. One can 
calculate the homotopy types of the cyclic coverings without much difficulty 
and obtain results such as those in the tables following. Note that if Vn is a 
nonsingular hypersurface of CP3 of degree n then/? (K„) = \{n — \){n - 2)(n 
— 3) while if Xn is a 2-fold branched cover of CP with branching curve of 
degree In \htrxpg{Xn) =\(n - \){n - 2). 
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Let Xn be a 2-fold branched cover of CP2 with branching curve of degree 
2n. 

Then we have Table 1. 

n 

1 
2 
3 
4 

5 

n 

Pg(*n) 

0 
0 
1 
3 

6 

| \(n - IX» - 2) 

B2{Xn) 

2 
8 

22 
44 

7 

2(2/i2 - 3 / 1 + 2) 

<W 

0 
-6 

-16 
-30 

-48 

| 2(1 - /i2) 

cKxn) 

8 
2 
0 
2 

8 

Topological type 
(if known) 

S2XS2 

P#1Q 
VA 

Unknown. Homotopic to 
IP # 37g 

Unknown. Homotopic to 
3K 4 #4K 2 

TABLE 1 

Let Yn = 3-fold covering of CP2 branched over a curve of degree 3n. 

n 

2 
3 
n 

W > 

0 
3 

11 
i (" - 1X5/1 - 4) 

* 2 W 

7 
43 

115 
18/i(/i - 1) + 7 

°w 
-5 

-29 
-69 

3 - 8 « 2 

cftiy 

3 
3 

27 
3(9 + 4*(* - 3)) 

Type 
(topological) 

P # 6g « * 3 

Unknown 
Unknown 

TABLE 2 

Let 2^ be the analytic manifold obtained by projectivizing the complex 
vector bundle 0 © [0 (ri)] on S2. Let C denote its zero section. 

Let Zjm,k be the cyclic m-fold cover of 2^ with nonsingular branching curve 
Cp Cj homologically equivalent to mjC in 2*. Note that topologically 

2 = f S2 X S2 if k = 0 (mod 2), 
* [P#Q ifA: = l(mod2). 

Then we have Table 3. 

m = 2 

m = 3 

J ! 

~T 
2 
3 
4 

7 
1 
2 
3 

y 

x(zr*) 
2* + 4 

12A: 
3 0 * - 2 
5 6 * - 8 

8 + 2/[G/ - 1)* - 2] 

12* 
6 0 * - 12 
144* - 24 

12 + 6/[(3/ - 1)* - 2] 

oiZf*) 
-2k 
- 8 * 
-18* 
-32* 
- 2 / * 

-8* 
-32* 
-72* 
-8/2* 

P* 
0 

* - 1 
3 * - 2 
6 * - 3 

l + i / C / - l ) * - y 

* ~ 1 
7 * - 4 
18* - 7 

2 + i y [ ( 5 / - 3 ) * - 6 ] 

A:2 

8 - 2 * 
0 

6 * - 8 
16* - 16 
2 * +3a 

0 
24(* - 1) 
24(3* - 2) 

Sr 

Ô 
1 
2 
3 

7 - 1 
1 
4 
7 

3 / - 2 

# r is the genus of the generic curve lying over a fiber of 2 
TABLE 3 
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2J Decomposing elliptic surfaces. We now return to our original classifica­
tion theorem for surfaces. We have described various families of surfaces 
which include in them surfaces of all three types, rational, elliptic and general 
type and have shown them all to be ACD. None of the families described 
however included all the elliptic or general type surfaces. Using the basic 
ideas developed so far we can now prove: 

THEOREM 2.15 ([Man 2], [Msh]). Let Vbe a simply-connected elliptic surface. 
Then V is almost completely decomposable. 

To prove Theorem 2.15 we will again have to find appropriate nicely 
degenerating systems and try to carry through an inductive type of proof. To 
do this we first discuss the Kodaira classification of elliptic surfaces. 

Thus suppose M is an elliptic surface, which we can assume without loss of 
generality to be minimal. We then have a holomorphic map ƒ: M -> R onto 
some Riemann surface M. ƒ will have only a finite number of critical values 
a„ . . •, an and if X is not a critical value then f~l(X) is a 2-torus T2 of 
multiplicity 1. 

What are the possible topological configurations for the singular fibers 
ƒ ~x(a$}. There are two types of possibilities. 

I. f'l(ai) is topologically a 2-torus T2 but has multiplicity m > 2 in M. 
(That is, for any x G ƒ ~ l(ax) if z is a local parameter at ai G R with z(at) = 0 
then x has a coordinate neighborhood U(s, i) such that ƒ : M-» R takes the 
form (s, t) -» z = sm on U.) 

II. ƒ ~~ \at) has singular points. 
Fibers of type I are called nondegencrate multiple fibers while fibers of 

type II are called degenerate fibers (they may in addition be multiple). 
A complete description of all possible degenerate fibers can be found in [K 

1]. For simplicity we shall use the following technical trick. 

LEMMA 2.16 ([Msh], [Man 5]). Suppose V is an elliptic surface. Then there 
exists an elliptic surface V\ diffeomorphic to V, and a holomorphic map f: 
V' -* R onto a Riemann surface R such that any degenerate fiber f~"\a) of f: 
V -» R is of multiplicity one and has only one singular point p, which is an 
ordinary double point. 

(Recall that a singular point/? is an ordinary double point if and only if we 
can pick a local coordinate neighborhood U(s9 i) about p such that ƒ | U has 
the form f(s91) = s2 + t2 (where s(p) = t(p) = 0).) 

We call a fibering of the above type a Kodaira fibering. We now analyze 
the multiple fibers in detail. To do this we must introduce the concept of a 
logarithmic transformation on an elliptic fibration. 

Thus suppose/: M -» R is an elliptic f ibration and a G JR is a regular value 
of ƒ. Then topologically we have for some small disc D about a that 
f~l(D) = T2 X D2. Let C denote the curve * X dD2 on f~\D) with in­
duced orientation. On d(f~\D)) - d(M - f~\D)) = T3 let g, Hv H2 be 
the obvious simply closed curves generating H^T3) such that Q is homotopic 
to zero in f~\D). Let Lm be a diffeomorphism of 3(/""1(D))-^3(M-
f~\D)) which takes C-±mQ + kxHx + k2H2. 

We call M — f~l(a) U,f~l(a) the logarithmic transformation M* of M 
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at a and write it as M* = LJjn)M. (This is of course an abbreviation for 
La(m9 kl9 k2)M.) 

A fundamental result of Kodaira then is: 

LEMMA 2.17 [K 2]. Let M* = La(m)M be the logarithmic transformation of 
M at a. Then M* can be given the structure of an elliptic surface with fibration 
f*: M*->R such that f*\M - f*~\a) 'coincides9 with f\M - f~\a) and on 
f*~~l(a)i f* locally looks like the map (a, </>)-* am. Then f*~l(a) is a multiple 
fiber of multiplicity m in M*. 

Furthermore if V* is an arbitrary elliptic surface then F* = 
A*,(mi)> • • • 9 Lak(mk)V where V is an elliptic surface with no multiple fibers. 

By way of example let us look at the elliptic surface E = T2 X S2 with 
projection T2 X S2 -> S2. Then by a direct computation we find that: (1) if 
E* = La{m)E then E* is diffeomorphic to Sl X L where L is a lens space of 
type (w, k) for some k relatively prime to m, (2) if E* = Lai(ml)La2(m2)E 
then E* is still diffeomorphic to Sl X lens space L(m, k) for appropriate m, k 
with g.c.d.(m, k) = 1. 

Let us now return to the simply-connected case and suppose V* is a 
simply-connected elliptic surface. Then following [K 3], [Man 2] we can show 
that F* » La(jn^La^m2)V9 where g.c.d.(m1? m2) — 1 and V admits a holo-
morphic map/: F-» S2 such that ƒ has no multiple fibers and at least one 
degenerate fiber. 

Furthermore if pg(V) is even then V* is homotopy equivalent to V if and 
only if mx + m2 is even. 

Now for the case of minimal simply-connected elliptic surfaces with no 
multiple fibers Kas has shown 

THEOREM 2.18 [Kas 1], [Kas 2]. Let Vv V2 be simply-connected minimal 
elliptic surfaces2 without any multiple fibers. Then Vx is diffeomorphic to V2 if 
andonlyifpg{yx)=pg(V^ 

Now every minimal elliptic surface W satisfies c\[ V] = 0 and using 
Noether's theorem and the formulas of §2.1 we see that if the elliptically 
minimal simply-connected surface with no multiple fibers W has geometric 
genus pg( W) = p then denoting W by Wp we have 

(1) if p is even then Wp is homotopy equivalent to (2p + l)P # (lOp + 
9)0, 

(2) if p is odd then Wp is homotopy equivalent to (O + 1)/2)K4 # (O -
l) /2)52 X S2. 

2In the theory of elliptic surfaces we say a surface V is minimal elliptic if and only if it contains 
no exceptional curve of the first kind in any fiber. In fact, there occurs an elliptically minimal 
surface which is a rational surface containing nine exceptional curves. This happens if CP2 is 
blown up at the nine base points of a pencil \F + pG of cubic curves. The resulting surface W0 is 
diffeomorphic to P # 9 g but has no exceptional curves in any of its fibers and thus is called 
elliptically minimal. It can be seen that La(m)W0 always satisfies the Castclnuevo criterion and 
thus is also rational and so diffeomorphic to W0. However if g.c.d.(m, n) = 1 and m > 1, n > 1, 
Lax(m)La2(n)WQ is not rational. It is called a Dolgacev surface and shows that Severi's Conjecture 
( V simply-connected and pg( V) = 0 => V is rational) is false. It is not known if the Dolgacev 
surfaces are topologically P # 9g. 
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We have that if Wp(m, ri) = La^rri)La{ji)Wp with (m, ri) relatively prime: 
then (1) if p is even, Wp(m, ri) is homotopy equivalent to Wp\ (2) Up is odd 
and m + n even Wp(m9 ri) is still homotopy equivalent to W. (3) if p is odd 
and m + /* is odd Wp(m, ri) is homotopy equivalent to (2/? + \)P # (10/? + 
9)Q. We note that if p > 0 or both m, n > 1 and/? > 0 it is only known that 
Wp(m, ri) is diffeomorphic to Wp(m', ri) if {m\ ri) = {m, n) as unordered 
pairs. If {m', /*'} 7̂  {w, /*} it is not known whether Wp(m, ri) is or is not 
diffeomorphic or even homeomorphic to Wp(m\ ri). Thus as we mentioned in 
Chapter 1 (see (Proposition 1.11)) there could be infinitely many nonhomeo-
morphic simply-connected elliptic surfaces of the same homotopy type. 

To show that all these elliptic surfaces are almost completely decomposable 
we begin by showing that for every k > 1 there exists a nicely degenerating 
family with nonsingular fiber Wk and zero-fiber the disjoint union of Wk„x 

and WQ intersecting transversely in a common fiber. 
(The actual existence of a Wk for every k > 0 can be demonstrated in a 

purely topological fashion as follows. Let Fk be a Riemann surface of genus k 
possessing an involution ik with exactly 2k + 2 distinct fixed points (i.e. take 
the 2-fold branched cover of S2 with 2k + 2 branch points of order 1). Then 
Fk/ik = S2. Let Uk = Fx X F2/ix X ik with projection to Fk/ik. Then Uk is a 
complex variety with n = 8A: + 8 singular points/?!,... ,/?„. It can be shown 
that each point/?, has a neighborhood JV,. with 3JV, a circle bundle over S2 of 
type -2 (see [K 1] or [Kas 1], [Kas 2]). Then replacing Nt by the appropriate 
disc bundle Tt with 37;. - dN, we get Wk = Uk - U Nt U U r,. Then 0^ 
can be shown to be the required elliptic surface.) 

Thus since as we noted W0 = P # 9Q we have using our previously 
developed equations that 

Wk# P= Wk_x # P # 8g # 2(P # g ) - H^_! # 3P # 10g. 

The next step is to demonstrate that one can do logarithmic transformation 
simultaneously to all the members of a nicely degenerating family. 

This then gives us that Wk(m, ri) # P = Wk_x(m9 ri) # 3P # 10Q for all 
k, m, n. To complete the induction we must show that W0(m, ri) # P = 
2P # 9Q. This is done by noting that 

W0(m9 n)=W0-D
2XT2\j La(m)Lb(n)(S2 X T2) - D2 X T2 

« w0 - r(c) u s1 x L(/?, ?) - r(c) 
where C is a torus in V0 or Sl X L(/?, #). 

Then we obtain by Theorem 2.6 

JF0(m, n) # P - x (S ! X L(/>, q))#P# 8Q9 

where x(S'1 X L(/?, ^)) is surgery on Sl X L(/?, ^) along two disjoint 1-circles 
homotopy equivalent to generators of HX(C). 

But then either by [FP], [Msh] or direct calculation one can verify that 
X(S1 X L(/?, q)) = either P # Q or S2 X S2 and thus that H 0̂(w, ri) is ^CZ>. 
The details of the construction of the appropriate family can be found in 
[Man 2]. 

Thus we have established that all simply-connected elliptic surfaces are 
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A CD. Pushing these techniques a bit further one can also show: 

THEOREM 2.19 [Man 4], Let k be odd and m + n even with (m, n) relatively 
prime. Then Wk(m9 ri) # S2 X S2 is diffeomorphic to \{k + l)[V4 # S2 X 
S2). 

2.4 Surfaces of general type. We now turn to surfaces of general type. Here 
our conjecture is not yet established for all such surfaces. 

The best general result known is the following theorem of Moishezon. 

THEOREM 2.20 [MOISHEZON [Msh]]. Let V be a compact complex surface of 
general type. Set 

P =\(b2(V) + o(V)\ n-\(b2(V) - a(V))9 

k « 30, 375/?3 + 68, 850/?2 4- 52, 004/? + 13, 092, 

/ - max(0, ((60, 750/?3 - 141, 750/?2 + 110, 265/? + 28, 595) - n)). 

Then V # kP # IQ is completely decomposable. 

To prove this theorem one again uses a deformation theorem. In the past 
however to study V we embedded it as the nonsingular fiber of a 'nicely 
degenerating' family and examined what simpler pieces V degenerated into. 
In this case one reverses the procedure and realizes V as the singular fiber of a 
family whose nonsingular fiber has known topology. 

We must make use of the following embedding theorem. 

THEOREM 2.21 (BOMBIERI) [Bom]. Let V be a minimal nonsingular simply-
connected surface of general type. Let N = P$(V) — 1. Then there exists a 
holomorphic map <&: V->CPN with image W = $(K) and points px>... ,pm 

E Wsuch that ifX, = $"1(/?J) andP - {/?,}, L = U Lt then V - LX W -
P is a biholomorphic equivalence and each pt is a rational double point of W. 
Furthermore deg W < 45/? + 36 wherep = ^{b2(V) + o(V)). 

(We recall that a point/? e F is a rational double point of V if it is isolated 
and for all sufficiently small open sets U c V containing/? we have n^U — 
/?) is finite but not trivial. (See [Durf]) for thirteen other equivalent characteri­
zations.) 

Now suppose W c CPN is an irreducible algebraic surface in CPN. (Note 
that by a theorem of Severi [Sev 1] every nonsingular projective algebraic 
surface can actually be realized as a subvariety of CP5.) We can always 
define a generic projection m\ CPN -» CP3 and analyze the new singularities 
introduced in nr{W). One finds that generically there are only three types of 
new singularities introduced. 

They are defined locally by equations of the following sort 
(i) ZXZ2 = 0 (double lines), 
(ii) ZXZ2Z3 = 0 (triplanar points), 
(iii) Zf - Z2Zl = 0 (pinch point). 
We call any singularity of the above type an ordinary singularity. 
If A" is a complex 3-manifold and K c l a complex 2-dimensional sub-

variety we say that V has canonical singularities if and only if any singular 
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point of V is either a rational double point or ordinary. Generalizing Severi's 
theorem [Sev 1], Moishezon combines this with Bomberi's embedding theo­
rem to show that every minimal nonsingular simply-connected surface of 
general type V admits a surjective holomorphic map \p: V"-» WC^>CP3 such 
that (1) W has only canonical singularities and V — \p~l(S)-+ W — S is 
biholomorphic, where S c W is the singular locus of W, and (2) the locus 
S* c S of ordinary singularities of W is an irreducible curve. Since \p is 
obtained by a combination of a projection and the map $ of Theorem 2.21 
we have that deg W is still at most 45/? + 36. 

The following type of deformation theorem is then used. 

PROPOSITION 2.22 [MOISHEZON [Msh]]. Let W3 c CPN be a complex mani­
fold and suppose F, G are degree r hypersurfaces of CPN. Let Wt = (t0F + 
txG) n W be a pencil of hypersurfaces on W and suppose Vx = F n W is 
nonsingular and K0 = G n W has canonical singularities such that the locus S* 
of all ordinary singularities is an irreducible complex curve of genus g. Suppose 
also that V0 and Vx intersect normally in W. 

Then if V is the minimal resolution of V0 we have that if TTX(V) = ^i(^i) = 
0, 5* • Vx = b > 0 and p > 0 is the number of pinch points of V0 and v > 0 is 
the number of triplanarpoints, then Vx # P is diffeomorphic to V # (2v + p + 
2g - 1)P # {v + 2p + b + 2g - 2)g. 

Notes 1. We recall [Lf] that <J>: F-» W0 is called a minimal resolution if (1) 
V is nonsingular and (2) S = singular locus of W then V - $ (S)-* W — 

O' 

S is biholomorphic and (3) if V' -> W is any other map having properties (1) 
and (2) then $ ' factors through V uniquely: (In fact there exists a 'blowing 

P 
down map' V' -» F such that p is the composition of a finite number « of a 
processes and topologically V' = V # nQ). 

2. By the normal intersection of F0 and Vx we mean in this context that for 
all x E. VXC\ VQ there exists a local complex coordinate system (Zx, Z2, Z3) 
on FT with center x such that in some neighborhood Ux of x in W> Vx is 
defined by the equation Z3 = 0 and F0 is defined either by the equation 
Zx = 0 (if F0 is nonsingular at X) or by Z ^ = 0 (otherwise). 

The proof of Theorem 2.20 now proceeds as follows 
Let F be a simply-connected surface of general type. We can without loss 

of generality suppose that V is minimal. Then we can find a hypersurface W 
of CP3 of degree r < 45p + 36 (p =\(b2(V) + a(V))) such that W has 
canonical singularities and its locus of ordinary singularities is an irreducible 
curve and V is its minimal resolution. Furthermore we can then always find a 
nonsingular hypersurface Vr intersecting W normally. 

Thus we find that V # k'P # VQ is diffeomorphic to Vr # P by Proposi­
tion 2.22 where 

k' - 2v + p + 2g - 1 = b+(Vr) - b+(V) + 1, 
/' = y + 2p + è + 2 g - 2 = è"(Kr) - fc-(F) 

where 6+(M), resp. 6~(M), equals | (62(^0 + a(^0)> resP- 1(*2(^) ~ 
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But we have shown in Theorem 2.4 that Vr is ACD and so 

Vr # P - *(r)P # /(r)G; 

k(r) - | r ( r 2 - 6r + 11), /(/•) - j (r - l)(2r2 - 4r + 3). 

Thus A;' « A:(r) - /? and V = /(r) - b~(V). Then in particular A:' < A;(45/> + 
36) and /' < l{A5p + 36) and so the theorem follows. 

Although these estimates give us a tractable bound on resolving numbers of 
complex surfaces we are still a long way from showing that all such surfaces 
are ACD. All progress in resolving Conjecture I' has been made by consider­
ing families of surfaces which could be explicitly constructed. To quote 
Moishezon [Msh], 'the "theoretical" Theorem 2.20 gives much weaker results 
than our "empirical knowledge". The interesting question is, how far can we 
move with such 'empirical achievements' in more general classes of simply-
connected algebraic surfaces.' 

CHAPTER 3. 4-MANIFOLDS AND THE CALCULUS OF LINKS 

3.1 Framed links and the Kirby calculus. Having considered the question of 
decomposing algebraic surfaces via a combination of techniques from alge­
braic geometry and topology we discuss a more strictly topological method to 
obtain information about 4-manifolds. We recall that every PL-manifold 
admits a handlebody decomposition [RS, Chapter 6]. Thus to show that two 
manifolds are isomorphic we might try to show that they admit isomorphic 
decompositions. Kirby [Kirb 1] has developed a 'calculus' to manipulate 
handle decompositions of 4-manifolds which can be used to prove that two 
such manifolds are isomorphic. (See also [FR] and [Sa].) 

We recall that if M4 is a connected 4-manifold then we can always 
decompose M4 as 

n 

M 4 = f l ° u U Ht
l U U H/ U U Hf U U #* 

where if dM4 = 0 we can assume n = 1 and if dM4 ^ 0 we may assume 
n = 0. 

Each/?-handle H? = Dp X D*~p has an attaching map ft on Sp~l X D4~p 

to M 4 u {all handles preceding Hf), with ƒ an embedding, and the isomor­
phism class of our handlebody decomposition is determined by the isotopy 
classes of the ƒ [RS, p. 71]. What are the various attaching maps we must 
worry about in the case of 4-manifolds? 

The attaching maps for 1-handles are maps ƒ: S° X D3 -*dW (W will 
symbolize H° U {other handles}). Essentially then we are just singling out 
neighborhoods of pairs of points as places where we will attach a 1-handle. 
All such ƒ are clearly isotopic since W is connected and dim W > 1. 

We can thus write the attaching map of 1-handles down in the form 

o o 
A B 
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in S 3 = dH° and our 2-handle will be an identification of the balls A and B 
in the above picture. [Note that D4 u U UiHil i s simply b[r

is=lS
l X D3 with 

boundary #r
i=lS

l X S2.] 
Now let us consider 2-handles. Then our attaching maps/: Sl X D2-*dW 

are precisely framings on embedded Sl9s in dW. Now up to isotopy such 
framings are classified by ^(SO2) c* Z so an attaching map of a 2-handle can 
be regarded as an embedded Sl (i.e. a knot) with an integer attached to it 
representing the framing. 

More generally, since by Principle 1 of Chapter 1 we can simultaneously 
attach all the handles to dH° = S3 we make the following definition. 

DEFINITION 3.1 (TENTATIVE). Let M be an oriented 3-manifold. L is a 
framed link in M if and only if L is a finite disjoint collection of smoothly 
embedded circles, yl9..., yr, (knotted or unknotted), with an integer nt 

associated with each y,.. (Geometrically nt means that the attaching map ƒ: 
Sl X D2 -» S3 with^S 1 X 0) = y, associated to (yl? nt) is precisely one such 
that, for any x G D2 — {0}, f(Sl X {x}) has linking number nt with y,.. This 
means that the disc D2 is twisted «-times in a right-handed direction as we 
traverse y,..) (We call/(S1 X {x}) & «,-parallel curve for y,.) 

If M is the boundary of an oriented 4-manifold V and M has the induced 
orientation we shall let VL denote the manifold obtained by adding handles 
to V along M via the recipe given by the framed link L. We shall denote dVL 

by XzX^O- Note that the construction of VL depends only on the orientation 
of V and not on orientations of components of L. 

EXAMPLE 1. 

Some examples if M = S3 

Link/, 

Lens space L(n, 1) 

(2) p [ [ ) )q L(pq-l,p) = L(pq-l9q) 

. . \s \ / \ Dodecahedral space P- S3/G 
^ ' ^ ' ' G - binary dodecahedral group 

(4) / \^l \y h Dodecahedral space 
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EXAMPLE 2. 

(5) 

(6) 

Some examples of BL (B « B4 with dB4 = S3) 

o ±i 

S2 xD2 

±CP2-B4 

(7) T2 xD'< 

(8) oQQi P#Q-B - »4 

(9) °00° S 2 * S 2 - B « 

Now suppose L, L' are framed links in S3. The framed link L + L' will 
denote the disjoint union of the two links in S3. Then using the above 
examples we see that if L' is the link in 5, 6, 8 or 9 above then 

*L+U - *L * S2 X D2 i fL'= O 

BL+v = BL# ±CP2 i f ! / - ±i Q 

BL+L- = BL#P#Q ifL' = {QD° 

BL+v ~BL# S2XS2 if L' = QÎ) 
O O 

(10) 

(") 

(12) 

(13) 

where ^ denotes the boundary connected sum and # is the connected sum in 
the interior of the manifold with boundary. Notice that Xz/OCzX )̂) is 
XL{M) # S2 X S', in case (10) and XiMW) = XLW) in cases (11), (12), 
(13). 
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There are two basic 'moves' introduced by Kirby in manipulating such 
framed link pictures. We assume henceforth that our 4-manifold B is simply 
B\ 

MOVE 1. L -> L + O - This move keeps XLC^O fixed but changes BL to 
BL # ±CP2 or in reverse changes £L # ± C P 2 t o £ L . 

MOVE 2. Given two circles yt and yj in L we "add" y, to yy- as follows. Using 
the framing nt of y,-, let y, be an ^-parallel curve of yr Now change L by 
replacing ^ with yj = yt #b yj9 where 6 is a band connecting y,. and yj and 
missing the rest of L. 

This move corresponds in BL to adding (subtracting) the yth handle to 
(from) the ith handle. The new framing nj equals y,- + y,- ± 2atj where a0 is 
the linking number of y, and yy (after they have been assigned orientations). 
(The linking number /&(£, TJ) of disjoint knots £ and t] in S3 can be defined as 
the image of the homology class [£] in H^S3 - TJ) « Z, where S3, £, TJ have 
been given fixed orientations.) The sign in the equations depends on whether 
or not the band b preserves orientation. Notice that Move 2 changes neither 
BL nor XL(M)- It simply provides a new handle decomposition for them. 

EXAMPLE 3. 

0 

This shows that 

O O -r#Q-*- QO 
- i l o i 

GO O - O O D - Q D O 
0 0 1 0 1 - 1 1 0 1 

This shows that 

GOO =52 xs2 #cp2-** 
0 0 1 

= QO O = P#Q#CP2-B* =2P#Q~B* 
I 0 1 

Thus one can replace Move 2 by the following generalized Move 2' which 
it implies. 

MOVE 2'. Let L be a link containing the portion (L) pictured below. Then 
go from L to L' or back where L' is the link identical to L except that the 
portion (L) of L has been changed to (Z/). 
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7l /In 11 

±id 

'In 

3*- one full 
(left, right) 
hand twist 

(L) (L') 
The linking matrix \L- for L' is then given by 

Ikfoyj) if/*/ 

( U = ( U + [ ( U , ] 2 i f '^0 
= ±1 if/ =7 = 0, 

where XL is the linking matrix for L. 
In case n =» 1 or « = 2 the equivalences are pictured below. 

n- 1 

and 

+ 1 

R + 1 

+ 1 

1 -strand 
i » 

+ 1C _J> 
+ 1 

2-strands 
Move 2' proves very convenient when actually computing link equiva­

lences. 
Framed links as we have defined them only represent manifolds having a 

handle decomposition containing a 0-handle and some 2-handles. We thus 
define a generalized framed link by first adding in pairs of 3-balls represent­
ing the 1-handles. Note that if 1-handles are allowed we must broaden our 
definition of an embedded circle to include the following type of example 

In this picture the curve y with framing nt really represents a circle 
embedded in the manifold 9 (Q Q) = 9(D4 + 1-handle) = Sx X S2 and 
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homologous to S 1 X 0 ! (We shall discuss a method of representing such an 
example by pairs of circles in S3 later in this chapter 

•& k ^ J would become 

We thus redefine framed links to include pairs of embedded 3-balls 
representing 1-handles. To represent 3-handles we would have to draw in 
2-spheres in our pictures. However as a consequence of a result of 
Montesinos and Laudenbach-Poeneru [Mont 3], [LP] this is not necessary! 

In fact we have the following theorem. 

THEOREM 3.2 [Mont 3]. Let M be a closed orientable (PL) 4-manifold with 
handle presentation M = H° \j\Hx u \iH2 \J yH3 u H4. Then M is com­
pletely determined by H° U \Hl \J pH2. 

Thus the way the 3- and 4-handles are pasted in cannot affect the topology 
of M. We must therefore only keep track of the number, y, of 3-handles we 
must add to a given link picture without worrying at all about their locations. 
Thus our present definition of a framed link allows us to take care of all 
possible handlebody decomposition of compact manifolds without boundary. 

Given two framed links Lx and L2 we shall say Lx —d L2 (i.e., Lx is 
boundary equivalent to L2) if and only if we can go from L, to L2 by a 
sequence of moves of types 1 and 2. We then have: 

THEOREM 3.3 (KIRBY) [Kirb 1] (SEE ALSO [Org]). Lx~d L2 if and only if 
X L , ( ^ 3 ) & diffeomorphic to XL($3) (preserving orientations). 

If we are interested in the 4-manifolds BL instead of their boundaries we 
must replace Move 1 by a move preserving BL (instead of just its boundary). 

The only geometric operation we have not covered is handle cancellation 
and introduction. 

Thus Move Y will be the introduction of a cancelling pair of 1- and 
2-handles or 2- and 3-handles. 

Now if O O is a 1-handle then Q Q) will be a cancelling pair consisting 
of a 1-handle and a 2-handle. [Note again that the horizontal line in Q) 0) 
really represents a circle in d(B4 u©) since the two 3-balls are identified via 

the 1-handle attaching them.] ^ 
An alternate way of introducing such a cancelling pair is to note that if Q 

represents a 2-handle attached to some simply-connected manifold V giving 
V' — V t\ S2 X D2 then surgering the 2-sphere S2 above corresponds to 
attaching a 1-handle to F giving x(V') = V tj Sl X D3. 

We can then thus represent a 1-handle as a surgered 2-handle which we 
write 

<§p) 

Ç) (an unknot with a dot on it). 
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Notice that 

n O p ^ is thus equivalent to ® n (Q) 

n C02)m would represent n{ (P while 

(i.e. going through Q) is the same as going 'over' the 1-handle). To introduce a 
cancelling 2-3 pair we put down Q and keep track of the complementary 
3-handle without drawing it in. ° 

Move 1' is then: 

Introduce ^ ~ ] P ) or Q + (3-handle) 
o 

We say Lx ~ L2 if we can go between them by moves of type 1' and type 2. 
As an analogue of Theorem 3.3 we then have Theorem 3.3' (Sa) [Kirb 1, Sa] 

Lx ~ L2 if and only if BL is diffeomorphic to BLi. (See Sa [Sa] for a complete 
proof.) 

Notice that if Vx and V2 are simply-connected 4-manifolds we can always 
write down link-pictures for V[ = Vx - {4-ball} and V2 = V2 - {4-ball}. 
Clearly Vx « V2 if and only if V[ = V'2 and thus if V[ = BLx and V2 = BLi 

then we can show that Vx is diffeomorphic to V2 by showing that Lx ~ L2. 
We apply these techniques in a few cases. (More applications will be found 

in later chapters.) 

3.2 Handlebody decompositions of 4-manifolds. The simplest application of 
the link calculus arises in Example 3(2) above where 

y\ ?2 7 3 7i 7f
2 73 

CD O - 00 O 
0 0 1 1 0 1 

shows that S2 X S2 # P = IP # Q. 
We note that in the above example the matrix (ay) where atj = lk(yi9 yy) 

and au = nt is, in fact, the intersection matrix for the resulting 4-manifold. 
In fact this is a direct consequence of the definition of a handlebody 

decomposition. In general if L is a framed link with components y, with 
framing ni9 then setting atj = lk(yi9 yj), aH = nt gives us a matrix AL represent­
ing the intersection form on BL. We note that Hx(dBL) = 0 if and only if AL is 
unimodular. Thus to recognize a homology 3-sphere as the boundary corre­
sponding to a link diagram we can simply construct the linking matrix AL 

described above and compute its matrix. In particular if K is any knot then 
(K, ± 1) will be a homology sphere. 

In Chapter 4 we shall discuss some of the 4-dimensional problems 
associated with homology 3-spheres and the 4-manifolds they bound. As 
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preparation for some of the techniques used we present the following example 
of Kirby [Kirb 1]. 

Suppose H is a homology 3-sphere which bounds an oriented 4-manifold M 
of type II, with b2(M) = (a(M)) = 16. If we could also show that H bounds 
another contractible 4-manifold X then V = M u X would be the long 
sought after closed spin manifold with b2(M) = (o(M)) =16. For example, 
let 

2(a, b, c) - {(x,y, z) G C3\xa + yb + zc - 0} n {|x|2 + | j | 2 + \z\2 = e}. 

Then 2(2, 7, 13) is a homology sphere which bounds an M as above. In fact, 
using some techniques from the theory of resolutions of singularities we can 
see that 2(2, 7, 13) is precisely XiX^3) where L is the link 

-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -4 

\ 
7l5 

- 2 

?1 ?2 

' 16 

We claim that 2(2, 7, 13) is also the boundary of Xi(S3). 

Z/ = 
- ^ 

y 
§ (This is the (2, 7) torus knot.) 

To show that XL(^ 3 ) ~ XL(S3) we can use moves 1 and 2 to obtain 

1~1~2 

L' -f f ) — ^ ( ( ^ C ^ y * * • (rest °f picture is the same). 

?1?2 

- 1 
We can use the ( ^ above to split off successive components and arrive at 

y\ 
+3 -1 -2 -2 

We iterate, obtaining first 

-1 - 2 -4 
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and then by adding additional Ç~j we get 

- 1 
0 - 1 1 - 3 1 2 

13 13 

1 3 2 1 3 1 - 1 1 

13/ /\~yÇ7<ÇyÇ~~\2 13/ 

Now removing +1 circles successively we obtain as desired. 

The problem then remains to show that 2(2, 7, 13) bounds a contractible 
manifold. One might try to solve this by constructing contractible 4-manifolds 
and examining their boundaries. 

The first example of a compact contractible 4-manifold which is not D4 



54 RICHARD MANDELBAUM 

was constructed by Mazur [Mz], In our notation Mazur's manifold Wis 

This is a 1-handle 

[We have attached a 2-handle to Sl X B3 along, a framed circle homologous 
to but not isotopic to Sl X * in Sl X S2.] 

In [AK 2] Kirby and Akbulut defined Mazur manifolds W~(l, k\ 
W+(l,k) as follows: 

W~Q, k) ^ ^ W+{1, k) 

All of the manifolds can be seen to be contractible by simply noticing that 
W~(h k) X R « W+(h k) X R » jR5. [In fact, Mazur [Mz] showed that 
whenever one attaches a 2-handle to Sl X B3 by a curve C in d(Sl X B3) = 
Sl X S2 such that C generates H{(S

l X S2) one obtains a manifold Wc with 
Wc X I « R5. To arrange things so that irx(dWc) ¥= 0 one must choose C so 
it is not of the same knot type as the standard Sl X 1 «-» Sl X S2.] 

Then using the calculus of links one calculates dW~(l9 k) and 3 W+(/, k). 
The following results are obtained: 
PROPOSITION 3.4. 

(1) dW±(ly k) - 3fr± ( / + 1, * - 1), 
(2) dW-(l, k) « dW+(-l + 2, -A; + 1), 
(3) (a) 3W+(0, 0) « 2(2, 5, 7), 

(b)3JF+(-l , 0 )^2(3 ,4 ,5 ) , 
(c)3fF+(l, 0 ) ^ 2 ( 2 , 3, 13). 

To further demonstrate the techniques of the link calculus we include the 
proof of (3)(a) (taken from [AK 2]). 

We have - 3 

2(2, 5, 7) = 

by definition. 

cb-2 
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Now 

Blow up c{-k 

,+ 1 i 
1 Blow down 

Handle addition 
corresponding to 

( et \ 

e3+ex) 

Blow down 

= d 

(where we have changed the 2-handle 
0 ° t o the 1-handle Q in the 

interior of the manifold) 

9H>-(09 3) « 3Wr-(l, 2) « 3HT(2,1). From (1) of Proposition 3.4 
dW+(0, 0) from (2) of Proposition 3.4. 
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In [Ram], Ramanujam has constructed a nonsingular complex affine alge­
braic surface V2 which is rational and contractible (3 F is a homology but not 
a homotopy 3-sphere) such that V2 is not analytically equivalent to C2! Kirby 
[Kirb 5] has found a framed link L representing V and shown V to be 
essentially a 'Mazur' manifold. V X R2 is homeomorphic to R6 but it is not 
known whether K x C i s analytically isomorphic to C3. The construction of 
V is as follows. 

Let Cj be a cubic curve in CP2 with a cusp. Let C2 be a nondegenerate 
conic meeting Cx at two distinct points P, Q of orders 5 and 1, respectively, 
such that P, Q are neither the cusp nor inflection point of C2. (For example 
take C,: JC3 - y2 = 0 and C2: x2 - ~ xy + \ y2 + \ x - f y - ^ which 
intersect with multiplicity 5 at (1, 1) and multiplicity 1 at some other point 
Q.) Blow CP2 up at Q to get the variety F and let C{, C2 be the proper 
transforms of Cx, C2. Then V is defined as F - C{ — C2. For a proof that V 
has the requisite properties see [Ram] or [Kirb 5]. 

Harer, Casson and Kaplan ([HC], [Kap]) have used these methods to 
construct numerous other examples of homology spheres 2(a, b, c) which 
bound contractible or acyclic manifolds. As yet however no example has been 
found of such a homology sphere which bounds both an acyclic manifold on 
the one hand and a manifold with definite form of type II on the other. 

33 Special handlebody decompositions. Another possible approach to find­
ing a spin manifold M with b2(M) = \o(M)\ = 16 is by directly constructing 
a handle decomposition of a spin manifold W with b2 = 22 and |a| = 16 and 
attempting to manipulate such a decomposition to split off oQOo pairs. 
This would then correspond to decomposing W as JV *= W' # S2 X S2 with 
otjV') . o(W) and b2{W') - 20. 

We first exhibit a (22, 16) manifold constructed by Kirby and Akbulut [AK 
4] which has a handle decomposition with no 1- or 3-handles. The resultant 
manifold is homotopy equivalent to V4 but it is not known whether it is 
diffeomorphic to it. 

Let 

M\ 

Then by the 'calculus' one shows that 3Mf = S3. 
Now let 

We note that M* = M2 U hn U h22 where hlv h22 are the 2-handles attached 
to the circles with framing 0 and -2 in the link diagram for M*. 
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By successive moves on M 4 one obtains the manifold JV4 pictured below, 
preserving 3M4 = 3iV 4. 

2 2 2 2 2 2 

: N% (definition) 

Let 

Then N2 = Af 4 u h2l u • • • U h2S where the handles h2i are the handles 
attached to the + 2 circles in the link diagram for N2. 

1 

Now let M4 = 

By successive moves on M 4 we get 

with 3M3
4 = 3JV3

4. 
We again note that N* « Af 4 u h3l u • • • U hM where the h3i are the 

handles attached to the circles with framings 0 and 2 in the link diagram for 

Lastly by successive calculus moves on M% we construct 

2 2 2 2 2 2 2 

= N% (definition) 

with 3(A/4) = 3(JV4) 
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We now let 

M4 = Ni U9*4.9*4 ( U h3i\ UiNf-tMi ( Li M Ua^-ajn} ( Ü hiX 

Then 3M4 « 9Aff » S3. Let W - M4 u 8M4 £4. 
Then FT is a simply-connected compact 4-manif old with intersection matrix 

determined by the linking matrix of our link diagram above. In particular we 
can compute AL to be AL « Es © Es © 3 U. 

Thus W is a spin manifold with 62(**0 = 22, a(W) = 16. However, 
although this procedure gives us an explicit picture of W, all attempts to split 
off a sublink o GO ° representing a factor U in the decomposition of AL 

have been unsuccessful. 
Does there exist a decomposition with no 1- and 3-handles for F4? In 

[HKK] Harer, Kas and Kirby answer this question in the affirmative by 
explicitly constructing such a decomposition. Their link picture is exhibited in 
Figure 3.2. 

A link picture of F4. 

FIGURE 3.2 
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Now let M4 be a simply-connected 4-manifold. M4 will be said to admit a 
special handlebody decomposition if it admits a handle decomposition with 
one 0-handle, b2(M

4) 2-handles and one 4-handle. In this case M4 can be 
completely represented by a framed link L [with no 1-handles (or 3-handles) 
in it]. It is an open question whether every simply-connected (PL) 4-manifold 
admits a special handlebody decomposition. In the algebraic case Rudolph 
[Rd] showed that every nonsingular hypersurface Vn of CP3 admits a decom­
position with no 3-handles and [HKK] showed that V4 admits a special 
decomposition. (Vx> V2, V3 clearly admit such decompositions since they are 
rational.) In [Har], [At 3] it is shown that all Vn c CP3 admit such decom­
position and in [Man 3] it is shown that all complete intersections and 
simply-connected elliptic surfaces (with no more than one multiple fiber) 
have special decompositions. 

Casson [Cas 3] however has shown that there exists a compact simply-con­
nected PL 4-manifold with dM ¥= 0 requiring 1-handles in any handlebody 
decomposition. This result follows from the following observation. 

Suppose M is a simply-connected 4-manifold with dM =£ 0 having a handle 
decomposition M = D4 u U "«î^P. Then M — D4 gives a cobordism be­
tween S3 and dM having only 2-handles. However adding a 2-handle to dM 
has the effect of adding one new generator and one new relation to irx(dM). 
Thus the existence of a cobordism between dM and S3 having only 2-handles 
means that the group 7rx(dM) can be trivialized by adding the same number 
of generators and relations. Gerstenhaber and Rothaus [GR] have shown 
however that there exist finitely-presented groups {G} which cannot be 
trivialized in this fashion, and Casson has shown that there exists a contract­
ure 4-manifold M with ir^dM) E {G}. Thus M cannot have a decomposi­
tion with no 1-handles. (Note that in high dimensions such a counterexample 
is impossible as Wall [Wa 3] has shown that algebraic connectivity^ 
geometrical connectivity for manifold M with dim(3M) > 5.) 

We note that a special handlebody decomposition and the corresponding 
link picture is usually quite useful in proving that a given surface is almost 
completely decomposable. In Figure 3.3 the first step in a direct proof, using 
link calculus moves, that V4 is ACD is shown. 

Recently Akbulut [At 3] has developed new techniques for producing 
special decompositions of branched cyclic covers. Using these techniques he 
and Kirby [AK 3] show that direct proofs of almost complete decomposability 
can be demonstrated using the 'calculus'. For example they show 

THEOREM 3.5. Let V be a 2-fold cyclic covering of CP2 branched over a curve 
of degree 2n. Then V is ACD. 

Cyclic covers are, of course, not sufficient to generate all oriented 4-mani-
folds. In dimension 3 Hilden and Montesinos [Hd], [Mont 1], [Mont 4] have 
shown that every oriented 3-fold M3 is a 3-fold dihedral covering manifold of 
S3. In [Mont 2], Montesinos has shown that every orientable 4-manifold V 
having a handle decomposition with no 3- or 4-handles arises as a 3-fold 
dihedral cover of S 4. Berstein and Edmonds [BE] have shown that T4 = Sl 

X Sl X S1 X S1 cannot be represented as a 3-fold covering of S4. (More 
precisely they have shown that if an orientable «-manifold M is a /?-fold 
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FIGURE 3.3 A link diagram for F4 # CP2. 

ooooo 
-1 -1 -1 -1 -1 

ooooo 
-1 -1 -1 -1 -1 

ooooo 
-1 -1 -1 -1 -1 

ooooo 
-1 -1 -1 -1 +1 o o o +1 +1 +1 FIGURE 33a The result of type 2 moves on Figure 3.3 
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covering of S4 then p > cup length (M), where the cup length of a manifold 
M is the maximum integer r such that there exist yv . . . , yr E H*(M, Z) 
with Yj U • • • U yr ¥* 0. By a theorem of Alexander [Ax 1] every orientable 
rt-manifold M is a/?-fold covering of S4 for some finite/?.) 

The construction of dihedral covering manifolds for a given 4-manifold is 
quite a bit more complicated than the construction of cyclic covers. In [CS 4] 
Cappell and Shaneson have indicated a novel approach to the construction of 
dihedral covers M of B4 such that dM is a dihedral covering manifold of S3 

branched over a knot and shown how the jn-invariant of dM can be calcu­
lated. (We discuss ^-invariants next.) Akbulut [At 3] has noted that their 
method can be adapted to give link diagrams of more general dihedral covers. 

In accordance with the results mentioned obtained above Montesinos and 
Edmonds have conjectured: 

CONJECTURE. Let M be a simply-connected 4-manifold. Then M admits a 
representation as a 3-fold branched cover of S3. 

CONJECTURE. Let M be an oriented n-manifold. Then M admits a repre­
sentation as an «-fold branched cover of Sn. 

Before closing this section we point out that it is not always possible to 
show that two link diagrams give equivalent manifolds without moves of type 
I. Thus simply showing that by adding and subtracting link components one 
cannot transform link Lx to link L2 does not suffice to conclude that 
BL 7*= BL or dBL ^ dBLi. In fact Akbulut has shown that if K, R are the 
framed links of Figure 3.4 then K is not equivalent to R (a direct computa-
ti' a shows that K has signature -2 and R has signature zero) but BK = BR 

[Atl]. 

R = 

FIGURE 3.4 

CHAPTER 4. THE ^-INVARIANTS, HOMOLOGY 
SPHERES AND FAKE 4-MANIFOLDS 

4.1 The /x-invariant. One of the only known numerical invariants interrelat­
ing 3- and 4-dimensional topology is the ^-invariant [Hirz 2], [EK] which we 
now discuss. 

Suppose Mn is a manifold with tangent bundle TM. A fixed trivialization 
f: TM -> M X Rn of TM will be called a framing on M and (M, <5) will be 
called a framed manifold. We recall that the stable tangent bundle TSM of M 
can be geometrically realized as TM © er for r sufficiently large (er = M X 
Rr) and thus a stable framing on M is a fixed trivialization of some TM © er. 
Lastly, an almost framing on TM is a framing on T(M - {pt}). We have: 
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THEOREM 4.1 (MILNOR [M 2]); ALSO [Kap]. Let (M3, $) be a closed oriented 
stably framed 3-manifold. Then there exists a compact stably framed 4-manifold 
(W\ g) with dW= M so that § and <& agree on M - {pt}. (W4 can, in fact, 
always be found with ^(HK4) = 0.) 

PROOF. We shall later outline Kaplan's proof of the above result. 
A result of Whitehead [M 3, §4] shows that stably framed implies almost 

framed and that for connected manifolds with boundary, framed = almost 
framed = stably framed. Thus W above will in fact be framed. We also recall 
that a framed (stably framed) manifold is sometimes called parallelizable 
(stably or S-parallelizable or 77-manifold) and an almost framed manifold is 
called almost parallelizable. 

We note that since W is framed the form Lw must be even. Thus if 
(W\ § ') is any other 4-manifold satisfying the conclusion of Theorem 4.1 we 
can form V = W u W' and using our stable framings show that V is also 
stably framed. Then using Novikov additivity [Hirz 2] we find o(W) — o(W') 
== o(V) and by Rohlin's theorem o(V) = 0 (mod 16). 

We are thus led to the following. 
DEFINITION 4.2. Let (M, $) be a stably framed 3-manifold and suppose 

(W, §) is a framed 4-manifold with dW = M and f = § on M - {pt}. 
Then set /x(M, $) = o(W) mod 16 (by our discussion above JU,(M, ^ ) is 

clearly well defined). 
We note that to define JU it is enough to specify some almost framing on 

M3. However by obstruction theory since 7r2(SO(3)) = 0 we find that the 
almost framings of M3 will be in 1-to-l correspondence with the elements of 
H\M, ^(SOP))) = H\M; Z2). Thus if M3 is a Z2-homology sphere it has a 
unique almost framing. Thus for Z2-homology spheres M one can speak of 
JU.(M) without referring to an almost framing of M. In this case it can further 
be shown that fi(M) is in fact an invariant of the A-cobordism class of Af. 

Now let 3(?(G) be the abelian group of A-cobodism classes of G-homology 
3-spheres. (The group structure is given by the connected sum operation. [S3] 
is the identity and [-M3] is the inverse of Af3, where -M is M with 
orientation reversed.) Then it is not difficult to show that JU: 3(?(Z/2Z) --> Z16 

is a homomorphism. It is clear that Im JU, is contained in a subgroup of Z16 

isomorphic to Z/8Z and by calculation of jut-invariants of lens spaces one can 
show that jut is in fact onto this subgroup. If M is a Z-homology sphere then 
for W defined as in the theorem we have o(W) = 0 (mod 8). Thus in fact JU,: 
3<?(Z)->Z8 is onto a subgroup Z2 « Z/2Z. (To see that JU,: 9<?(Z)^>Z2 is 
onto we simply note that if P is Poincaré's homology 3-sphere then if 

v v y 
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clearly a( W) « 8 and using Kirby moves one can show that 

1 

Thus [i(P) = 8 which generates the Z2 above. 
We consider some applications of the fi-invariant. We see immediately that 

by Alexander duality if M G 9C?(Z/2Z) is embedded in R4 then [i(M) « 0. 
Now since fi is a diffeomorphism invariant if we could find a homotopy 

Z-sphere M with /A(M) ^ 0 then M would be a counterexample to the 
Poincaré conjecture in dimension 3. In [CS 3], Cappell and Shaneson have 
developed a formula for computing the /i-invariant for any p4old dihedral 
cover M of S3

9 branched over a knot such that M is a Z/2Z homology-
sphere. Since by [Mont 1], [Mont 4], [Hd] every orientable 3-manifold can be 
represented as such a cover it might be possible to find a counterexample to 
the Poincaré conjecture by constructing the /?-fold dihedral covering mani­
folds Mp(K) associated with all the knots K in the Conway [Con] tables, 
computing their fundamental groups TTX(M) and ju-invariants if n^M) = 0. 
(This might profitably be done by computer.) 

A possible application in dimension 4 of the /jt-invariant is to the problem 
of finding simply-connected 4-manifolds which are spin and have definite 
forms. In particular it would be desirable to find out when elements M E 
9(?(Z) bound contractible or acyclic 4-manifolds. Work in this direction can 
be found in [HC], [Kap]. Gordon has devised a construction in [Gor 1] which 
associates a contractible 4-manifold with boundary a Z-homology sphere to 
any slice knot K c S3. (A knot K c S3 is a slice knot if there exists a (PL) 
2-disc D2 c B4 such that D4 intersects dB4 = S3 transversely in K.) It would 
be of interest to determine which of Gordon's homology spheres also bound 
simply-connected 4-manifolds M with definite even-forms, or even with 
even-forms for which b2(M) — |a(M)| is as small as possible. It is thus of 
interest to have a more constructive proof of Theorem 4.1 above. (Milnor's 
proof involves the Thorn construction [Thm] and does not give a wholly clear 
picture of the manifold W constructed.) In [Kap] Kaplan proves Theorem 4.1 
by constructing an explicit handlebody decomposition for W. 

We again recall that if L is a bilinear form V X V-* Z on the module V 
then x E V is characteristic for L if and only if L(x,y) + L(y9 y) = 0 
(mod 2) for all y E V. Now if J is a framed link in S3 with associated 
4-manifold Bj (dBj = Mj) then to each sublink R of J there corresponds a 
homology class [R] in H2{Bj\ Z). [R] is representable as the union of the core 
of the handle over R and the cone on R in B4. By a result of Thorn [Thm], [R] 
is in fact also always representable by a smooth oriented 2-manifold. We shall 
call R a characteristic sublink if j\[R] is characteristic for the homology 
pairing on H2(BJ9 My, Z) dual to LBj (ƒ*: H2(Bj)-± H2(BJ9 Mj))9 or equiv-
alently if any smooth oriented manifold F representing [R] is characteristic in 

P=dW = d 
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the sense of Chapter 1. (Alternatively we define the Unking matrix X for the 
link J by 

ilk^Kj) if/*./, 
y [ framing ÀJ if i = 7, 

where üf„ . . . , Kn are the components of / and lk(Ki9 Kj) is the algebraic 
linking number of the knots Ki9 Kr Note that X will always be a representative 
matrix for the cup-product form LBj. We have that R is a characteristic 
sublink if and only if it is characteristic for the bilinear pairing induced by X 
on 0ZJT,.) 

We note that if a 4-manifold W has characteristic submanifold F then a 
procedure whereby W could be modified so as to 'kill' F would produce a 
new 4-manifold W' which would necessarily have w2{W') = 0 and thus be 
spin or cquivalently (in this dimension) almost parallelizable. This idea is the 
core of Kaplan's construction. That is, given (M3, 5) one can always find a 
framed link representation [Lick] for it and thus one knows M3 = 3(2*/) for 
some framed link / . One then identifies a characteristic sublink R of J and 
shows how one can kill R using Kirby moves. This produces Br with 
d(Br) = M and w2(Br) = 0 as desired. 

More concretely if M = d(Bj) then corresponding to each 2-handlc of Bj 
there is a dual circle (the 6-circle in the terminology of Chapter 1) in M, the 
attaching circle of the dual handle. The dual circles generate HX{M\ Zj) and 
so the almost framing for M is determined by the framing induced on the 
tubular neighborhoods of the dual circles. Now the framed link J also induces 
a framing on the neighborhoods of the dual circles and the difference 

T 
between the two framings gives a map HX(M; Zj)-» Z2, i.e. an element of 
Hl(M; Z2). Then finding a characteristic sublink can be reduced to finding a 
sublink R of J such that T(Kt) = 1 G Z2 for all the components Kt of R. 

In Figures 4.1-4.3 [Kap] we give examples of characteristic sublinks of 
given links. Killing these characteristic sublinks by Kirby moves then gives 
the desired manifold Br. We note that the parallelizable manifold Br in 
Figure 4.3 produced by killing the characteristic sublink has b2(Br) — 22, 
o(Bj) =16. Furthermore d(Br) = S3 so W = Br u D4 gives another exam­
ple of an almost framed 4-manifold with b2 = 22 and a = 16 having a handle 
decomposition with no 1- or 3-handles. W is homotopy equivalent to -V4 but 
it is not known if it is dif feomorphic to it. 

(It is actually not strictly necessary to follow this procedure if one is only 
interested in computing the ju,-invariant of (M3, $). The following formula of 
Cappell and Shaneson [CS 2]: 

/x(M3, <3) = a(LBj) + R o R + 8 Arf(/ ) (mod 16), 

where M3 = dBJy R is the characteristic sublink of / and R ° R is the 
self-linking of R given by LBj(R, R) gives fi directly.) 

Our description above of the relationship between characteristic sublinks 
and almost framings shows that each almost framing of M = 3(5,) de­
termines a unique characteristic sublink of / . Consider for example, the 
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3-torus T3 with framed link picture representation L as in Figure 4.4 (i.e., 
dBL = T3). T3 has eight distinct almost framings and the corresponding 
characteristic sublinks arc simply the eight distinct Z2-linear combinations of 
the components of L. It can be shown [Kap] that any proper characteristic 
sublink L, of L induces an almost framing % with ix(T3, %) = 0. However if 
L is itself characteristic then the almost framing % induced by L satisfies 
[i(T3

9 %) = 8. The above behavior of T3 is, in fact, typical of a large class of 
3-manifolds, and Kaplan has shown 

THEOREM 4.3 [Kap]. Suppose M is a closed, connected oriented 3-manifold 
which bounds a framed manifold of index a. Suppose further that there exist 
elements Xt G H\M\ Z2), i = 1, 2, 3, with ^ U ^ U ^ ^ 0. Then M also 
bounds a framed manifold of index a 4- 8. 

o(Bj) = 6 

Ob2(Bj) = 10 

ÏSSSD 
• -vr 1+2+2+2+2 +2 

+ 1 "I Characteristic 
sublink 

CDOOSOD 
'+2 +2+2+2 + 2+2 

Characteristic 
sublink 

killed 
o(Br) = 8 
b2(Bj) = 8 

dB, = W „ = P 

FIGURE 4.1 

+ 1 
i i i i i i i 1 1 i i i i i i i 1 

^01LQiL(U+ 2 

yt - l -2 -2 -2 -2 -2 -2 

Characteristic ' 
sublink 

"'WSJ I'fc0 + 2 o<K ) = - 6 

f can be obtained by 'blowing down' the characteristic sublink indicated 
in the picture. The manifold Br obtained has o(Br) = - 8; b2(Br) = 14 and 
d(Bj,) = P. 

Gluing together the Br of Figures 1 and 2 gives a closed spin manifold K 
with o(K) = 16 and b2(K) = 22. 

FIGURE 4.2 
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Blowing down the characteristic sublink in this picture produces a manifold V 
with b2{V) = 22 o(V) = 16 with dV = S3 mdLv of type II 

FIGURE 4.3 

A framed link L with d(BL) = T3 

FIGURE 4.4 

(Another way to establish the existence of an (almost) framing % on T3 

with ju(r3, %) = 8 (see also [CS 2]) is to consider the rational elliptic surface 
W0 we discussed in Chapter 2. W0-* S2 is an elliptic fiber space with 
W0 = P # 9Q. We can assume without loss of generality that the fiber of W0 

over 0 G S2 is nonsingular, and we let T0 = m~l(D0) where D0 is a disc about 
0 G 5 2 containing no critical values. Then T0 » T2 X D0 and setting 
wo x wo "" ^o w e h a v e by Novikov additivity that a ( J^ ) = o(W0) = -8 . 
ï^J is in fact easily seen to be parallelizable (we have killed the second 
Steifel-Whitney class of W0 by removing T0) and thus its framings restricts to 
a framing 9 on dW$ = d(T2 X D0) = T3. Then clearly j^(r3, Ï ) = 8 mod 16 
and §" thus must coincide with % as above. If we let ƒ be the stable framing 
on Sl indicated in Figure 4.5 then one can check that S r

0 = / X / X / a s a 
framing on T3 = Sl X Sl X S1.) 



FOUR-DIMENSIONAL TOPOLOGY: AN INTRODUCTION 67 

o 
The stable framing ƒ on Sl exhibited here is the unique framing 

not extendable to a (stable) framing of D2 

FIGURE 4.5 

4.2 Fake 4-manifolds. An extremely beautiful use of the existence of this 
'exotic' framing on T3 has been made by Cappell and Shaneson in their 
construction of a compact 4-manifold Q4> simple homotopy equivalent to 
R P 4 but not diffeomorphic to it. 

We shall indicate the geometric construction of Q4 but suppress most of 
the algebra involved in proving it is not diffeomorphic to RP 4 . More 
precisely we have 

THEOREM 4.4 (CAPPELL AND SHANESON) [CS 2]. Let (X, dX) be a compact 
smooth connected 4-manifold with (possibly empty) boundary. Suppose TT\(X) 

has an orientation reversing element of order 2. Then there is a manifold 
(Q4> 30 ) and a simple homotopy equivalence f : ( g , dQ) -» (X, dX) withf\dQ: 
dQ->dX a diffeomorphism such that ƒ is not homotopic to a diffeomorphism or 
PL homeomorphism. 

COROLLARY 4.5. Let X = RP4 . Then there exists a 4-manifold Q, simple 
homotopy equivalent but not PL homeomorphic or even PL s-cobordant to X. 
Furthermore for any k > 0, Q # k(S2 X S2) is not PL s-cobordant to 
X # k(S2 X S2). However if V is any manifold with dim V > 1 ((dim V > 2) 
ifdVi£0) then Q X V is topologically homeomorphic to X X V. 

PROOF. The construction of Q4 proceeds as follows. 
Let C c X be an embedded circle in X representing an order 2 orientation 

reversing element of IT^X). 
Let Tc be a tubular neighborhood of C. Then T == Tc is the unique 

nontrivial nonorientable orthogonal Z>3-bundle over Sl. Set X0=X— Tc 

and 3^0 = if. H is thus a nontrivial 52-bundle over S1 . 
To construct Q we construct a new manifold M0 with 3M0 = H and define 

Q = X0 u H M0. (More accurately we construct an infinite family of mani­
folds M0(A) and set Q(A) - X0 \jH M0(A).) 

Ideally we would construct Q by taking M0 to be an 'exotic' D3-bundle 
over Sl which agrees with the standard nonorientable Z)3-bundle near the 
boundary. (Note that in dimension n9 n > 5, exotic D3-bundles over Tn~3 do 
exist! See [HS 1], [HS 2], [Sh 2].) Unfortunately we do not know if such a 
bundle exists. Instead we will take M0 to be a punctured T3-bundle over Sx 

which is Z-homology equivalent to Tc. 
Thus let T3 = Sl X S1 X Sl be the 3-torus and suppose A G GL(3, Z) 

with dctA = - 1 and det(7 - A2) = ± 1. A induces a diffeomorphism $A: 
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T3 -> T3 with (£4)*: TTXT3 -> <nxT
3 equal to A. Clearly we can isotope <f>A to a 

diffeomorphism <|>: T3 -+ T3 with a fixed point * G T3. 
[For example letting Sl = R/Z, define </> by </>(0i, 02, 03) = (02, 03, -0X + 

#2). Then <K0, 0, 0) - (0, 0, 0) and 

f 0 1 0] 
*» - 0 0 1 

[-1 1 0J 
satisfies the hypothesis.] 

Now let e3 c T3 be a smooth closed 3-cell about * and set TQ = T3 - e3. 
Then since det^4 = -1 by a further isotopy fixing * we may assume </>0: 
TQ -» TQ , <j>0 = </>| TQ , is a diffeomorphism with <£0|3e3 an orientation reversing 
orthogonal map. We now let M0 = M0(A) be the mapping torus of <j>0. That is 
A/0= r o

3 X / / ( I , 0 ) ^ W I ) , l ) , 
Note that 3M0 is, in fact, the nonorientable S2-bundle over Sl and so 

3M0 = H. Thus the construction of Q is complete. 
To construct ƒ: (X, 3^) -» (g, 3(2) we must construct a map h: Af0 -» Tc 

such that A|3M0 -» 3TC is the identity with ƒ = id^o u h the requisite simple 
homotopy equivalence. Now a straightforward calculation using det(7 — A2) 
= ± 1 shows that M0 is a Z-homology 1-sphere and Tc is homotopy 
equivalent to Sx. Thus the obstructions to extending the identity 3M0-> dTc 

to a map h: M0-> Tc all vanish and /* exists. 
What must still be shown is 
(1) ƒ is a simple homotopy equivalence; 
(2) ƒ is not homotopic to a PL-homeomorphism. 
The proof of (1) is a rather straightforward homotopy theoretic calculation. 

The proof of (2) uses the difference between the exotic framing on T3 and the 
other framings to show that the 'PL normal invariant' of ƒ is nonzero and thus 
ƒ cannot be homotopic to the identity. We shall define 'normal invariants' 
and comment further on this proof in Chapter 6. 

To prove the first part of the corollary (the last part will also be discussed 
in Chapter 6) it must only be shown that any homotopy equivalence of RP 4 

with itself is homotopic to the identity. But calculating [RP4, RP4] one finds 
any map inducing the identity on ^(RP4) is homotopic to the identity map. 
Thus the only homotopy equivalence in [RP4, RP4] is the class of the identity 
map, and so the map ƒ constructed above cannot be a self-homotopy 
equivalence. Q must in fact not be PL-homeomorphic to RP4. It is still 
possible that Q is homeomorphic to RP 4 since the possibility that ƒ is 
homotopic to a topological homeomorphism has not been ruled out. ( ƒ has 
zero topological normal invariants.) We note that different choices of A give 
possibly different ö's. Thus there could conceivably be many distinct diffeo­
morphism classes of fake RP4,s. 

Now suppose Q(A) is a fake RP4 . Let 2^ be its universal covering space. 
Then 2^ is a homotopy 4-sphere and one can ask whether it is homeomor­
phic to S4. We note immediately that the existence of fake RP4's implies 

THEOREM 4.6 [CS 2]. There is a smooth free involution on a homotopy 
A-sphere 2 4 which has no equivariant PL- homeomorphism with a linear action 
on S4. 
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In [AK 1] Kirby and Akbulut claimed to have shown that for at least 
certain matrices A, such that Q{A) is a fake RP4, 2^ is PL homeomorphic to 
S4. In particular, there would then have existed an 'exotic' involution on S4 

itself, rather than just on a homotopy 4-sphere 24. The proof in [AK] is 
however wrong. (See [Rb].) 

The key idea of that proof was an explicit construction of a handlebody 
picture for 2^ and the use of Kirby moves to show that 2^ is just S4. We 
recall that Q(A) was constructed by writing X = RP4 as the union of two 
pieces, X0 = the normal Z>2-bundle of RP2 in RP4 which we shall also 

denote by RP2 X D2 and Tc the nontrivial D3-bundle over Sl written as 

SlX D3. 

Then Sl X D3 was replaced by Mn = mapping torus of $A\TQ. Thus the 

construction of 2^ is just 2^ = RP 2 X B2 u M0, where the ~ 's indicate 

2-fold cover. But RP 2 X B2 is just S2 X B2 and M0 is the mapping torus of 

Let 

A = 
0 1 0 
0 0 1 

-1 1 0 

be the matrix of our previous example. Then a framed link picture of the 
mapping torus of <t>A is exhibited in Figure 4.6A. (A general procedure for 
constructing handlebody pictures of mapping tori of diffeomorphisms of 
3-manifolds can be found in [Mont 2].) Finally, the S2 X B2 must be added. 

This can be done in two distinct ways. (See the discussion in §7.4 and the 
references there.) Unfortunately as J. H. Rubenstein noted [Rb] the way 
S2 X B2 was added to the link picture in 4.6A (see 4.6B) does not correspond 
to the universal covering space of Q(A). Thus the link moves of [AK 2] do not 
prove that 2^ is homeomorphic to S4. By choosing the correct gluing map for 
S2 X B2 one can in fact use link calculus techniques to construct a framed 
link picture of 2^ [AK 5]. However, despite a good deal of recent activity, it is 
as yet still unknown whether 2^ is or is not homeomorphic to S4 and thus 
whether S4 admits an 'exotic' involution. 

The manifold 2 pictured in Figure 4.6B, though not 2^, is nevertheless a 
homotopy 4 sphere and it is still instructive to recall how Akbulut and Kirby 
showed it to be homeomorphic S4. One begins by sliding handles until all the 
1-handles in this figure are cancelled by complementary 2-handlcs. This is 
indicated in Figure 4.7 for the one handle corresponding to the 0 X B3 u <x> 
X B3 and in Figure 4.8 we show what is left after all the 1-handles are 
cancelled. However examining Figure 8 carefully we see that it is just the 
3-component unlink and thus is complementary to the three 3-handles com­
ing from the mapping torus of <J>J|TQ. Thus what is represented by Figure 8 is 
precisely S4l 

We note that the homotopy 4-sphercs 2^ provide, at present, the most 
plausible candidates for counterexamples of the 4-dimensional Poincarc con­
jecture. We leave as a not unrewarding challenge to the reader to determine 
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which, if any, of the 2 / s are homeomorphic to S4 or to show that some 2^ 
is, in fact, not homeomorphic to S4. 

o o « > o o 

There is an additional ball centered at °° and connected to the other 
1-handles in the picture by the link components with arrows pointing towards °°. 

FIGURE 4.6A 

FIGURE 4.6B 
oo«« 

FIGURE 4.7 
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FIGURE 4.8 

43 Triangulating high-dimensional manifolds. The relationship between 3-
and 4-manifolds captured by the jx-invariant leads to interesting consequences 
for higher-dimensional manifold theory as well. Returning to the map /x: 
tK?(Z) -> Z2 let 83(?(Z) be the subgroup of elements of 3K?(Z) which bound 
acyclic (PL) 4-manifolds. Since ti(3S(?(Z)) = 0 letting 0? = 9(?(Z)/33(?(Z) 
we see that ti induces a homomorphism jû: 03

/f-»Z2 which remains onto. 
What is the structure of 0" and the nature of /x? Essentially nothing other 
than the surjectivity of /x is known. In particular it is not even known whether 
0" is finitely generated! Among the more well-known conjectures regarding 
0? are 

CONJECTURE I. There exists an element of order 2 in 0$. 
CONJECTURE IL Ker JL = 0. 

The extreme importance of 0$ and the significance of Conjecture I 
becomes apparent as a result of the following. 

THEOREM 4.7 (GALEWSKI-STERN, SEE ALSO MATUMOTO, [GS 1], [GS 2],. 

[Mat]). Suppose H is a Z-homology 3-sphere with ii(H) =̂= 0 such that H # H 
bounds an acyclic (PL) 4-manifold. Then every topological m-manijold M 
(m > 5 if dM = 0 and m > 6 otherwise) can be triangulated as a simplicial 
complexl 

(Note that by the work of Kirby-Siebenmann there exist m-manifolds 
which cannot admit the structure of a PL-manifold. We already mentioned 
that Mj4 X Sn for n > 1 will be a topological manifold admitting no PL-
structure [Mi as in Chapter 1]. These manifolds cannot be triangulated 
combinatorially. [We say a triangulation is combinatorial if it is PL-homoge­
neous. That is if M is a manifold with triangulation K (so |J^| = M) then for 
K to be a combinatorial triangulation we must have that for every x,y E M 
there exists a piecewise-linear homeomorphism h (PL relative to K of course) 
such that h(x) = y.] However, they still might have noncombinatorial tri­
angulations. (See [Sb 2].) [That not all triangulations are combinatorial was 
demonstrated by R. D. Edwards [Ed 1], [Ed 2] who showed that Sn (n > 5) 
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always has noncombinatorial triangulation. (Proof: We have 2n~3P is topo-
logically homeomorphic to Sn and clearly the triangulation of Sn defined by 
2"""3P is not combinatorial)].) 

We note that the problem of the structure of 0" is unique to the relation­
ship between 3- and 4-manifolds in the following sense. 

Let %4k~\Z) be the group of (DIFF) A-cobordism classes of (DIFF) 
Z-homology spheres which bound almost parallelizable smooth 4fc-manifolds 
and let d% be the subgroup bounding smooth contractible 4A>manifolds. Let 
0fk_x be ^k~l(Z)/d%4k~l. Then there exists an isomorphism A: 04k„x -»Z, 
(where t = Ik, Ik as in Theorem 1.15) and X[M] = o(WM) mod t, WM an 
almost parallelizable 4A>manifold with dWM « M. (See [M 2].) 

CHAPTER 5. SURGERY THEORY AND ITS APPLICATIONS 

5.1 Surgery theory in higher-dimensions. Throughout many of the preceding 
sections of this paper we have alluded to surgery and its implications. In 
particular there are the fundamental results of [Br 1], [N] on the classification 
of manifolds of a given homotopy type which we mentioned in Chapter 1 and 
the surgery-type calculations used to show that the homotopy RP4 con­
structed in [CS 2] is indeed fake. Unfortunately the full power of higher-di­
mensional surgery theory is not available in low-dimensional topology. In the 
following chapters we will illustrate what goes wrong in dimension 4 (and 5) 
and present some examples of what can be salvaged. In order to do this we 
use this chapter to review some of the basic ideas, methods and constructions 
of high-dimensional surgery theory. 

We begin by reviewing the essential ideas of surgery theory. Thus let us 
consider the following questions. (We assume that we are working in some 
fixed category cither DIFF or PL or TOP.) 

(1) Suppose A" is a CW-complex, Mm a manifold and <f>: Mm ~> X a map. 
When can we modify M to get a new manifold M' and map </>': M' -» X with 
<f>' a (simple) homotopy equivalence? 

(2) Suppose My M' are manifolds and/: M-» M' is a (simple) homotopy 
equivalence. When is ƒ homotopic to an isomorphism? 

The basic geometrical construction used in solving these problems is the 
same, that of surgering M. We recall its definition: [M 3], [KM 2]. 

Suppose/: Sr X D w ~ r - * Vm is an orientation preserving embedding into 
the oriented manifold Vm. (We will in the sequel work in the smooth 
category. Analogous results occur in the PL locally flat and TOP locally flat 
categories.) Form the disjoint sum Vm - f{Sr X 0) II Dr+l X D ^ " 1 and let 
V' be the quotient manifold obtained by identifying /(w, rv) with (rw, v) for 
u G Sr,v G Sm~r~l and 0 < r < 1. We say V' is obtained by surgery on an 
r-sphere in V and write V' = x(Y> f) t o indicate the dependence on ƒ in this 
process. An alternative way, already mentioned in Chapter 1, to visualize V' 
is as follows. Let W = V X / and attach an (r + l)-handle Hr+l to the 
cobordism W by means of the attaching map ƒ: Sr X Dm~r -> V™ X {1}. 
This gives a new cobordism W' *= V X I u Hr+l with ends VàndV=dW 
— V. It is readily seen that V is diffcomorphic to V' defined above and thus 
V' is of course cobordant to V. It is thus clear that talking about a surgery on 
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V is equivalent to talking about a handle addition to the cobordism W = V 
X /. We will say an embedding/: S""XZ)m~ r-*F represents the homotopy 
class X E irr(V) if X = /+(0), 0 the generator of irr(S

r X Dm~r). One can then 
show that 

LEMMA 5.1 (MILNOR) [M 3]. Iff: Sr X Dm~r-» Vm represents X G nr(V) 
and m > 2r + 2 then if V' = x( V9 f) we have 

(\)«tr)mv{y)9i<r, 
(2) 7rr(F') œ 7Tr(F)/A(A) where A(X) is a certain subgroup of irr(V) contain­

ing X. 
Thus surgery as above kills the element X in 7rr( V

m). 

To apply our construction to the solution of problem 1 suppose <t>: V-* X 
is a map of the manifold Vm to the CW-complex X. Suppose also that <j>+: 
^*( *0-» fl^C^O is onto. We can then try to modify <f> and V to get a 
homotopy equivalence by killing the homotopy classes in Ker <J>+! In fact <f> is 
a homotopy equivalence if and only if <f>^ is an isomorphism [Spr 1] and using 
Poincaré duality this is guaranteed by Ker ̂ ^ = 0 for i < [dim V/2]. More 
precisely if ƒ: Sr X Dm'r-* Vm is an embedding and /0 = f\Sr X 0 then 
letting W' be the cobordism V X I ufH

r+l; Hr+l - Dr+l X Dm~r - an 
(r + l)-handle attached by/ ; we see that </> is homotopically extendible to a 
map <£': W' -> X (and thus homotopic to a map <f>{ = </>'|3+ W' of x(^» f) -* 
^ , where 9 + ^ ' = 3WK' - F X {0} - x(K,/)) if and only if </> o/0 is null 
homotopic. We are thus led to define the homotopy groups of <j>. 

DEFINITION 5.2. Suppose </> is on M to X. 
Let (ƒ, g) ƒ: Sk -» M, g: Z)Ac+1 -* X, be a pair of maps such that gi = <pf 

where i: 5^ -» Z)^4*1 is the canonical inclusion. If (ƒ', g') is another such pair 
say that (ƒ', g') ~ (ƒ, g) if and only if their exist homotopies ft: Sk -* M, gt: 
Dk+l-+X with gti - *X such that (ƒ<>, g0) - (ƒ, g) and (ƒ„ g l ) - (f, g'). 

Let t̂+i(<#>) be the set of equivalence class of pairs (ƒ, g) with the obvious 
group structure. 

Thus our surgery problems in this case is a question of determining when 
we can surger elements a G 7^+1 (</>). 

Notice that if a is representable by an embedding/: Sr X Dm~r -» M then 
since Sr X Dm~r is parallelizable we must have that f*TM — f$TM is trivial 
(TM = tangent bundle of Af). To guarantee this, since </> ° f0 is null homo-
topic (/represents a ~ (/0, g), g a null homotopy of <j> ° /0) it suffices to know 
that TM is induced by <f> from some bundle over X. Actually for technical 
reasons it is more convenient to work with stable normal bundles rather than 
tangent bundles. (Recall that we can think of the stable normal bundle vs

M of 
a manifold Mm as the normal bundle vk of any embedding Mm -» Sm+k

9 

A; » m. TM is stably trivial if and only if vs is trivial since TM © vk = TSm+k\M 

and TSm+k © e (e the trivial line bundle) is always trivial [M 3], [MK 2].) 
Note also that the analogue of the stable normal bundle exists in the 

categories PL, TOP, G as well as in DIFF. 
Thus our surgery problem can be recast in the following form. 
DEFINITION 5.3. Let X be a CW complex and (•* a linear bundle (in the 

appropriate category) over X. Then a normal map into (X, £k) is a triple 
(Mm, ƒ, b) where Mm is an w-dimensional manifold (in DIFF, PL or TOP 
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depending on which fixed category we are working in), ƒ: Mm -» X a map 
and b: vk -> £* a linear bundle map covering ƒ where P* is the normal bundle 
of Mm -» Sn+k, k^>m. (Similarly ( ƒ, b): (M, 3M) -» (X, Y) is a normal map 
of pairs if (X, Y) are a CW pair of dimension m and ƒ, 6 are as above with 
pk\dM - normal bundle of 3M in Sm+k~\) 

We will consider normal maps (Mx,fl9 bx), (M0, ƒ<>, £0) equivalent [written 
(/i> *i) ~ (/o> *o)l if t h e r e e x i s t s a cobordism W c Sm+k X ƒ with dW = 
3 + ^ u 3 . ^ = M 1 u M 0 , a map F: W-*X with F|Mf = ft and a linear 
bundle map B: <o--»£* covering F, where (o is the normal bundle of W c 
Sm +* X ƒ and B\vt = b,. We call (W, F, B) a normal cobordism. (If we have 
normal maps (jj., &,)ƒ•: (M„ 3Af,) -> (A', Y) we can define a normal cobordism 
entirely analogously noting that in this case dWm+l = d + W \J Um+l \J 
d_W, d+W= Mv d_W= M0 and dUm+l - dM{ u 3M0 (Le., f/m+1 is a 
cobordism of the boundary). If f/w+1 is a product we say {W, F, B) is a 
cobordism rel 3 and we demand this in all future relative definitions.) 

We let tim(X, | ) be the set of equivalence classes (tim(X, Y; £) in the 
relative case) fim(Ar, £) (Öm(Ar, Y; £)) has a group structure induced by disjoint 
union and is called the mth bordism group associated with (X, £). 
(Henceforth we will indicate notation explicitly only for the absolute case 
and leave it to the reader to fill in the relative case.) 

Now given a normal map (ƒ, b): M ->X Question 1 then becomes: 
1': Does the bordism class [(ƒ, b)] defined by (ƒ, b) contain a (simple) 

homotopy equivalence? 
Clearly if X were to be homotopy equivalent to a manifold M it would 

have to satisfy the analogue of Poincaré duality (where if M is nonorientable 
we still have Poincaré duality if we use twisted coefficients (see [Wa 3, 
Chapter 2] for details)). CW complexes satisfying a sort of Poincaré duality 
condition are called Poincaré complexes and the condition that X be a 
Poincaré complex is then clearly a necessary one if we wish to solve 1'. In the 
interest of simplicity we henceforth assume that X is in fact a topological 
manifold referring the reader to [Br 1], [Wa 3] for a discussion of Poincaré 
complexes and the necessary modifications there. 

Furthermore, it is a straightforward verification that if (ƒ, b) is normally 
cobordant to (ƒ', b') then the degree of ƒ equals the degree of ƒ'. Since a 
homotopy equivalence has degree one we add this condition to the normal 
maps we are willing to consider. 

We let fl^(Ar, £) c ®m(X, £) then denote the degree 1 normal maps and 
note that Q+ is a coset (rather than subgroup) of Qm(y, £)• 

Actually we are generally interested in the existence of any isomorphism 
(or simple homotopy equivalence) ƒ : M -» X, rather than only one which 
pulls back a specific bundle £ over X. Thus we let ^m{X) be the union of all 
the ti£(X9£) over all A>plane bundles £ over X (k » m) modulo the addi­
tional equivalence relation that (/0, b0) E Q*(X, ^ ) is equivalent to (fv bx) E 
B^(Ar, £2) if and only if (/0, b0) is normally cobordant to (fv abx) for some 
linear bundle automorphism a: £I-*1ZQ. (The reason for the terminology 
9m(Ar) will be mentioned later.) If we wish to emphasize which category we 
are working with we use ^(X) with H = DIFF, PL or TOP. The equiva­
lence class of a normal map (of degree 1) in ^(X) is called its normal (or 
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splitting) invariant. (In the relative case ^{X9 dX) we include the condition 
that our normal maps (ƒ, b) G ^{X9 dX) represented by ƒ: (M, 3M ) -» 
(X, dX) induces a (simple) homotopy equivalence when restricted to dM.) 

We can now reformulate 1' as 
1": Given a bordism class a G ^(A"), classify those of its members (ƒ, 6) 

for which ƒ is a (simple) homotopy equivalence. 
Actually it suffices to find some member (/0, Z>0) which is a (simple) 

homotopy equivalence. Then we can study its uniqueness as follows. 
Suppose (/0, b0): M0 -> X, (fX9 bx): MX-*X are both simple homotopy 

equivalences in a. Then the normal cobordism (F9 B): W -* X X [0, 1] be­
tween them is a normal map of degree 1 and we can consider the problem of 
modifying (F9 B) keeping (dF9 dB) fixed. If (F, E) can be surgered into a 
simple homotopy equivalence one would conclude that (/0, 60) is ^-cobordant 
to (fl9 bx) and if m > 5 (m > 6 in the relative case dM ¥* 0 ) one could 
conclude by the s-cobordism theorem that (/0, 60) is unique up to isomor­
phism. 

Note that our discussion of the question of the uniqueness of (/0, b0) above 
applies equally well to the question of when a (simple) homotopy equivalence 
is homotopic to an isomorphism. That is if ( ƒ, b) is a normal map which is a 
(simple) homotopy equivalence one can: (1) examine the elements of 
Isom(Af ) and see whether any of them is normally cobordant to (ƒ, b) and 
(2) if (ƒ', b') is an isomorphism normally cobordant to (ƒ, b) one can use 
surgery theory as above to measure the obstruction to making the normal 
cobordism into an ^-cobordism and thus (in the appropriate dimensions) 
establishing that ƒ is homotopic to an isomorphism. 

We are thus led to define the set of (simple) homotopy structures on 
X, S (X) (or SDIFF, §PL, STOP if we wish to emphasize the category involved) 
as the set of equivalence classes of maps <j>: M -> X, where M is a compact 
manifold, <j> a (simple) homotopy equivalence and (Mt, <f>x) is equivalent to 
(M2, <f>2) if there is an ^-cobordism W between Mx and M2 and a simple 
homotopy equivalence F: W->X X[0, 1] with F\Mt « <J>,. (In the relative 
case we demand that 4̂-|3Af; is already an isomorphism and W is already a 
product between dMx and 3M2.) Clearly the item of interest in our analysis is 
then S (X) (or S {X, dX)). Note that if <f>: M -» X represents an element of 
S (X) there exists an obvious (forgetful) mapi] : S (X) -> ^(X) associating to 
<j> the class of (</>, </>*) in ^(X), where <j>* is the obvious map on stable normal 
bundles induced by </>. (If X is not a manifold we still have an analogue of a 
normal bundle, the Spivak normal fiber space vx as defined in [Br 1] or [Wa 
3].) 

A moment's reflection now shows that the basic problem of surgery theory 
is essentially the question of understanding Ker rj and Im rç. To this end we 
begin by giving an alternative approach to ^(X) due to Sullivan ([S 1], [S 2], 
see also [Wa 3]). 

We first review some bundle theory. We recall that in the classification 
theory of smooth vector bundles over a locally finite CW complex X> there 
exist universal classifying spaces BO()t) and bundles YQ for A>plane bundles 
such that isomorphism classes of bundles over X are in 1-to-l correspondence 
with the homotopy classes, [X9 BO(A;)]; with the class represented by ƒ: 
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AT-»BO(;k) corresponding to the bundle Pyfi. Letting BO = U k BO()t) and 
noting the exact sequence 0 -> BO^ c-> BO^+j we similarly have a classifying 
space for stable vector bundles over X. One can make similar construction in 
the PL and TOP categories and thus define spaces BVUk)y BFL and BTOF^ky 
BTOP with corresponding universal bundles y£L, yPL, YTOP> YTOP- (We are using 
the natural identification 5DIFF(i t ) with B^y O(k) the orthogonal group of 
k X k matrices, induced by DIFF(A:) c* GL(A:) c~ O(fc). (See [KS 2].) 

The corresponding bundles in PL or TOP are not actually vector bundles 
but behave analogously [see KS 1]. We shall refer to all such vector-like 
bundles simply as //-bundles in what follows. (H = PL, TOP or DIFF c^ 0.) 

We need a corresponding concept in the homotopy theory of manifolds. 
Thus following [Br 1] let G(k) be the space of autohomotopy equivalences of 
Sk~l. Then there exists classifying spaces BGik) and universal (k — 1)-
spherical fibrations yk over BG^k) such that if X has the homotopy type of a 
locally finite CW complex then fiber homotopy equivalence classes of (k — 
l)-spherical fibrations over X are in 1-to-l correspondence with [X, BG(k)]. 
One can also define BG, ys as universal objects for stable spherical fibrations 
over X. 

Now by a result of Spivak (see [Br 1]), if A!' is a Poincaré complex of 
dimension m, then there exists a (k - l)-spherical fibration vx over X 
(k > m + 1), unique up to suspension and stable fiber homotopy equiva­
lence, such that any class in B^(Ar, £) induces a stable fiber homotopy 
equivalence of £ on vX9 unique up to fiber homotopy. Furthermore the set of 
such classes map bijectively to the set of stable fiber homotopy equivalences 
of £ on vx. vx is called the Spivak normal fiber space of X. 

We can now consider ^M{X) as a set of pairs (£, h\ with £ as above and h: 
£ -» vx a (stable) fiber homotopy equivalence of £ and vX9 modulo the 
appropriate equivalence relation. 

To clarify this notion further consider the commutative diagram of maps of 
classifying spaces. 

ak bk 
B0(k) - » SVL{k) - > ^TOPC*) 

4, 4- v 
a b 

BQ —» /?PL —* ^TOP 

where 
ak corresponds to triangulating the bundle, 
bk is the forgetful functor from PL bundles to TOP bundles, 
ck is the functor from TOP bundles to spherical fibrations obtained by 

deleting the zero section with a, b, c induced by limit maps (nonunique). 
The maps ak, bk, ck and a, b, c can be considered fibrations and thus have 

fibers which we denote by PL(/c)/0(/c), TOP(A:)/PL(A:), G(k)/TOP(k) and 
PL/O, TOP/PL, G/TOP, respectively. By composition we can also define 
natural fibrations B0 -» BG, 2?PL -» BG and thus obtain fibers G/O, G/PL 
also. 

Then a pair (v, h) as above corresponds to a reduction of the structural 
group of vx from G to O (or PL or TOP) and such reductions correspond 

ck 
*G{k) 

Br, 
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bijectively to homotopy classes of sections of the associated bundle with fiber 
G/H (if = 0 , PL, or TOP). 

We can thus view pairs (v, h) as defining G/H structures on vx. We call 
two such pairs (vt, A,) equivalent if there is a G/H bundle structure (p, H) on 
vx X I over X X I and equivalences bt: v\X X i -> vt with £ , ( # 1 ^ x 0 = a/> 
i = 0, 1. We call such equivalence classes of pairs (v, h) tangential structures 
on X. (This is the motivation behind the notation ^^X).) One can then show 
that the fibration G/H-* BH --» BG acts homotopically like a principal fibra-
tion so that the existence of a cross section of a G/H bundle means that the 
bundle is homotopically just X X G/H. Thus, given the existence of some 
tangential structure on vX9 we find that equivalence classes of tangential 
structures on vx correspond bijectively to the homotopy classes of map 
[X, G/H]. 

Putting all this information together we arrive at 

THEOREM 5.4. Let X be an H-manifold (H = DIFF, PL or TOP). Then there 
is a bijection between ^H(X) and [X, G/H] (in the relative case between 
%(X9 dX) and [(X, dX), (G/H, „)]). 

We can therefore compute ^H(X) by computing TTJ^G/H) and then trying 
to use obstruction theory to compute [X, G/H], (For results on irJfi/H) 
and computations of this sort sec [KS 1] and the references listed there. In 
particular for H = PL [S 1], [S 2] or TOP [KS 1], the homotopy of G/H is 
pretty well understood, though for H = O much less is known.) 

Now let us consider the problem of finding the image of 17. That is the 
question of when is a normal map ( ƒ, b) normally cobordant to a simple 
homotopy equivalence. Using the constructions of surgery theory elucidated 
above one can find an invariant, the surgery obstruction a(ƒ, b)> which solves 
this problem. o(ƒ, b) lies in the Wall group Lfjjr, w), m = dim X,TT = 7rx(X)9 

w: m -» { ± 1} the orientation character of m (i.e. first Steifel-Whitney class of 
X). (The construction of a(/, b) is due to Browder and Novikov (see [Br 1] 
and [N] if m = {1}, and Wall [Wa 3] in general). In our discussion of TJ we 
shall follow almost verbatim the treatment by Shaneson in [Sh 4]. See also 
[Lees] and [Wa 3].) 

We begin by recalling (see [Sh 4]) an algebraic criterion for recognizing a 
(simple) homotopy equivalence. 

THEOREM 5.5. Let h: (M, dM) -» (X, Y) be a map between the manifold M 
and the Poincaré pair (X, Y) such that h\dM is a (simple) homotopy equiva­
lence. Then h is a homotopy equivalence if and only if 

(1) h^\ *nx(M) -» TTX(X) is an isomorphism, 
(2) h+: Ht(M\ ZTT)-> Ht(X; Zn) is an isomorphism for i < [fl/2], n = 

dim X, where IT = TT\(X) and ZIT is the group ring of IT. 

(Recall that H+(X; Z<ri) = Hjjt\ Z), where X is the universal covering 
space of X.) Also the homotopy equivalence h will be simple if its torsion 
invariant ^(h) vanishes in the Whitehead group Wh(7r). (See [M 5] for 
details.) 
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Now a theorem of Smale [Sm] (see also [M 4]) tells us that any normal 
cobordism, relative to the boundary if there is any, can be obtained by a 
sequence of handle attachments along embedded copies of S" X i)""*' (in the 
interior) that represent elements in the kernel of the map on ith homotopy 
groups induced by the normal map. Thus, all normal maps normally cobor-
dant to a given one, (A, c) say, are obtained from it by "surgery" ([M 3], [N], 
[Br 1], [Wa 3]). On the other hand, it is easy to see that by surgery one may at 
least obtain that h induces an isomorphism of fundamental groups and of the 
homology groups Ht(M; ZTT) with Ht(X; ZTT) for i < [n/2]; i.e. to obtain h 
that is [«/2]-connected. 

Suppose n = 2k > 6 is even. Let K be the kernel of h+: Hk(M; ZTT)-> 

Hk(X; ZTT). By Poincaré duality, K is a stably based Z-module (denoted 
Kk(M) in [Wa 3]). By the Hurewicz theorem, every element of K is repre­
sented by a sphere a: Sk -> M. Using transversality ("general position") one 
may define a nonsingular (-if-Hermitian form </>: K X AT->ZTT, and a 
self-intersection form to which <f> is associated, /x: K-+Zir/{x - (-1)**}, as 
done in [Wa 3], [Wa 4]. (Actually <J> is purely homological, but JU, requires some 
extra care. Here if x = 2agg, x = SiKg^g""*1.) By (-1)*-Hermitian, we 
mean that the form is sesquilinear and satisfies <t>(x,y) = (-l)k<t>(y, x). Also, 
ix(ax) = aix(x)cl, a G ZTT, </>(*, X) = /i(x) + (-l)*/x(.x), and p(x + y) - ]u(x) 
— ^(7) = <K*> y)- Finally, nonsingularity in this context means that 

A<t>: K->Homz„(K, ZIT) - K*, 

given by A<f>(x)(y) = cK^^)^ is a n isomorphism of stably based modules, 
where the dual module (a\(x) = X(ax) for X G K*) has the dual class of 
stable bases. 

Now, suppose (K, <j>, /x) happens to be hyperbolic; i.e., K = L © L', L and 
L' stably based modules of one-half the rank of K whose stable bases "add 
up" to a stable base of K, with <j>\L X L = 0 and /x|# * 0. The module L is 
called a subkernel. After stabilizing, which may be geometrically realized by 
taking the connected sum with Sk X Sk sufficiently many times, we may 
assume stably based modules are based and choose representative bases. 
(Also, we could choose L' with <f> and fi trivial on L'; see [Wa 3, §5].) The 
Whitney trick for removing intersections and self-intersections implies that 
the basis for L can be represented by r disjointly embedded framed spheres 
Sk X Dk in M. Now an argument of Kervaire and Milnor [KM 2, §7] for 
7T = {e} and Wall [Wa 3, §5] in the general case shows that performing 
surgery on these classes "kills" the kernel of h+ so as to produce (see Theorem 
5.5) a simple homotopy equivalence. 

Thus we define the Wall group L%k(*ïï, w) as the Grothendieck group of 
forms (AT, <J>, ft) as above, modulo the subgroups generated by hyperbolic 
forms. The preceding discussion can be formalized to give the following result 
of Wall [Wa 3, §5], at least for n even. 

THEOREM 5.6. Let (A, b\ h: (AT, 3M)-»(Arn, dX) be a normal map that 
induces a homotopy equivalence of boundaries. Assume n > 5. Then the in­
variant a(A, b) E Z/(7T, w) vanishes if and only if (A, b) is normally cobordant 
relative to the boundary to a simple homotopy equivalence. 
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Thus one has the sequence 

StfOO-^ [X; G/H]^Ls
n(<rr, w), n = dim X > 5, (*) 

X a closed //-manif old. 
Afote. The definition of Z^CTT, W), as the definition of odd Wall groups to 

be indicated below, is given in its most primitive form. See [Wa 4] and [Ran] 
for more sophisticated and general definitions. (See also [Lees], [Sh 4].) 

For n = 2k + 1 > 5, Theorem 5.6 and the exact sequence (*) are also 
valid. In this case Kervaire and Milnor [KM] showed directly that, in the 
simply-connected case they studied, one could always perform surgery to 
obtain a homotopy equivalence. A satisfactory invariant was first introduced 
by Wall [Wa 3]. 

To describe the odd dimensional case, let (A, b) be a normal map, h: 
(M, 3M)-->(Ar2A:+1, dX), assumed to induce a simple homotopy equivalence 
of boundaries. (Again, only a simple homology equivalence with coefficients 
in ZmxX is really needed; see [CS 1].) Again we suppose h induces isomor­
phisms of fundamental groups and homology over ZTT, TT = TTXX, through 
dimension [n/2] - 1. Let H be the kernel of h+: Hk(M; ZTT) -» Hk(X; ZTT), 
and choose a set of generators of H. These may be represented (by a Whitney 
theorem) by disjointly embedded spheres with trivial normal bundle, con­
nected to the (pre-assigned) base point. Let U be their union. One can 
arrange h ~~ lD = U, D an /z-disk in Xn. 

The normal map (h\dU, b\dU) is fc-connected, and (K, <j>, ft), as in the 
discussion preceding Theorem 5.6, is defined for this normal map. In fact, 
(K, <f>, /A) is hyperbolic in two ways. In this case K = Hk(dU; ZTT) and the 
kernels, L and L', respectively, of the maps Hk(dU; ZTT)-> Hk(U; ZTT) and 
Hk(dU; ZTT)-» Hk(M0; ZIT), M0 = closure of M — U, are subkernels [Wa 
3, §5.7]. Poincaré duality shows that they are stably based summands of a 
suitable type, and a general position and a counting (over ZTT) argument 
shows that <p and /A vanish on bounding classes, i.e. on L and L'. Further, it is 
easy to check that if L and L' are dual, i.e. K = L © L' as stably based 
modules, then h is a simple homotopy equivalence (see [Wa 3, p. 56]). Also, it 
is shown in [Wa 3] that there is an automorphism of (K, <f>, JU) carrying L to 
L', at least after stabilizing so that L and L' are actually based. 

Hence one may assemble the information as follows: Let Kr be the "stan­
dard (-1)* hyperbolic form" of dimension 2r (="standard kernel" of [Wa 3]), 
with "standard subkernel" Lr and with compatible natural identifications 
Kr+i = Kr ® Kv Thus, for some r, we have an isomorphism p, (K, </>, JU,, L) as 
(fcr, Lr). Let SU?(ZIT) be the automorphisms of Kr (preserving preferred basis 
class, of course), e = ( - 1 / . Then SU?(ZTT) C SU?+1(ZTT) by adding idKj. Let 
SUe(Z7r) be the limit (i.e. the stabilization). The construction of the preceding 
paragraph together with p leads to an element a G SU?(ZTT) C SU^ZTT). 

The choices made, e.g. generators of //, possible automorphisms throwing 
L to L', dictate dividing out Sue(Zir) by the subgroup TWÇZTT) of stabiliza­
tions of elements that preserve Lr (as a stably based module). Further, if we 
choose the generators of H so that the first one, say, is represented by an 
embedded framed sphere on which it is proposed to perform surgery, then 
one sees that the effect of this surgery is to replace a by oa. Here a is the 
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element of SUe(Zir) that is the stabilization of the element of SU^ZTT) with 
matrix (̂  J) with respect to the "standard base" of KX; i.e., o interchanges Lx 

and its dual. 
Wall [Wa 3, §6] proves that the subgroup generated by TUe(Zir) and a is 

normal, with abelian quotient. We define this quotient to be L^(iry W). Then a 
rigorous version of the above discussion yields (Theorem 5.6) for n odd also. 

To analyze the "kernel" of TJ, one uses a geometric realization theorem for 
elements of the Wall groups; f or IT = {e} this is the "plumbing" of Kcrvaire 
and Milnor (see [Br 1]), and, in general, a result of Wall [Wa 3, §5.6]. 

THEOREM 5.7 (PLUMBING THEOREM). Let h: Mn ->X be a simple homotopy 
equivalence of compact closed n-manifolds, n > 5. Let y G Ln+l(iT9 w)9 m = 
mxX with w the orientation character of X (first Stiefel- Whitney class). Then 
there exists a normal cobordism (ƒ, b) of h to a homotopy equivalence h': 
M' -» X9 with o(f9 b) = y. 

Note that if y = 0, then Theorem 5.6 and the ^-cobordism theorem imply 
that for any (ƒ, b) as in Theorem 5.7 with a(f9 b) = 0, we have that h and h' 
represent the same element in %H(X). So if in the notation of Theorem 5.7, 
we put y • [h] = [h']> this gives a well-defined action of the group L*+ X(IT9 W) 
on SH(X). 

COROLLARY 5.8. The sets of ri~\y), for y G [X9 G /H] are precisely the 
orbits of the action of L*+ X(TT9 W). 

We mention that all types of surgery groups are periodic, i.e., L* = L*+49 

for all possible x. Further, if (ƒ, b) is a normal map and CP2 is a complex 
projective 2-spacc (a 4-dimensional real manifold) then o(f9 b) » a((f9 b) X 
CP2). 

We may sum up this section in the following theorem. 

THEOREM 5.9. There exists a functor L = © Lm from finitely-presented 
groups and orientation characters into graded abelian groups such that if X is a 
(simple) Poincaré complex of dimension m > 5, then there is an exact sequence 
of pointed sets 

Ls
mU", ») ^ %%(* ) ± $Z(X ) ̂  !*,(•»> ") (*) 

(where IT = trrx(x) and w is the orientation character). 
In addition, for any m9 there is a natural isomorphism Lm(tn9 w) -» 

LW+4(7T, w)9 such that the diagram 

Lm+l(^w) -> S£(x) -* 9£(JO -+ Lm(ir9w) 

v̂  4̂ * 4̂ * 4^ 

commutes, where /*(ƒ) (resp., j*(f, b)) is the normal map induced by f X 1: 
MXCP2->XX CP2forf G S£(*) (resp.9 (ƒ, b) G ^(X)). 

Notes. I. The above theorem is true in the relative case where (X9 Y) is a 
Poincaré pair in the sense of [Wa 3] if we either assume m > 6 or that y is a 
topological manifold. 
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II. The function a can in fact be defined for any value of m. This is not 
however true for <o. If m = 4 we can define co as well and the sequence (*) 
remains semiexact. It is, however, not known to be exact We shall return to 
this point later. 

HI. If <nx(X) = 1 we have 

[0 m odd, 
LW{1}= Z m = 4k9 

[Z/2Z m = 4A; + 2, 
and 

o(f, b) 
\(o(X) - o(M)) if m = 4*;, 

Arf ;// where ^ is as in [Br 1], [KM 2]. 

We thus obtain 

COROLLARY 5.10. Let (ƒ, b) be a normal map, f(Mm, dM)-*(X, Y) with 
m > 5 andmx(X) = 1 such that f \d M is an isomorphism on homology. 

Then 
(1) if m is odd, (ƒ, b) is normally cobordant to a homotopy equivalence, 
(2) if m =* 4k, ( ƒ, b) is normally cobordant to a homotopy equivalence if ana 

only ifo(M) « a(X), 
(3) if m = 4k + 2, ( ƒ, £) fe normally cobordant to a homotopy equivalence if 

and only if Arf *p = 0, \p as in [Br 1]. 
IV. A theory analogous to the above exists for describing the obstruction to 

making a normal map by surgery into a (not necessarily simple) homotopy 
equivalence. The obstruction groups are usually denoted L*(TT, W). They are 
constructed in a way similar to the groups I^(TT, W), but without the introduc­
tion of stable bases and the demand, at certain points, that certain automor­
phisms preserve a class of bases. The groups L^{ir, w) are related to L^TT, W) 
by the exact sequence of [Sh 3, §4.1] and in particular are isomorphic modulo 
elements of order two. 

V. Since G/H is a commutative //-space, [X, G/H] and thus $H(X) have 
a natural abelian group structure. Nevertheless o is in general not a group 
homomorphism. However if Xm is a manifold then it can be shown that a: 
9^+1(2(Ar/3Ar))~> Lm+l(irl(X), W) is in fact a group isomorphism (m as 
above). This proves useful in 

THEOREM 5.11 (WALL) [Wa 3, CHAPTER 10]. Let Xm be a manifold with 
m > 4 (m > 5 in the relative case) and m = ^r^^). Then there is an exact 
sequence 

Jm + X(X X I, d(X X I))-» <5%+l(X X I, d(X X I)) 

» 
A „ + 1 ( " , H O ^ S £ ( X , 9 * ) 

with 9 a group homomorphism. {Note that I = [0, 1], and we again point out 
that by <ö(X X I, d(X X /)) ̂  ^(2(X/dX)) in this context we mean the 
normal cobordism classes of degree 1 normal map (ƒ, b): (M, 3M) -> (X X 
ƒ, 3(^ X ƒ)) with f\dM an isomorphism (rather than just a homotopy equiva­
lence) and the normal cobordism being a product on boundaries.) 
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5.2 Surgery and the smoothing and triangulations of manifolds. Having 
briefly sketched the framework of surgery theory we now describe some of its 
applications. We again point out that the theorems of §5.1, dependent as they 
are on the Whitney trick, are known to be true only under the dimensional 
restrictions (usually m > 5 or m > 6) stated in their hypotheses. Thus 
although they do not tell us what is happening in 4-dimensional topology they 
do indicate what types of results to look for. 

The most striking applications of surgery theory is to the classification of 
manifold structures. Thus let (H2, Hx) denote any of the pairs (PL, O) or 
(TOP, O) or (TOP, PL) (or the corresponding nonstable pairs). Clearly if X is 
an Hx -manifold it has the underlying structure of an H2'ïaamfold as well. 
Now suppose that X is an //2-manifold. Then giving an //rstructure 2 on X 
is equivalent to asserting the existence of an H ̂ manifold M and an H2-ho-
meomorphism ƒ: M -» X. 

One can impose three distinct equivalence relations on such /^-structures. 
1. CONCORDANCE. Our previous definition (see the introduction) translates 

as follows: ƒ : Mt -» X, i = 0, 1, are concordant if and only if there exist an 
Hx-manifold N and an //2-homeomorphism F: N-*X X I with F\F~l(XX 

2. ISOMORPHISM. There exists an //^-isomorphism <J>: Mx -> M2 making 

commute. 
3. ISOTOPY. There exists an /^-isomorphism, <j>: Mx -> Af2, isotopic to the 

identity and making 

commute. 
Clearly Isotopy => Isomorphism but Isomorphism ^ Isotopy. (In fact there 

exist nonisotopic smooth structures on S1 which are isomorphic. See [KS 
1, Essay 1].) 
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We now define 

Q>H2/HX(X ) — concordance classes of //^-structures on H2, 

$H2/H{(X ) = isotopy classes of //^-structures on H2, 

\somHi/Hi(X ) = isomorphism classes of //^-structures on H2. 

Lastly recalling our discussion in previous sections we note that one can 
define analogues which are adequate substitutes for tangent bundles in all our 
categories H above and such bundles are classified by maps M -» BH^k) (or 
M --> BH in the stable case). 

Notice that tangent bundles in a given category H are H -manifolds. (There 
are certain technical problems in PL. Again see [KS 1] for further explana­
tions.) 

If X is an Hx-manifold, its tangent bundle has an //rstructure. By 'for-
getfullness' it then has the structure of an //2-bundle as well. [Again there 
occur some difficulties in going from DIFF to PL which we suppress.] 

Now conversely suppose X has an //2-structure and let ?T: X~> BHi be its 
(stable) tangent bundle. Then by a tangential //rstructure on X we will mean 
a lift ?F' of ?T: X -* BH to a commutative diagram 

We call two lifts 5", ?P equivalent if they are fiber homotopic. 
Then as in our discussion of [X, G/H] we have that equivalence classes of 

tangential i/j-structures correspond to homotopy classes of cross sections of 
the bundle ?T*[7r] with fiber H2/Hx induced by 77. We will denote the 
equivalence classes of stable tangential //,-structures on X by ^H2/HP^\ 
Since the fibration BH -» BH acts like a principal fibration we see that if 
%2/HX(X) * 0 then 6Sl

H2/Hl(X) - [X, HJHX\ 
Clearly if an 7/2-manifold X is to have an Hrstructure its stable tangent 

bundle must have an Hx -structure. Thus a necessary condition for the 
existence of an Hx-structure on X is that ^Hl/Hx{X) not vanish or equiv-
alently that the bundle ?T*|y] have a cross section. Using obstruction theory 
one sees that the obstruction to the existence of such cross sections lies in 
groups of the form H'(X; iri_x(H2/Hx)) while obstructions to homotoping 
one cross section to another lies in Hl(X, ir^Hn,/ Hx)). 

For future use we recall the following deep results. (See [KS 1] for details 
and reference.) (We note that the following are difficult calculations involving 
among other things the use of Rohlin's theorem, nonsimply connected 
surgery, the ^-cobordism theorem and deep results of Cerf [Cerf l], [Cerf 2].) 

(1) Corresponding to BHi -» BHz -» BG with (#2 , Hx) = (PL, O) or 
(TOP, O) or (TOP, PL) we have 'principal' fibrations H2/Hx -> G/Hx -> 
G/H2 and similarly with (G, H2, Hx) replaced by (G(k), H2(k), Hx(k)) or by 
(TOP, PL, O), (TOP(Â:), PL(A:), 0(A:)). 
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(2) TOP(fc)/PL(A:) ^ TOP/PL *> KÇL» 3) for k > 5. TOP(fc)/PL(A:) is 
contractible for k < 3. 

(3)(i) 
0m , m > 5, 

^ (TOP/O) -
[ 7rmA(Z2, 3), m < 6, 

where ©m is the group of A-cobordism classes of smooth homotopy n-spheres. 
(See [KM 2] for some calculations.) 

(ii) TOP(A:)/0(A:) is contractible for k = 2 and 

w,(TOP(3)/0(3)) - 0 for i < 4, 

(iii) TT*(TOP/0, TOP(m)/0(m)) = 0 k < m + 2 and m > 5, 

(4) 7Tm(G/PL) = T T J G / T O P ) -
0, m = 1, 3 (mod 4), 
Z2, m = 2 (mod 4), 
Z, m = 0 (mod 4), 

with the natural fibration B?L —» 2?TOP -» 2?G inducing m^G/PL) ? 
tf/G/TOP) for / T^ 4 and the commutative diagram 

0 - * TT4(G/PL) ~» TT4(G/TOP) -» TT3(TOP/PL) -> 0 

0 -> Z -> Z -» Z2 -» 

otherwise. 

,(TOP/0) j > 4, 
(5) ,(H./0)«{j< . < 6 

Since TOP/PL œ ^(Z2, 3) we immediately obtain the following classifica­
tion result. 

LEMMA 5.12. Let X be a topological manifold. 
(1) Then X has a stable tangential PL-structure if H4(X; Z2) = 0. 
(2) Given a stable tangential PL-structure on X then the number of distinct 

stable tangential PL-structures on X is in 1-1 correspondence with H\X; Z^. 

To obtain a result giving us information about the relation between the 
stable tangential Hx-structures on the #2-manifold X and actual f/pstruc-
tures on X we must relate ^H2/Hl(^) with $H2/HXW)

 o r ^somH2/Hl(^)-
Thus as a first step let 17: Q>H2/HS^)-^^H2/HX{^) *>e ^ e °bvious map 

associating the Hx -structure of its stable tangent bundle to any Hrstructure 
on the //2-manifold X. Ideally we would show that t\ is a bijective correspon­
dence. This however is not always true! (It is false for 3-manifolds and 
(H2, Hx) = (TOP, PL) as a consequence of results of Moise [Moise].) 

What can be shown is 

THEOREM 5.13 [KS 1], [KS 2] (STABLE CLASSIFICATION THEOREM). Let 
(H2, Hx) be either (TOP, PL), (PL, DIFF) or (TOP, DIFF). 

Let Mn be an H2-manifold. 
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Then 
(1) if (H29 Hx) - (PL, DIFF) then i,: %Hl/Hx(M) -> %l/Hl(M) is a bisec­

tion, and 
(2) if (7J2, Hx) - (TOP, PL) or (TOP, DIFF) and n ^ 3, 4 */*<>« TJ is a 

bijection. 

If (i/2 , Hx) = (TOP, PL) then Theorem 5.13 fails for 3-manifolds. 
Theorem 5.13 is essentially based on two ingredients. 
Let ^H£n)/Hx(n)(Xm\ n > m, denote the equivalence class of lifts of ?T: 

x~*BH2{n) t o '^': X^>BHi{ny That is %^n)/Hl(n) are the #rstructures on 
^x © en'm (en~m is the n - m plane trivial bundle over X). (If 
%M/HM&m) * 0 then it equals [*", H^n)/Hx(n)].) 

The first ingredient needed in the proof of Theorem 5.13 is then: 

THEOREM 5.13'. Let n > \ and let (H2, Hx) be as in Theorem 5.13. Let 
(H2(n), Hx(n)) be either (PL(n% DIFF(n)) or (TOP(/z), DIFF(«)) or (TOP(AÎ), 

PL(«)). 
Suppose Mn is an H2-manifold. 
Then 
(1) if (H2, Hx) = (PL, DIFF) then ij: SPL/DIFF(M) -> 5pL(n)/DIFF(n)(M) is a 

bijection; 
(2) ifH2 = TOP and ƒƒ = ƒƒ ,= DIFF or PL then, ifn*4, T?: S T O P / / / W 

-» ^TOP(n)/^)(M) « <* bijection. 

(Note that Theorem 5.13' is true for (TOP, H) if n = 3 even though 
Theorem 5.13 is not.) 

What Theorem 5.13' is asserting is that if the tangent bundle r of an 
if2-manifold M has an #rstructure then M itself has an /^-structure 
inducing that of (ö. Its proof if n ¥= 3 can be reduced to the following 
product-structure theorem. 

THEOREM 5.14 [PRODUCT STRUCTURE] [KS 1], [KS 2]. Let (H2, Hx) be as 

above. Let Mn be an H2-manifold. Suppose 2 is an Hx-structure on Mn X Rs, 
s > 1. If either ( # 2 , Hx) « (PL, DIFF) or ( # 2 , Hx) « (TOP, DIFF) or 
(TOP, PL) dwrf n ïh 3, 4, //ie/z /Aere exists an Restructure 6 on Mn such that 
Me X Rs is concordant to (M X Rs)^. Furthermore 0 is unique up to concor­
dance. 

[Theorem 5.14 fails if n = 3 and (H2, Hx) = (TOP, PL) say. In particular if 
M = S 3 then S3 X Rs f or s > 2 has two distinct PL-structures while by 
Moise's theorem S 3 has a unique PL-structure.] 

Then Theorem 5.13 is deduced by showing that under the hypothesis of 
Theorem 5.13, stable classification is implied by nonstable classification 
which in turn can be deduced from Theorem 5.14. That is one has: 

THEOREM 5.15. Under the hypothesis of Theorem 5.13 there is a bijective 
correspondence between <$H2(n)/Hl<n)(Mn) and ^H2/H^n)' (Note that 
^TOP(3)/PL(3)W ) = \e} while ^TOP/PLW ) œ H (S Z2) = Z2 since 
TOP(?)/PL(#) is contractible for q < 3 while TOP/PL « K(Z2, 3).) 
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Lastly one must make the transition from concordance classes to isomor­
phism classes. This unfortunately can not be done. However we can establish 
in the appropriate dimensions a bijective correspondence between isotopy 
classes and concordance classes. 

THEOREM 5.16 [CONCORDANCE IMPLIES ISOTOPY]. Under the same conditions 
as above there is a bijective correspondence between ^H2/HX{^

 an^ ^H /H (^0* 

Before continuing, we mention what ingredients are required to prove 
Theorems 5.14 and 5.15. We must distinguish the case (H2, Hx) = 
(PL, DIFF) from the other cases. 

If (H2, Hx) = (PL, DIFF) the methods involved are the smoothing 
methods developed by Cairns, Munkres, Hirsch and Mazur ([Ca 1], [LR 2], 
[Mun 1], [Mun 2], [Hi 1], [Hi 2], [HM]). They do not depend on either surgery 
theory or the /r- or s-cobordism theorem in any way. In fact the smoothability 
of all PL-manifolds of dimension < 4 was already demonstrated in 1944 in 
[Ca2],[Ca3]! 

Now suppose H2 = TOP and Hx = PL or DIFF. If n < 2 then all our 
results essentially reduce to classical results about the existence and unique­
ness of triangulations of surfaces F2. (n = 1 is of course completely trivial.) 
For n = 3 this same result is due to Moise [Moise] by entirely different 
methods than those used in the higher-dimensional case. If n > 5 then the 
above theorems are due to Kirby and Siebenmann [KS 1], [KS 2]. See also 
Lashof and Rothenberg [LR]. The proof of Theorem 5.15 is based on the use 
of the handle straightening machinery developed in [KS 1]. This in turn 
involves heavy use of the PL and DIFF s-cobordism theorem. Theorem 5.14 
is in turn equivalent to Theorem 5.16 plus the stable homeomorphism 
theorem of Kirby [Kirb 4], which is based on heavy use of nonsimply 
connected surgery. 

(A homeomorphism h: Rn -»R" is called stable if it can be written as a 
finite composition of homeomorphisms each of which is somewhere the 
identity. The stable homeomorphism conjecture is then: 

SHC„: All orientation preserving homeomorphisms of Rn are stable. This is 
closely related to the annulus conjecture: 

AC„: Let/, g: Sn~l -> Rn be disjoint, locally flat imbeddings with f(Sn~l) 
inside the bounded component of R" — g(Sn~l). Then the closed region A 
bounded by f(Sn~l) and^S"1"1) is homeomorphic to Sn~l X [0, 1]. 

In fact SHC„ => AC„ and AC^ for all k < n implies SHC„. (It is easy to 
show ([RS], [Rlf]) that the open region between f(Sn~l) and g(Sn~l) is always 
homeomorphic to Sn~l X (0, 1).) 

Kirby showed in [Kirb 4], using a new idea of furling and unfurling tori as 
well as the homotopy classification of tori due to [Wa 5] and [HS 1], [HS 2] 
(which is based on the full power of nonsimply connected surgery) that SHC,, 
is true for all n > 5. (It was classically known to be true for n < 3).) 

We note that the truth of Theorem 5.16 in dimension 4 would imply SHC4 

and thus in dimension 4 Theorem 5.16 is equivalent to Theorem 5.14. 
As neither the stable homeomorphism theorem nor the s-cobordism theo­

rem is known for dimension 4 the proofs of 5.14 and 5.15 clearly break down 
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in this dimension. Furthermore as we pointed out Theorem 5.14 is false if 
dimension (Af ) = 3. This in turn implies that Theorem 5.15 must fail in either 
dimension 3 or 4 since its truth in all dimensions would imply (see [Kirb 3]) 
that the product structure theorem is true in all dimensions. Lastly since the 
product structure theorem fails in dimension 4, essentially nothing is known 
about TOP(4)/#(4), H = PL or DIFF and there is thus no analogue of 
Theorem 5.15 in dimension 4. 

Putting together our theorems above we arrive at the following classifica­
tion theorem. 

THEOREM 5.17. Let (H2, H^) be as above and suppose Xq is an H2-manifold. 
Then 

(l)If(H2, Hx) = (PL, DIFF) then X admits a smooth structure if and only if 
a certain PL/DIFF bundle over X has a cross section. If X admits a smooth 
structure then isotopy classes of smooth structures are in 1-1 correspondence with 
[X, PL/DIFF]. 

Suppose q¥=3,4. 
Then: 
(2) If H2 « TOP and H = Hx = DIFF or PL then X admits an H-structure 

if and only if a certain TOP/H bundle over X has a cross section. If H — PL 
then equivalently X admits a PL-structure if and only if a certain obstruction 
o(X) G H\X; Z2) vanishes. 

If X admits an H-structure then isotopy classes of H-structures are in 1-1 
correspondence with [X, TOP/H]. 

If H = PL this in turn is in 1-1 correspondence with H\X\ Zj). 

Using the product structure theorem one can also deduce the following 
theorems. 

THEOREM 5.18 (TOPOLOGICAL TRANSVERSALITY). If ƒ: Mn-*Yn+q is a 
continuous function between TOP manifolds and Xq is a locally flat TOP 
submanifold of Y. Then ifm=£4^n — m,f is homotopic to a map ƒ ' which is 
transverse regular to Xq. 

THEOREM 5.19. Every TOP manifold Xn with n > 6 has a topological 
handlebody-decomposition. 

53 Triangulating 4-manifolds and some consequences of Rohlin's theorem. 
We now turn to dimension 4 manifolds. The classification theorem above 
combined with the fact that ^(PL/DIFF) = 0 f or i < 7 shows that every PL 
4-manifold has a unique differentiable structure. This is the result of Cairns 
[Ca 2], [Ca 3] already mentioned. 

As we already mentioned the (TOP, H) product structure theorem is false 
in dimension 3. Its status in dimension 4 is as yet open. If it is true in 
dimension 4 then Theorems 5.13, 5.14, 5.15, 5.16, 5.17, 5.18 and 5.19 are also 
true in that dimension! and Theorem 5.13' is then in turn true in all 
dimensions! [Kirb 4]. In particular one also has that TOP(4)/PL(4) c* 
TOP/PL e* K(Z2, 3). (We note that if M4 is a compact topological 4-mani­
fold whose tangent bundle T admits a PL structure then so does M — {pt}. 
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Furthermore if a, /? are stably equivalent PL structure on M then they are 
concordant. See [LR], [LR 2].) In addition SHC4 and thus AC4 would be true! 

As we already pointed out product structure for n = 4 is equivalent to 
concordance implies isotopy for n = 4 and implies topological transversality 
for n = 4. In [Kirb 4], Kirby makes the attractive conjecture that: 

CONJECTURE (Kirby). The product structure theorem in dimension 4 is true. 
We note that four-dimensional topological transversality in turn implies 

that there exists a compact simply-connected unbounded topological mani­
fold M which is almost parallelizable and has o(M) = 8. (Proof: By Edwards 
[Ed 1] cP X S1, P the Poincaré homology sphere, is a topological manifold. 
Making the projection map *n\ cP X Sl -> Sl transverse regular to * G Sl 

gives the desired 4-manifold M = tf"^*).) Note that M of course is not 
combinatorially triangulable! 

Scharlemann [Sch 3] in turn has shown that if such a topological manifold 
exists then Theorem 5.18 holds without any restriction. (The proof of this 
runs as follows: Suppose M as above exists. Then M — {pt} is an open 
parallelizable manifold and so by [Lash] is smoothablc. Then the induced 
smoothing on a neighborhood of the excluded point must be exotic for 
otherwise M would itself be smoothable. There therefore exists an exotic 
smoothing Q (i.e. not concordant to the usual one) of (S3 X R). One then 
notes that one still has DIFF transversality in (S3 X R)u (i.e. h: R4 X Rl -* 
Rl is DIFF transverse to 0 in [(R4 - 0) X R \). 

Now it is easy to see that TOP transversality holds in general in dimension 
4 provided it holds for any continuous map ƒ: R4 X R1 -* Rl and 0 Œ Rl. 
One can now construct a map ƒ*: R4 X JR1-»!?1 such that ƒ* = ƒ on 
R4 X Rl - (D4 X D\) and f\x9y) = h(2x, 2y) (h as above) on (\B4 

x\Bx) and/1 extends nicely on B4 X Bl - (\B4 X \Bl). Using the DIFF 
transversality of h we conclude that/1 is DIFF transverse to 0. But clearly/1 

is homotopic to ƒ and so TOP transversality holds! (See [Sch 3] for further 
details.) 

We have thus seen that four-dimensional topological transversality is 
equivalent to the failure of Rohlin's theorem for TOP manifolds. As we noted 
in Chapter 1 Rohlin's theorem points out an anomaly in the behavior of 
4-dimensional PL-manifolds. [In all other dimensions congruent to zero 
(mod 4) there exist closed almost parallelizable PL spin manifolds of signa­
ture 8!] This anomaly has been exploited by Siebenmann [Sb 1] to prove that 
the DIFF (PL) s-cobordism theorem must be false in dimension 4 or 5. In 
particular we have: 

THEOREM 5.20 (SIEBENMANN). For either n = 4 or n = 5 {or both) there 
exists an s-cobordism from Tn to itself which is not a product (Tn = n-torus). 

The proof of Theorem 5.20 uses the assumed existence of an .y-cobordism 
theorem in dimensions 4 and 5 to produce (via the Wall [Wa 5], Hsiang and 
Shaneson [HS 1], [HS 2] classification of fake tori) a compact 4-dimensional 
PL or DIFF M with w2(M) = 0 and a(M) - 8. This however contradicts 
Rohlin's theorem and so Theorem 5.20 follows. 

The results of Hsiang and Shaneson and Wall provide us with one of the 
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prettiest applications of Rohlin's theorem and high-dimensional nonsimply-
connected surgery. Essentially they use surgery theory to construct exotic 
homotopy equivalences ƒ : W -> Tn and then use Rohlin's theorem to show 
that for certain of these ƒ, W isn't PL-homeomorphic to Tn. For example if 
n * 5 there exist exactly three homotopy tori (two fake and one honest one). 
Siebenmann [Sb 3] then used these classification results to disprove the 
Hauptvermuting for manifolds of dimension greater than five. (Recall that 
the Hauptvermuting is essentially the assertion that PL-structures on TOP 
manifolds are unique up to isomorphism) (Note that the classification results 
of [KS 1], [KS 2] mentioned earlier classify PL-structures up to isotopy and 
thus can not be used directly to disprove the Hauptvermuting. As we pointed 
out earlier nonisotopic structures may be isomorphic!).) More precisely [HS 
1], [HS 2], [Wa 5] prove that there exists a PL-automorphism a of B2 X Tn, 
n > 3, such that (1) the automorphism /? induced by a on the quotient T2*n 

of B2 X Tn (obtained by identifying opposite sides of the square B2) has 
mapping torus 

r(/o = /xr2+7(o,x)~(i,/}(*)) 
not PL-isomorphic to T3+n. 

(2) There exists a PL-cobordism (W, Tn+3, T({i)) and a homotopy equiva­
lence of W to ((ƒ X T3) # Q) X Tn extending the standard homotopy 
equivalences T3+n c- 0 X T3 X Tn and T(/3) c* 1 X T3 X Tn

9 where Q is 
the Poincaré complex Mj* discussed in §1.3. 

Siebenmann then showed that there exists a topological homeomorphism h: 
T3+n « T(fi) which is not isomorphic to a PL-homeomorphism. (If h were 
isomorphic to a PL-homeomorphism we could use it to identify T3+n with T& 
in W above. This would give rise to a PL-manifold XA+n c~ (S1 X T3 # Q) 
X Tn and use of PL-transversality would give a 4-manifold M with wx(M) = 
w2(M) = 0 and o(M) = o(Sl X T3 # Q) = o(Q) = 8, contradicting 
Rohlin's theorem.) One also obtains [Sb 1]: 

THEOREM 5.21. There exists a closed orientable TOP manifold of dimension 
either A or 5 that admits no topological handle decomposition. 

PROOF. If Rohlin's theorem were known to be false in TOP then any 
counterexample M4 would not have a handle decomposition. (Proof: Using 
Moise's results on the existence and uniqueness of 3-dimensional triangula­
tions one can show that any 4-manifold which has a handlebody decomposi­
tion admits a PL-structure.) Not having such a counterexample one proceeds 
as follows. 

Let W5 = Q X S1 (Ô as above) and recall that by [Ed 1] W5 is a 
topological manifold. We assert that if W5, the infinite cyclic cover of Ws

9 

has a handle decomposition then Rohlin's theorem failsJor TOP. 
PROOF. The idea here is to pick a compactum K in W5 such that W5 - K 

has two unbounded components. Let H be a finite handlebody containing K 
so that H separates the ends of W5. Thus dH separates the ends of W5. One 
can then check using homology theory that some unbounded compact con­
nected component X of dH separates the ends of Ws. One easily checks that 
w2(W

5) = 0 and since X has a trivial normal bundle in W5 it must have 
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w2(X) = 0. One can then show that W5 X CP2 = M f X R (where Aff is the 
manifold we constructed in Chapter 1, §3) and that M f is cobordant to 
X XCP2. Then X, Aff, X X CP2 must all have the same signature which is 
8. Thus Rohlin's theorem fails if W5 is handleable. In particular we have 
proven Theorem 5.21. 

(We note that one can prove Theorem 5.21 without using the result of 
Edwards quoted above. One can in fact establish using surgery theory alone 
the existence of a topological manifold W5 homotopy equivalent to X4 X Sl 

and continue the proof using W wherever we used W. This was the method 
used by Siebenmann to prove Theorem 5.21 some years before Edward's 
double suspension theorem was proven!) 

Recently Siebenmann and Matumoto ([MSb]) have extended 5.20 to the 
topological category as well. They prove 

THEOREM 5.20' (MATUMOTO AND SIEBENMANN). There exists a compact 
topological (= TOP) cobordism (W; V, V1) that is not a product cobordism, i.e. 
not homeomorphic to (V X I; V X 0, V X 1). 

Indeed there exists such an ^-cobordism with either V = V1 = Sl X RP2 

or V = V1 = T2 X RP 2 but it is not known which. 
The proof of Theorem 5.20 arises from the existence of normal invariants 

in [I X RP2 X S\ G/TOP] which do not come from [/ X RP2 X 
S \ G/PL]. We refer the reader to [MSb] for details. 

Although one has no counterpart of higher-dimensional smoothing and 
triangulability theorems in dimension 4 one can get some results modulo 
connected sums with S2 X S2's (i.e. stable results in the sense of Chapter 
1, §2). This should not be too surprising since as we showed in Chapter 1 the 
^-cobordism theorem is true modulo connected sums with S2 X S2 in dimen­
sion 4. 

In particular Cappell, Lashof and Shaneson ([LS], [CLS] see also [Sch 2]) 
have shown: 

THEOREM 5.22 [LS]. Let M be a closed 4-manifold. Then the topological 
tangent bundle ?TM of M lifts to a smooth vector bundle if and only if for some 
k > 0, M # k(S2 XS 2 ) admits a smooth structure. Furthermore ifMa9 M$ are 
two smoothings of M inducing equivalent lifts of ^M to a smooth vector bundle 
then for some k, the inclusion map i: M° -* M # k(S2 X S2) is isotopic to a 
smooth embedding of (M\ in Mfi # k{S2 X S2) [M° is M - 4-disc] 

We note that since we do not know if 7rf.(TOP(4)/PL(4)) -» ^.(TOP/PL) is 
a monomorphism for any i, the foregoing result is not usable to obtain any 
information about smoothings directly from stable liftings of two lifts. By a 
direct argument one can obtain: 

THEOREM 5.23 [LS]. Let M4 be a closed topological 4-manifold whose stable 
tangent bundle lifts to a smooth vector bundle. Then for k sufficiently large, any 
connected sum M # k(S2 XS 2 ) is h-cobordant to a smooth manifold. 

The arguments used to prove Theorems 5.22 and 5.23 use the stabilization 
arguments found in [Wa 1], [Wa 2] [CS 1] to circumvent the difficulties due to 
the nonexistence of the ^-cobordism theorem in dimension 4. 
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One can similarly establish analogues of the product structure theorem in 
dimension 4 if one is willing to allow connect summing with S2 X S2's. 

More precisely one has by methods similar to the above: 

THEOREM 5.24 [CLS]. Suppose X is a closed topological manifold and 6 is a 
smooth structure on X X R. Then for some k > 0, [(X # k(S2 X S2))]0 X R 
is diffeomorphic to M X R, M a smooth closed 4-manifold. Furthermore if f or 
some k' > 0, [X # k'{S2 X S2)]9 X R is diffeomorphic to M' X R, M' a 
smooth closed 4-manifold, then there exist kx, k2 > 0 such that M # kx(S

2 X 
S2) is diffeomorphic to M' # k2(S

2 X S2). 

Using the methods of [CLS] one can also establish 

THEOREM 5.25. (1) If TT 3 (TOP(4 ) /PL(4 ) ) -* TT 3 (TOP(5) /PL(5) ) is an isomor­
phism, every closed topological 5-manifold is a handlebody. 

(2) If TT 3 (TOP(4 ) /PL(4 ) ) -» TT 3 (TOP(5) /PL(5 ) ) is onto then every oriented 
closed topological 5-manifold is a handlebody. 

(Note that (2) above would imply that Rohlin's theorem fails for TOP.) 
One can get results reminiscent of Theorem 5.17 for s-cobordisms between 

4-manifolds as well. If W, W' are s-cobordisms from a compact topological 
4-manifold to a smooth manifold we say that W is equivalent to W' if there 
are smooth s-cobordisms V and V' with 9 2 W = dxV, d2W = dxV' and a 
homeomorphism of W U V onto W' U V' which is the identity on M = dx W 
**dxW' and a diffeomorphism from d2V to d2V\ 

THEOREM 5.26 [Sch 2]. There is a k such that for any connected compact 
topological manifold M, equivalence classes of s-cobordisms of M # k(S2 X 
S2) to a smooth manifold are in 1-1 correspondence with elements of 
H3(M; Z2). If M is orientable then k may be taken to be 1. 

CHAPTER 6. SURGERY IN DIMENSION 4 

6.1 Obstructions to four-dimensional surgery. It is clear from our discussion 
in the previous chapter that although surgery theory has greatly advanced our 
knowledge of the classification of PL-structures on topological manifolds in 
high dimensions it has contributed essentially nothing to the resolution of 
such questions in dimension 4. Furthermore no other techniques have 
managed to tell us anything either. 

Another application of surgery theory which has yielded high caliber 
results has been that of the existence and classifications of PL or smooth 
manifold structures of a given homotopy type. These results are dependent of 
course on working with the spaces G/PL and G/O. For the case of simply-
connected homotopy types we have, for example, the following results. 

THEOREM I [Br 1], [N]. Let (f, bt)9 i = 0, 1 be normal maps f: M? -*X,Xa 
l-connected Poincaré complex of dimension m > 4 and suppose /0, fx are 
homotopy equivalences. 

Iff0 is normally cobordant to fx then (1) M0 is h-cobordant to Mx in the PL or 
TOP category. 
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(2) In DIFF, if m is even, M0 is smoothly h-cobordant to Ml9 while if m is 
oddy M0 is smoothly h-cobordant to Mx # 2, for some homotopy sphere 
2 = dU9 U a smooth parallelizable (m + X)-manifold. 

COROLLARY II. The integral cohomology ring and rational Pontryagin classes 
determine a smooth simply-connected manifold Mn to within a finite number of 
possibilities for n > 5. If the groups H4i(M

n) are finite for 0 < Ai < n then 
there exist a finite number of smoothness structures on the topological manifold 
M\ 

One can also get specific results on the existence of fake manifolds of the 
homotopy type of a real or complex projective space or of lens spaces. See 
[Wa 3] for a discussion and references. 

Although neither Theorem I and its corollary nor the analogues of the 
results of [Wa 3, §§14, 15] on fake projective spaces, fake lens spaces and fake 
tori are known to be true in dimension 4, they do indicate what types of 
phenomena we should look for. 

For example if surgery theory were to work in dimension 4 as in higher 
dimensions we would be able to deduce the existence of an almost paralleliz­
able TOP manifold W4 with definite bilinear form of signature 8. Similarly 
the existence of PL 4-manifolds realizing E% © Es as well as El6 could be 
guaranteed. 

The problem which prevents automatic extension of higher-dimensional 
surgery techniques to dimension 4 is the same obstacle encountered in trying 
to extend the proof of the A-cobordism theorem to dimension 4. That is, the 
failure of the Whitney trick for codimension 2 submanifolds of 4-manifolds. 
In particular there exist homology classes £ E H2(M; Z) of simply-connected 
4-manifolds which can not be represented by (smoothly) embedded spheres! 
Thus one can not even begin to try and do surgery on these classes. 

The existence of nonrepresentable homology classes can be immediately 
seen as a consequence of Corollary 1.13 [KM 1, Theorem 1] which we recall. 

COROLLARY 1.13. Let M4 be a closed, orientable PL 4-manifold and suppose 
£ E H2(M; Z) is characteristic (i.e. its reduction mod 2 is dual to the second 
Steifel-Whitney class w2(M) E H\M\ Z) of M, or equivalently £•£ + £•</> = 
0 (mod 2) for all <f> E H2(M)). Then if £ is representable by a locally-flat 
2-sphere we have £ • £ — a(M) = 0 (mod 16). 

We thus deduce: 

PROPOSITION 6.1. There exists a closed simply-connected PL A-manifold M4 

and £ E 7r2(Af4) such that £ is not representable by a locally flat embedded 
sphere. In particular if M4 = S2 X S2 and a, /? are the standard generators of 
H2(S

2 X S2; Z) « 7T2(S
2 X S2; Z) or M4 = CP2 and y is the standard 

generator of H2(CP2) then neither ±2(a + /?) nor ±3y can be so represented. 

PROOF. For S2 X S2 we have [2(a + fi)]2 = 8 which clearly is not con­
gruent to o(S2 X S2) = 0 (mod 16) and for CP2 we have [3y]2 = 9 which is 
not congruent to o(CP2) = 1 (mod 16). 

Actually 1.13 implies that if M = S2 X S2 and £ = pa + q/3 E H2(M; Z) 
then whenever p, q are even, £ is characteristic, while if p = q = 2 (mod 4) 
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then £2 = 8 (mod 16) and so cannot be represented. Similarly ry with 
r = ± 3 mod 8 can not be represented. (Results of Tristram [Tr], Rohlin [R 2] 
and Hsiang and Sczarba [HSZ] show that if g.c.d. (p9 q) > 1 in £ = pa + qfi 
or |r| > 3 in ry then neither £ nor ry can be represented by locally-flat 
embedded spheres.) 

Knowing that all elements of H2(M) can not be represented by smoothly 
or locally-flat embedded spheres it is of interest to determine what is the 
minimal possible genus of an orientable surface Fg representing a given 
element £ G H2(M). In addition, though also not useful for purposes of 
surgery, one can also ask: when is £ E H2(M) representable by a not 
necessarily locally-flat embedded sphere? In [KM 1] Kervaire and Milnor 
show, for example, that all elements in H2(S

2 X S2) and H2(CP2) can be so 
represented! We discuss both of these questions in some detail in Chapter 7. 

We note that the above proposition depended on Rohlin's theorem and 
thus on the fact that M was smooth (= PL in dimension 4). Questions about 
4-dimensional topological manifolds are even more delicate than about PL 
ones and we thus restrict attention to the PL (= smooth) category in the 
discussion which follows. 

6.2 Four-dimensional analogues of high-dimensional surgery theory. As a 
consequence of Proposition 6.1 it is clear that much more care must be 
exercised in trying to do 4-dimensional surgery than in higher dimensions. 
There are then two alternate approaches to extending higher-dimensional 
results to dimension 4. One can either: (1) attempt to use alternative argu­
ments not directly involving embedding questions to deduce 4-dimensional 
extensions of the basic high-dimension surgery theorems, or (2) discover 
which elements of H2(M

4) are representable by embedding/: 5 2 X D2 -» M4 

and build a new theory restricting consideration to those elements. 
We shall discuss both approaches in what follows: In both methods 

progress depends strongly on understanding Isom(Af) = {auto PL-homco-
morphisms of M } and SE(M) = {simple self-homotopy equivalences of M}. 

The basic tool in the extension of Theorem 5.9 to dimension 4 is then: 

LEMMA 6.2 (NOVIKOV, WALL) [N], [Wa 3, Chapter 14]. Let X be a compact 
connected oriented PL A-manifold with H2(*nx(X): Z2) = 0. 

Then every element in ^4(X9 dX) with surgery obstruction zero is realizable 
by an element of SE(Ar, dX) (where in the relative case dX ^ 0 we demand 
that f G SE(Jf, dX) is an isomorphism on dX). 

PROOF. We shall begin by supposing that ni(X) = 0 and then indicate the 
necessary modifications if only H2(7rx(X)9 Z2) = 0. We must first calculate 
what Ker <J, o: <54(X, dX) -» L4(l) is. 

Using the methods of [Br 1], [SI, 2] it can be shown that %(X, dX) cz 
[X/dX, G/PL] is isomorphic to Hom(H2(X9 dX; Z2)x, Z )̂ 0 Z, where 
H2(X9 dX; Z2)x = Ker w2(X)9 w2(X): H2(X9 dX; Z2) -» Z2 the second 
Stiefel-Whitney class of X. Furthermore a is essentially projection to Z « 

Now by [Thm] we can represent a basis of H2(X9 dX; Z2)x by 2-submani-
folds V2 of X. Then ker o corresponds to all possible assignments of elements 
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of Z2 to the Vt. To proceed we must see precisely how Ker a corresponds to 
Hom(H2(X, dX; Z2)-\ Z2). 

Thus suppose (ƒ, b) is a normal map, ƒ: (M, dM) -» (X9 dX), in ^ (X, 9A"). 
Use the graph of the embedding Vi? -» A" to consider P̂  as a submanifold of 
X XVt and let ƒ,: (M, 3M) X K, -> (X, dA') X K, be ƒ X idK/. Then we can 
use transversality and elementary surgery to deform ft so that (1) it is 
transverse regular to Vt and (2) Ut = fr\Vg) is a submanif old of (Af, dM) X 
^. and ^ = ft\ Ut is 2-connected. Then fy defines a normal class [<£,] in 9"2(^i) 
and we define <£(ƒ): # 2 ^ , 9 *; Z2)x -»Z2 by cK/X^) = <*([<*>,]) G L2(l) « 
Z2. (The Z-factor in %(X, dX) is given by Index^) - Index(Af ) (or \ that 
difference if w2(X) = 0), as in [Br 1], [N].) 

Now to show that SE(Ar, dX) -» Ker o is onto we must show that any 
assignment of elements of Z2 to the Vt is induced by a self-homotopy 
equivalence of X. We begin by choosing an embedding of Z>4-» X. Shrink 
D4 to a point to get a map c: X -^>X \/ S4. Recall that TT4(S

2) « Z2 and let TJ 
represent the generator. 

Suppose a: S2 -» A" represents an element of ^(A") and set Fa equal to the 
composite map 

x!xvs*l2xvs*iu-?x. (•) 
Clearly Fa induces the identity on HJJC) and thus is a homotopy equiva­
lence. (In fact it is easy to see that even if X is not simply-connected Fa will 
induce the identity on TT*(X) and thus by Theorem 5.5 be a homotopy 
equivalence in all cases.) To see what element of 94(A

r, dX) corresponds to Fa 

we set ƒ = Fa and calculate a([<J>J) for all the V(. In our case this can be done 
by noting that we may assume without loss of generality that Vt is disjoint 
from D4 so that F~\Vt) = Vt u W, with W the framed submanif old of D4 

obtained as the preimage of the points of the transversal intersection of a(S2) 
and V. Then a([<fc]) is just Arf(WK, D4). 

Now if a(S2) intersects Vt transversely in ^ points, then each point has 
preimages with Arf invariant one and so a([</>J) = [a] • Vt mod Z2, where [a] 
is the class in H2(X) defined by a(X). In particular then, all of Ker o can be 
realized by elements of SE(Ar) if and only if all the elements of H2(X; Z) are 
realizable by elements of TT2(X). This however follows by Hurewicz's theorem. 

If X is not simply-connected the question of realizing elements in Ker o by 
those of SE(Ar) again boils down to the question of realizing elements of 
H2(X; Z2) (more precisely of H2(X; Z)x) by elements of TT2(X). 

Using the homology sequence associated to the universal covering manifold 
X of X, we obtain the exact sequence: 

H2(X; Z2) -> H2(X; Z2) -> H2(^(X ); Z2) -> 0. 

Using Hurewicz's theorem we obtain that TT2(X) -» H2(X) is onto while 
<n2(X) = n2(X). Thus if H2(TTX(X), Z2) = 0 we can again realize all elements 
of H2(X) by maps S2-* X, and therefore H2{<nx(X)\ Z2) = 0 suffices to 
guarantee that SE(AT) -> %(X) is onto Ker a. 

An immediate consequence of Lemma 6.2 is then: 
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THEOREM 6.3 (NOVIKOV, WALL) [N], [Wa 3]. Let X be a compact connected 
oriented PL 4-manifold with H2(TTX(X); Z2) = 0. 

Then 

S4(*, dX ) ^ %(X9 X ) A L4(TTX(X )) (*) 

is exact. 
If furthermore dX = 0 dwrf eüery element of L5(nx(X)) is realizable by an 

element in ti$(X X [ƒ, 0, 1]), then 

S5(X X I,X X 3 / ) ^ %(X X I,X X 3 / ) A L5(TTX(X))^> %4(X)X %(X) 

w a&ö exact. 

PROOF. The exactness of (**) can be deduced from the proofs of Theorems 
5.7 and 5.9. All the surgery questions encountered are essentially higher-di­
mensional absolute surgery problems and can be handled by such techniques. 
The proof of (*) is of course established by Lemma 2 since SE(Ar, dX) «=-» 
S4(Z, dX). 

We thus have the following generalization of Theorem 1.2. 

THEOREM 6.4. Let X, Y be closed connected oriented PL 4- manifolds with 
H2(TTX(X); Z2) = 0 and suppose the map o in (**) above is onto. Then if X is 
simple homotopy equivalent to Y it is s-cobordant to Y. 

PROOF. Let ƒ: Y -> X be a simple homotopy equivalence. By Lemma 6.2 
there exists a (simple) self-homotopy equivalence./: X-> X having the same 
normal invariants as ƒ. Thus ƒ and j are normally cobordant. But the 
assumption on a guarantees the exactness of (**) and since o is onto 17 must 
be injective. Thus ƒ must be s-cobordant to some (simple) self-homotopy 
equivalence ƒ : X -> X and so Y is s-cobordant to X. 

COROLLARY 6.4' [Cap 1, P. 164]. Suppose X, Y are simple homotopy equiv­
alent closed connected oriented PL 4-manifolds. Suppose iri(X) is a finite group 
of odd order or zero. 

Then X is s-cobordant to Y. In particular simply-connected homotopy equiv­
alent (closed connected PL) 4-manifolds are h-cobordant. 

PROOF. By a straightforward computation H2(
,nx(X)\ Z^ = 0 while by 

[Bak], [Wa 7] L5(<nx(X)) = 0. Thus the conditions for Theorem 6.4 are 
satisfied. (We note that Novikov's proof of Theorem 2 of §1 was essentially 
by use of the above methods.) 

REMARK. Not all groups G satisfying H2(G; Z2) = 0 also satisfy L5(G) = 0. 
For example G = Z satisfies H2(G; Z2) = 0 but L5(Z) « Z [Wa 3], [Sh 1], [Sh 
3]. We note that H2(G; Z2) = 0 whenever G is the fundamental group of a 
Z2-homology sphere and thus a large class of groups have this property. 
However H2(Z

4; Z2) 7* 0 and H2(Z2; Z^ ^ 0. The above techniques break 
down completely then for such spaces as T4 or RP4 and we must turn to 
approach (2) to make any progress. We thus consider some approaches to the 
problem of embedding spheres in 4-manifolds. 
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PROPOSITION 6.5. Let P = CP2 and let M be an arbitrary oriented connected 
compact 4-manifold. Then 

(1) (See [KM 1].) If yv y2 are the canonical generators of P # P then 
3% G H2(P # P) is representable by a smoothly embedded sphere. 

(2) (See [Bord].) If Mk= #* = 1 P with canonical homology generators yi9 then 
± nyt is representable by a smoothly embedded sphere in Mk, k = \(n2 — 3/1 + 
4). 

(3) (See [Wa 1].) If f: S2-» M is a smooth embedding representing y G 
H2(M; Z). Then 

(i) If y2 = 0 any ny is representable by a smoothly embedded sphere. 
(ii) If y2 * ± 1 then 2y is representable by a smoothly embedded sphere. 

PROOF. We shall begin by proving (3) to indicate the type of technique 
involved. 

First note that if y2 = 0 then f(S2) has trivial normal bundle in M and one 
can extend the embedding ƒ: S 2 -* M to F: S2X D2-*M. Then taking 
n-disjoint copies of embedded S2,s, F(S2 X JC,), and 'piping' them together 
gives the desired representation of ny. 

If y2 = ± 1 then f(S2) has a normal bundle N which is a Hopf-disc bundle 
f(S2). Thus there exists a cross section 2 of N in M which is an embedded 
sphere intersecting ƒ(S2) transversely in one point p. Taking out a neighbor­
hood of p in f(S2) and 2 and piping the resulting S2 - (2-discs) together 
gives a 2-sphere representing 2y. 

FIGURE 6.1 A 

FIGURE 6.IB 
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To prove (1) (we leave (2) to the reader) one uses a similar technique. We 
can represent 3yj as the union of three lines Lt in Px in general position as in 
Figure 6.1 A with transversal intersection Lx n L2 = {Xx}9 L2n L3 = {X2}9 

L3 n Lx = {X3} with all Xt distinct. Now take lines Tv T2 representing 
y2, ~Y2 m Pi a n ( i intersecting transversely in the unique point y E Tj n T2. 
Take out neighborhoods of Xx in Lx and L2, X2 in L2 and L3. We can pipe Lx 

and L2 together and L2 and L3 together to get a sphere o with one self-inter­
section point X3 representing 3y> (see Figure 6.1B). Now take out a 4 disc A, 
about X3 in J»! and A2 about j> in P2 and form their connected sum 
Px — &x\j P2 — A2, connecting one 'sheet' of a — o n Aj with Tj — Tj n A2 

and the other with T2 - T2 n A2. This gives a sphere representing the cycle 

63 Simply-connected four-dimensional (stable) surgery. The above type of 
construction proves useful in a more systematic approach to 4-dimcnsional 
surgery developed by Wall in [Wa 1]. In particular recall that a homology 
class a e H2(M) is called ordinary if it is not characteristic and is called 
primitive if there exists b E H2(M) with a • b = ± 1. 

Then Wall shows 

THEOREM 6.6 (WALL), [Wa 1]. Suppose N is a simply-connected closed 
oriented smooth 4-manifold with indefinite form LN. Let M = N # S2 X S2. 

Then every primitive, ordinary element of H2(M) is represented by an 
imbedded 2-sphere. 

Theorem 6.6 is proven by examining the nature of the diffeomorphisms of 
M and showing that given any primitive ordinary element $ E H2(M) there is 
a class X E H2(M) representable by an embedded sphere in the #S2 X S2 

portion of M and a dif f eomorphism ƒ : M -» M taking X to £. More precisely 
use is made of: 

THEOREM 6.7 (WALL [Wa 1]). Let N, M be as in Theorem 6.6 above. Suppose 
<j> is a ring automorphism of H+(M). Then there exists an autodiffeomorphism ƒ 
of M with ^ = <£. 

(Note that a ring automorphism <f> of H^(M) is equivalent to a group 
automorphism <£: H2(M) -» H2(M) satisfying ^(x) • $(y) = x -y.) We shall 
first use Theorem 6.7 to prove Theorem 6.6 and then sketch a proof of 
Theorem 6.7. 

PROOF OF THEOREM 6.6. Let £ E H2(M) be primitive and ordinary and 
suppose £2 = r. 

(1) There exist some xr E H2(M), primitive and ordinary with x2 = r such 
that xr is representable by a smoothly embedded 2-sphere. 

PROOF OF (1). First suppose r is even say r = 2k. Let x0 &ndy represent the 
canonical zero section and fiber of S2 X S2 considered as elements of 
H2(N # S2 X S2). Clearly both x0, y are representable by smoothly em­
bedded spheres. Define xr = x0 + ky. Since y2 = 0 we can take |A:| disjoint 
2-spheres (S2)i9 i = 1 , . . . , k, sitting as fibers with appropriate orientations in 
S2 X S2c-> M such that ky is homologous to the union of the (S2). Each (S2) 
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intersects the base B of S2 X S2 (which is an embedded sphere representing 
X0) transversely in one point and we can then replace each intersection point 
xt by a pipe connecting S2 n 9A, to B n 9A,., where A,, is a 4-disc in M about 
xi9 as we did in Proposition 6.5. We thus get an embedded sphere representing 
xr. Then x2 = (x% + 2kx0 -y + y2) = 2k since x0 -y = 1 and>>2 = XQ = 0. If 
r is odd then LM is of type I and as we noted in Chapter 1 we have 
M=N#S2XS2 = N#S2X S2. If x0,y, now denote the cross section 
and fiber of S2 X S2, again considered as elements of H2(N # S2 X S2), 
and r = 2 k + 1 then xr = x0 + /çy can, precisely as above, be represented by 
an embedded sphere. However now since XQ = 1, x0- y = 1, y2 = 0 we find 
(*Q + 2fcx0->> + >>2) = 2k 4- 1 as desired. 

We now need the following algebraic fact proved in [Wa 8]. 
(2) Let (//, •) be a symmetric inner-product space over Z. Suppose x,y are 

primitive, ordinary elements of H. Then if b = rk(/f) and <J = a(/f, •) then 
b — |a| > 4 implies there exists an isometry <J> of (//, •) such that y = ${x) 
(i.e. the isometry group D(H) is transitive on primitive, ordinary elements 
provided b — \a\ > 4). 

Applying (2) we note that if LN is indefinite then b2{M) — \o(M)| > 4 and 
thus there is a ring homomorphism <j>: H^(M) -» H^(M) with £ = <X*r)- B

ut> 
by Theorem 6.7, <£ is induced by an automorphism ƒ G DIFF(Af ) and thus 
since xr is representable by an embedded sphere so is £. 

(Note that in our arguments above we only used the nonsingularity of LN 

which is guaranteed under the sole condition that HY(dN) = 0.) 
PROOF OF THEOREM 6.7. We again need an algebraic fact first proved by 

Wall. Let (/J, •) be an inner-product space over Z and let X = H © U be the 
direct sum space (U the hyperbolic inner product space with form repre­
sented by (? o) a s in Chapter 1). Let x, y denote a canonical basis for U (i.e. 
x2 s= y2 = 0; *•>> = + 1). If 7 is an arbitrary inner-product space with 
co G Y - {0} and 0 < |(co • co)| < 2 define an isometry f -» f - ^ ( f • u>)u) 
and call it S(<o) if to2 = <o • co = ± 1 and iR(co) if co2 » ± 2. For X = ƒƒ © U 
as above and o) G H with co2 = 2JV E Z define isometries 15 ,̂ E2 of A" by 

£«! :?-»?- (?•«) * £2:?-*£-(?-<o)x, 
x -> x — ivy, x -* x , 

y-*y, y-*y-Nx. 

Then Wall shows [Wa 8]: 

PROPOSITION 6.8. Suppose H is indefinite (or b < 8). Then Isom(Ar) is 
generated by 

(1) Ely El for alio) G H with œ2 even 
(2) R(x + y), R(x - y) 

if H is of type II 
and by (1); (2) above and in addition 

(3) S(z)for some z e H with z2 = ± 1, 
if H is of type I. 

Thus to prove 6.7 it suffices to show that the above isometries can be 
realized by diffeomorphisms. Clearly the automorphisms R(x + y), R(x — y) 
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on H+(S2 X S2) are realizable by some autodiffeomorphisms, say rx+y9 rx_y 

of S2 X S2 and using the disc and isotopy extension theorem [RS] one sees 
that one can form the connected sum of diffeomorphisms and thus realize 
R(x + y), on H+(M) by id^ # rx±y respectively. 

In addition if N has form LN of type I then N # S2 X S2 = 
N # S2 X S2 as in Chapter 1 and since S2 X 5 2 = P # g , complex con­
jugation on P provides a diffeomorphism inducing an isometry of type S(z), 
z2 = ± 1, on H^M). Thus it suffices to show that we can realize all the Ex 

by diffeomorphisms. (The realizability of E2 would then follow automatically 
by interchanging factors in S2 X S2.) 

Thus suppose f0: Sx X D3 -» N is an embedding and ht is an isotopy of 
f(Sx X 0) in N with initial and final position given by f(Sx X 0). Now hx will 
be an autodiffeomoiphism of N inducing (by the uniqueness of tubular 
neighborhoods) a bundle map Sx X D3 onto itself. Let fx: Sx X D3 denote 
the embedding induced by hv Let M0 be N surgered along f0(S

l X D3) and 
Mx be N surgered along/1(5'1 X Z>3). Then hx clearly induces a diffeomor­
phism h of M0 onto Mx (i.e. extend hx\N - f(Sx X D3) by the identity on 
Z)2 X S2 noting that setwisef0(S

x X Z>3) « fx(S
l X Z)3)). 

Note that we have the following exact homology sequences (with integral 
coefficients) associated with the above surgeries (i = 1, 2) 

0-* H3(N, N - fà(S
x XD3))-* H2(N - f^S1 X D3)) -» H2(N)-»0 

0->H2(N -MS1 X D3)) -* H2(M) -> H2(D
2 X S2, Sx X S2)^0 

with 

H3(N, N - ^ ( S 1 X D3)) « Z/3(S
2 X Z)3, Sx X S2) ^ Z 

H2(D
2 X S\SX X S 2 ) « Z . 

Let ^ be the image of a generator of H3(N, N - ftS1 X D3)) in ZZ2(# -
/{S1 X D3)) and let xt be the inverse image of a generator of H2(D

3 X 
52 , S1 X S2) in H2(M) constructed by taking the union of a surface C in 
AT - ft{Sx X D3) spanning Sx X 1 and Z)2 X 1 c D2 X S2 c M. [C exists 
since N and thus N - Sx were 1-connected.] 

Note that JC, • >>, = 1, yt •>>, = 0 while (*ƒ = kt can be anything. In fact if 
we let Uki be a neighborhood of the wedge xt V >>, in M (where we think of xi9 

yt as cycles representing the appropriate homology classes) then U^ is just the 
complement of a 4-disc in some S2 bundle Tk over S2 and we have the 
geometric decomposition M, = N # 7^. 

(7^ can be thought of as the S2 bundle over S2 with structure group S02 

(rather than S03) corresponding to the reduction given by the integer kt of 
Z « TT1(S02) -» (̂SCXj) « Z2. Then as manifolds T2k œ S2 X S2 correspond­
ing to the zero element of 73r

1(S03) while T2k+X re S2 X S2 corresponding to 
the nonzero element of ITX. AS S02 bundles Tk has a canonical zero section 
denoted by xk and fiber denoted by yk satisfying xk = k, yk = 0, xk -yk = 1 
(note that xk -» xk - kyk>yk -*yk gives the diffeomorphism sending T2k to T0 

and T2k+ x to 7\ for any k).) 
Now let co be the class of the surface in N traced out by f(Sl X 0) under 

the isotopy ht and use the above geometric decomposition to identify H2(N) 
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with an orthogonal direct summand of H2(Mi), Then if A+, the isomorphism 
on homology induced by the diffeomorphism h : M0 -» Mv is denoted by E: 
H2(M0) -» H2(Ml), a straightforward calculation shows that E(Q = £ — (£ • 
co)yj, £(A;0) = ^! + <o, ^ (^Q) = ^ for £ E H2(N), and *,,>>,. as above. 

Now if co is any spherical class in H2(N) then we can easily find an isotopy 
of Sl in N with initial and final map representing co. [Proof: Let g: S2-* N 
represent co and let p: Sl X S1 ->/(S1 X 0) c iV be the obvious projection 
map. Form the connected sum map H of Sl X S1 # S2 œ Sl X S1 -» AT by 
attaching / (S 1 X 0) to g(S2) via an arc in N. H is clearly the desired isotopy.] 
Since N is simply connected any co E H2(N) is spherical and we thus have 
proven 

PROPOSITION 6.9 [Wa 1, THEOREM 1]. Let N be a simply-connected 4-mani-
fold, co G H2(N) with co2 = r. There is a diffeomorphism of N # Tk+r onto 
N # Tk inducing £ -+ £ - (£ • coK, x'k+r -» x'k + u,yk+r -*y'k {where the x\,y\ 
represent the obvious images of the classes xi9 yt of Tt in N # Tê). 

COROLLARY 6.10. Let LN be of type I. Then N # S2 X S2 « 
N # S2X S\ 

PROOF. Choose co G H2(N) with co2 odd in the proposition above. 

COROLLARY 6.11. If co2 = 2s, N # Tk admits a diffeomorphism inducing E*: 
£-*£ ~ (£ • w)y, x -» x + co - sy,y -*y on H2(N # Tk). 

In particular Theorem 6.7 is proven. 
Note. (1) We need only assume H^dN) = 0, which assures the nonsingular-

ity of LN to obtain Theorem 6.7. Thus Theorem 6.6 is also true under this 
weaker hypothesis. 

(2) In Theorem 6.7 one could have replaced LN indefinite by b2(N) < 8 
and obtained the same results. See [Wa 1]. However the analogue of Theorem 
6.6 can not be obtained. 

(3) Actually examining the proof of Theorem 6.7 one sees that all we 
actually used was H^N) = 0 and co spherical. These hypotheses are not 
enough, however, to prove Theorem 6.6. What can be obtained by essentially 
the same argument is: 

THEOREM 6.6'. Suppose N is a closed oriented smooth 4-manifold with 
indefinite form LN such that H{(N) = 0, co, £ E H2(N) are spherical with 
co • £ = 1 and co2 even. Then £ can be represented by an embedded sphere in 
N # S2X S2. 

(We will present a far-reaching generalization of Theorem 6.6' due to 
Cappell and Shaneson in what follows (see Theorem 6.17).) 

By similar methods one can show: 

PROPOSITION 6.12. Let M be a connected sum of copies of P, Q and S2 X S2 

and suppose that b2(M) — |a(M)| = 2 implies b2(M) < 10. Then any automor­
phism of H^(M) can be represented by a diffeomorphism. 

Recall that in our proof of Theorem 2 of §1 we used the following without 
proof. 
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LEMMA 6.13. Let M be a connected sum of copies of S2 X S2 and S2 X S2. 
Let K0, Kx be subgroups of H2(M) satisfying k *• rk Kt = \b2(M), i = 0, 1, and 
x,y £ Kj=> x-y = 0, i = 0, 1. Then there exists an autodiffeomorphism f of M 
withUKa-Kv 

PROOF. By Theorem 6.7 above it suffices to show that there exists an 
isometry of H2(M) throwing K0 onto Kx. But by the above hypothesis Kt is its 
own annihilator under LM and it is easy to show that there exists a basis 
el..., el

k, ƒ { , . . . ,fk of H2(M) with <e{ , . . . , e£> - Ki9 and e^f9 - «„, 
ƒ;.ƒ! = 0 if ( r , * ) ^ (1,1) and 

f ƒ/ = I ° if LM is of tyPc n> 
Jl'Jl [I if LM is of type I. 

Then the map er° -* er
!, ƒ? -» ƒ.* is the desired isometry. The crucial use of the 

above lemma in the proof of Theorem 1.2 indicates how our knowledge about 
embedded spheres can help us obtain surgery results in dimension 4. Exten­
sions of Wall's approach by Cappell and Shaneson provide 'stable' analogues 
of Theorems 6.9 through 6.11 without any restrictions on n^N). 

6.4 Nonsimply-connected surgery in dimension 4. In [CS 1], Cappell and 
Shaneson prove the following 'stable' versions of the higher-dimensional 
surgery theorems. 

THEOREM 6.14 (COMPARE THEOREM 5.7 OF CHAPTER 5). Let X be a smooth 
4-manifold (alternatively a Poincaré pair of dimension 4 with X connected and 
finite). 

Suppose (h, b): (W, dW) ~» (X, dX) is a degree one normal map inducing a 
homotopy equivalence of boundaries. Then o(h, b) E Lh(irl(X)W) vanishes if 
and only if, for some t > 0, 

(h, b) # t(S2 X S2) - (h # id,(52XS2), b # id, (52xs2)) 

is normally cobordant rel d to a homotopy equivalence. 

THEOREM 6.15 (COMPARE THEOREM 5.7' OF CHAPTER 5). Let X be a smooth 
4-manifold (alternatively (X, Y) a Poincaré pair of dimension 4 with X con­
nected and finite) and suppose y G L5(TTX(X), W). Then if K = M # r(S2 X 
S2), for r sufficiently large, and h: (K, dK)-+(X, dX) is a homotopy equiva­
lence covered by a linear bundle map c: v(M) -» %. Then there is a normal 
cobordism, relative to the boundary (F, B), F: W -* X X I, between (h, c) = 
(F\d_W, B\d_(W))and(F|9+ W, B\d + W)such that 

(i) ^|9+ W\ 9 + W-» X X Ms a homotopy equivalence, and 
(ii) the obstruction o(F, B) defined in view of (i) is precisely y. 

(In what follows when we speak of 'stabilization' we will mean connect 
summing with sufficiently many copies of S2 X S2.) 

The key part of the proof of Theorem 6.14 is again an analysis of the 
diffeomorphisms of a 4-manifold M analogous to what was done in Theorem 
6.7 and Proposition 6.9 for simply-connected M. We discuss the highlights of 
this analysis. 
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By way of terminology let A = X[7rx{X)\ denote the integral group ring of 
M and let M be the universal covering manifold of M. Note that H2(M; 
A) = H2(M; Z) has a A-module structure induced by the action of n^M) 
(and thus A) on M. Let p: H2(M; Z) X H2(M; Z) -> Z denote the usual 
intersection pairing and for a,/? G H2(M; Z) let (a • p) = 2^e7riAf p(a, gP)g 
(where we have fixed a base point * in M and a corresponding base point * in 
M lying over *. In what follows we shall not mention base points explicitly 
but assume they have always been appropriately chosen). 

Now let w: TT^M)-* {±1} be the orientation map; i.e. w(x) = 1 if and 
only if x preserves orientation in M. Let ~ be the antiautomorphism of A 
defined by &gXgg)~ = 2 g w(g)^g - 1 . Then this pairing is Z-bilinear, and for 
r G A, 

(i) (T«) • p = T(« • p) and (ii) p • a = (a • p)~. 
Let w2(M) = w2: (M; Z) -> Z2 be the second Stiefel-Whitney class, and let 

H: *n2(M) -> H2(M; Z) be the Hurewicz homomorphism. Let a G 
ker(n>2 ° H), and let/: S2 -» M represent a. Then/*TM is trivial, where rM is 
the tangent bundle of M. Hence there is a bundle equivalence of rS2 © e2 with 
f*TM, e2 a trivial bundle; there are two such equivalences up to isotopy 
because TT2(0(4)) = 0. It is easy to see that they both determine isotopic 
monomorphisms rS2 -+f*rM. So, by immersion theory, we have an immersion 
ƒ: S2 —> Af, representing a, with trivial normal bundle; and this immersion is 
unique up to regular homotopy. Given such an immersion, we may take its 
self-intersection invariant as in [Wa 3, Chapter 5]; this determines a well-de­
fined map JU: ker(w2 <>//)-> A/7, where I = (A - X|A G A}. The following 
properties are satisfiedj 

(iii) a • a = ix(a) + jbt(a); (note that the right-hand side is really a well-de­
fined element of A); 

(iv) /i(a + p) « ju,(a) + ju(/?) + a • £(mod / ) ; and 
(v) ii(\a) = A/x(a). 

(See [Wa 3] for more details.) 
Note that using the Hurewicz theorem we obtain H2(M; Z) « TT2(M) » 

7T2(M) so we can think of w2 o H as being defined on H2(tiï; Z) = H2(M; A). 
The following analogue of Proposition 6.9 is then needed to prove Theorem 
6.14. 

PROPOSITION 6.16 [CS 1, THEOREM 1.5]. Let M be a smooth compact 
connected 4-manifold and suppose M = N # (S2 X S2)for some smooth mani­
fold N. Let co G H2(M; A) with w2H(co) = 0 and suppose X G A is such that 
X = /x(co) (mod / ). 

Then there is a (basepoint-preserving) autodiffeomorphism <f> of M # (S2 X 
S2) which preserves local orientations and induces the identity on *nx(M # (S2 

X S2)) so that <f>*(e) - e + co - X/, *,(ƒ) - ƒ anrf <*>,(£ - ? - (£ • co)//or 
£ G H2(M; A) w/œre e, ƒ i/i H2(M # (S2 X 52), A) are f/ie standard genera­
tors of the summand H2(S

2 X S2, A). 

Using Proposition 6.16 one can prove analogues of Theorems 6.6, 6.6' and 
6.7. 

If £ G H2(M; A) with w2H(£) = 0 we shall say £ is strongly primitive if 
there exists T G H2(M; A) with A(£) = 1 and w2H(r) = 0. Then one has 
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THEOREM 6.17 (COMPARE WITH THEOREMS 6.6, 6.6') [CS 1, THEOREM 2.2]. 

Let M be a compact, connected smooth four-manifold of the form N # (S2 X 
S2). Let £ E H2(M; A) = ir2(M) with w2H(£) = 0 t e strongly primitive and 
suppose ju(£) = 0. 

Then £ is represented by a smooth embedding S2<L* M # S2 X S2 with 
trivial normal bundle so that the inclusion (M # S 2 X S 2 - S 2 ) - > (M # S2 

X S2) induces an isomorphism of fundamental groups. 
Furthermore if /A(£) E Z C A the same conclusion holds except that S2 will no 

longer have a trivial normal bundle. In addition if £ E H2(N; A) we need only 
assume £ is primitive. 

Using 6.16 and 6.17 we sketch a proof of Theorem 6.14 as follows 
PROOF OF THEOREM 14. We first note that by surgering embedded 1-

spheres, if necessary, we can always assume that ir2{h) = 0. Then by the 
definition of o(h, b) it is clear that o(h, b) = o[(h, b) # t(S2 X S2)] so the 
vanishing of o(h, b) is clearly necessary for the conclusion of the theorem to 
be satisfied. Conversely suppose o(h, b) = 0 then (replacing Why W # q(S2 

X S2) if necessary) we can assume that K2(W) = ker(/^: H2(W;A)-+ 
H2(X; A)) is a free A-module with basis £ 1 ? . . . , £„ TV ..., rt, such that 
Mb, $) = MT„ Tj) = /i(£) - /*(£,) = 0, 1 < ij < U and X(£, rj) « fy. We may 
(by adding an additional S2 X S2 summand to W if necessary) assume that 
W = P # S2 X S2, for some P, and thus apply Theorem 17 to realize £i by a 
smoothly embedded sphere S 2 c ^ # S 2 x S 2 with trivial normal bundle 
as in that theorem. We can now use the framing on the normal bundle of £l9 

g: S2 X D2 -» W # S2 X S2 to perform framed surgery as described in 
Chapter 5, killing (£1? rx) and obtaining a normal cobordism (note that there 
is no problem in extending the framing g since TT2(0(A:)) = 0) (//, B\ H: 
W X I u ( g i ) Z ) 3 X D2 -» X between (A, b) and a new degree 1 normal map 
(A', b% h': W -> X, where W' - 3+[ W X I u i>3 X Z)2] = c^H^ # (S2 X 
S2) - g (S 2 X D3) u g Z>3 X S1). Since by Theorem 6.17 

<nx(W # S2XS2- g(S2 X D2)) « irx{W # S2 X S2) 

we can use van Kampen's theorem to see that irx(W) « iT\(W'). [In fact we 
note that W' is actually diffeomorphic to W since the way a sphere represent­
ing £ in Theorem 6.17 is obtained is via an automorphism oî W # S2 X S2 

throwing [S2 X • ] onto £. Thus the surgery above essentially kills the 
S2 X S2inW # S2 X S2 giving us a diffeomorphism of W' to W.] 

Now we can verify that K2(W') has the same form as K2(W) but with rank 
reduced by two. 

We can then as in [Wa 3, Theorem 3.3] continue this process until all of K2 

is killed. This then gives the desired homotopy equivalence at the expense of 
having to add on an S2 X S2 summand for each ^ in K2 killed. 

Note that our aside on the isomorphism of W and W' shows that if (h, b) is 
a normal map as above, h: (W4, dW)-*(X4, dX). Then the vanishing of 
o(h, b) implies that for some t > 0, r > 0, P # r(S2 X S2) is homotopy 
equivalent to X # t(S2 X S2). 

To prove Theorem 6.15 we proceed as follows. We first note that it suffices 
to prove Theorem 6.15 for A = identity map and X = M # r(S2 X S2) since 
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one can obtain more general h by composition as in our discussion of the 
action of Lm+l(ir) on S%(X) in Chapter 5. 

Now for some r > 0 there exists a G f/r(A) representing y. Thus there 
exists a kernel Kr = (Kr, <f>r, [xr) of dimension 2r with a an automorphism of 
Kr Let K = M # r(S2 X S2) and let e\y ft\ 1 < i < r, denote the classes in 
/ / 2 (^ ; A) represented by the ith copies of S2 X {pt} and {pt} X S 2 , respec­
tively. Let ei9 fi9 1 < i < r denote similar classes in H2{K # r(S2 X S2)). 
Identify Kr with <e,., ƒ > in the obvious fashion. 

Then using Proposition 6.16 one can produce a self-diffeomorphism <j> of 
K # r(S2 X S2) with <f>*(e/) = a(^) for i = 1 , . . . , r. One now constructs a 
normal cobordism rel 3, F: W-*K X I in two stages. 

Firstly by doing surgery on r trivial circles one can get a normal cobordism 
rel 3, Fx: wx-+K X [0, \] with S.v^ = Ky d+wx - A: # r(S2 X S2), 
Fi|3-Wi = (id*, 0) and Fja + n^ = id* # rç>, />: S2 X S2-*S2 the obvious 
natural projection map. 

Let S,2 X D2 G M # r(S2 X S2) # r(S2 X S2) be the standard embed­
ding representing e\. Using <1>\S2 X D2 we can perform framed surgery on 
Fx\d + wx f or i = 1 , . . . , r and obtain a normal cobordism (F2, l y , F2: w2 -» 
AT X [̂ , 1] with F2|3_w2 = Fx\d+wv 3+w2 = AT and F2|3+w2

 a homotopy 
equivalence. (F2, B2) clearly has obstruction in L5(V, W) represented by a. 
(See the argument in [Wa 3, Chapter 6].) Then letting W = wx u H>2 and 
F = Fj u F2, B = 5j u B2 we obtain the desired normal cobordism (F, WO 
wi thF |W-># X[0, 1], a . W - a + W - #, F|3_ FT = id*2 and o(F9 B) = y 
as desired! 

We now return to Theorem 6.17 and show it follows from Proposition 6.16. 
Thus let T, | G H2(M, A) with w2H(r) = w2H(Ç) = 0 and £ • T = 1 and 
suppose ju,(£) = A G Z (mod ƒ). Then by Proposition 6.16 (and use of the 
autodiffeomorphism of S2 X S2 which interchanges factors) we obtain auto-
diffeomorphisms <|>, \p of M # S2 X S2 so that if y = JU,(T) (mod ƒ) then 

(i)*,(e) - e + £ - Xf; <#>*(ƒ)=ƒ; *,(© - £ - 2X/; ̂ ( r ) - r - ƒ; 
(ii) ^ ( e ) - e; *„(ƒ) - ƒ + r - Ye; ^(£) - £ - e; * , ( T ) = r - (y + f)e. 
Now i//<JH> + V) = £ a n d ^ + V is representable by an embedded sphere in 

S2 X S2 (recall X is an integer!), such that the inclusion of its complement in 
M # (S2 X S2) induces an isomorphism of fundamental groups! If X = 0 
then £ is in addition representable by an embedded sphere with trivial normal 
bundle! Lastly to prove Proposition 6.16 one uses the same approach as in the 
proof of Proposition 6.8, that is one represents each to G H2(M; A) by means 
of an isotopy ht of some null homotopic <t>(Sl X 0), <f>\Sl X Z)3-* M an 
embedding, and obtains diffeomorphic copies Mf; i = 0, 1 of M # S2 X S2 

via surgery on the different framings induced on tubular neighborhoods of 
<t>(Sl X 0) by <f>(Sl X D3) and hx<j>(Sl X D3). hx induces a diffeomorphism h: 
MQ -* Mx and essentially by direct computation one finds h+ to have the 
properties desired (modifying A* if necessary by additional autodiffeomor-
phisms of M # S2 X S2 « W # S2 X S2 # S2 X S2 induced by the 
known autodiffeomorphisms of S2 X S2 # S2 X S2). For full details see 
[CS 1]. 

As Cappell and Shaneson point out, in general one will not be able to 
realize all isometries of H2(M # S2 X S2) by means of diffeomorphisms. 
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Consider the following example: Let M = S1 X S3. Then there exist by [Wa 
3], a E SUX(Z[TTX(M)]) representing the generator of L5(ITX(M)) œ Z. Then 
there is no orientation preserving autodiffeomorphism of M # S2 X S2 

representing (idM) © a on H2{M # S2 X S2; Z(Z))! To see this suppose <f> is 
such a diffeomorphism. Let S2 X D2 be a neighborhood of S2 X * in 
M # S2 X S2 and use its image under <j> to perform surgery on the normal 
map (TT, b): M # S2 X S2 -» M9 6 an appropriate bundle map covering the 
obvious projection <n. What is obtained is a homotopy equivalence A: Q-* S3 

X Sl which is normally cobordant to the identity /S3X5i via a normal 
cobordism (W9 B) with a(W, 2?) generating L5(Z). But this is impossible! For 
our construction shows that Q is in fact diffeomorphic t o 5 3 X S1 while the 
fact that o(W9 B) ̂  0 implies (see [HS], [Sh 2], [Sh 3]) that Q X Sl is not 
even PL-homeomorphic to S 3 X T2! This is impossible! 

We therefore see that a straightforward generalization of Theorem 6.7 is 
impossible. The best available generalization seems to be the following (for 
whose proof we refer the reader to [CS 1]): 

THEOREM 6.7'. Suppose M is a smooth compact connected four-manifold with 
M= P # (S2X S2)9 N = M # (S2 X S2) and set A - <nx{M). 

Suppose H2(M; A) = L © K0 is a direct sum decomposition of A-modules, 
orthogonal with respect to intersection, such that K0 is a kernel with standard 
basis e29. . . , er, f 2 9 . . . ,fr. Let el9fx be the classes represented by the first and 
second spheres in the second summand of M # S2 X S2 and write H2(N; A) = 
L © K9 K = {ex, fx) © K0 where {el9 fx) is a standard plane orthogonal to K0. 

Let a E RLUr(Â% where RLUr(Â) is as defined in [CS 1, Appendix]. Then 
there exists a diffeomorphism <j>: N -> N inducing the identity on ITX(N) SO that9 

on H2(N9 A), ^ - (idL) © a. 

63 Applications. Theorems 6.14 and 6.15 presently represent about all that 
is known about doing surgery in dimension 4 in the general case. The 
appropriate philosophy for dimension 4 thus seems to be "when in doubt, 
stabilize!" 

We thus give some applications of the above theorems. We first note the 
following. 

THEOREM 6.18 [CS 1]. Let M - RP4. Then for some t > 0 there exists a 
smooth manifold K that has the same {simple) homotopy type as M # t(S2 X 
S2) but is not diffeomorphic or even smooth or PL normally cobordant to 
M # t(S2 X S2). In fact for all r > 0, K # r(S2 X S2) is not h-cobordant to 
M # (t + r)(S2 X S2). K is unique up to h-cobordism and is topologically 
h-cobordant to M # t(S2 X S2). If t is sufficiently large K is diffeomorphic to 
Q # t(S2 X S2). (Q is the fake RP4 constructed in Chapter 4). 

PROOF. Let M * RP4 . Then using our information on n^G/O) it is not 
difficult to show that %ÏFF(RP4) « [M; G/O] « Z4. Thus a: [M, G/O] -» 
L4(Z2, —)œZ2 will be the natural nontrivial map. 

Thus if 0 G [M, G /O] is the generator there exists a normal map ( ƒ, b)9 f: 
K0->M with a(ƒ, b) = 0 but r)(ƒ, b) = 20 ^ 0. By the method used in the 
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proof of Theorem 6.14 we obtain that for r sufficiently large, K = K0 # r(S2 

X S2) has the homotopy type (in fact the simple homotopy type, since 
wh(Z2) = 0) of M # t(S2 X S2), some t > 0. Suppose K were A-cobordant 
to M # t(S2 X S2). Then there would exist a normal map (g,c); g: 
M # t(S2 X S2)-* M equivalent to (ƒ, b). Now since TT2M = 0 we can do 
surgery to produce a homotopy equivalence h: M -» M with i\(h) = Tj(g) =» 
rç(ƒ) 7e 0- But as we pointed out in §4 any self-homotopy equivalence k of 
RP4 is homo topic to the identity and so satisfies 17(A) = 0. Thus h can't exist. 
K is unique up to A-cobordism since L5(Z2, — ) = 0. K is however topologi-
cally A-cobordant to M # t(S2 X S2) since [M, G/TOP] « Z 2 0 Z 2 so 
î)TOP( ƒ, 6) = 0. The topological surgery produces the A-cobordism. Lastly we 
wish to relate K back to Q of Chapter 4. To do this we must first analyze 
precisely why the map ƒ: Q-* RP4 of that section was a homotopy equiva­
lence not homo topic to the identity. Let us recall how ƒ was constructed. 

(1) Given a matrix A G GL(3, Z) satisfying det A = -1 and det(7 - A2) = 
± 1 we let <t>A be the autodiffeomorphism induced by A on T3. We let MA be 
the mapping torus of <j>A. Without loss of generality we may assume that for 
some 3-cell e3 c T3 with T0

3 = T3 - e3, <f>A\T$ maps T0
3 into itself. Set 

<j>0 = <f>A\ TQ and let M0 = M0(A) be the mapping torus of <J>0. Note that 3Af0 is 
the nonorientable orthogonal S2-bundle H over Sl with corresponding non-
orientable 3-disc-bundle D(H) over Sl. Note that M0uHD(H) is the 
mapping torus of $A and thus diffeomorphic to MA. 

(2) Let iV be the unique nonorientable orthogonal S^-bundle over Sl. Then 
there exists a normal map of degree 1 (A, b); h: MA -» JV, 6: j ^ -»£ (£ a 
bundle over iV) with A inducing isomorphisms 011^homology, commuting with 
projections to Sl and covered by a map h : M^ -» iV (where * means the 
orientable double covering space) also inducing isomorphisms on homology, 
such that 7}(h9 b) G [N, G/O] = Z2 is nontrivial. Furthermore any map h'\ 
MA -» N inducing isomorphism on homology will have TJ(/I') =̂ 0. 

(Proof. Consider the composition T3-» S3-» S3 where !T3-> S3 has 
degree ± 1 and /} is a reflection. Then /fa is homotopic to ir<j>A and the 
homotopy induces the desired map h between the mapping torus MA of <f>A 

and N of /?. To see f\{h) ̂  0 let <$ be the 'exotic' framing on T3 with 
jK(r3, <$) = 8. Using ^ one constructs a bundle £ over JV and a map 6 
covering h. Then it can be shown that t)(h) = 2/x(r3, <$)/\6 (mod 2) = 1 
(mod 2) as desired. Using the covering homotopy property and the fact that 
N is homologically an Sl one obtains similarly that TJ(A') ^ 0.) 

(3) There exists a homology equivalence g: M0-± D(H) extending the 
identity on the boundary and any such has 17(g) ¥= 0 in [D(H)/H; G/O] œ 
Z2. Furthermore, any such homology equivalence is covered by a homology 
equivalence M0 -» D(H). 

(Proof. Using obstruction theory and the fact that H+(D(H)) = H+(Sl) we 
can extend the identity map on H to the desired map g covered by g: 
M0 -» D(H). To see that rj(g) ^ 0, let q: N -» N/D(H) = D(H)/H be the 
collapsing map and note that <?*: [N/D(H); G/0]-*[N; G/O] is an 
isomorphism. Furthermore 17(g) just goes to rj(g \JH i d / ^ ) = y\(h) ¥= 0.) 
[Note that the natural map [N; G/O] -» [N; G/TOP] is trivial so T?TOP(£)

 == ° 
in [iV; G/TOP].] 
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(4) Let g: (M0, H) -+ (D(H), H) be as above. Let Q = M0 u H Xx, where 
Xx = RP 4 - D(H), D(H) realized as a tubular neighborhood of an orienta­
tion reversing element^ G <nxX of order 2. Then RP4 = /)(/ƒ) U H Xx and so 
ƒ — £ U# 1&XX i

s the desired map. By straightforward use of 1, 2, 3 and some 
homotopy theory it can be checked that ƒ is a simple homotopy equivalence. 
We claim TJ(/) is the unique nontrivial element in the kernel of [RP4; G/O] 
-> [RP4; G/TOP]. Granting this, then the uniqueness of K above shows that 
K is s-cobordant to Q # t(S2 XS 2 ) and thus if t is sufficiently large is 
diffeomorphic to it. To prove the claim let q: RP4-» D(H)/H be the 
collapsing map RP 4 -»RP 4 / (RP 4 - D(H))-> D(H)/H. Then we obtain 
*)(ƒ) as the image of r)(g) under q*[D(H)/H; G/O] « Z2-»[RP4; G/O]. A 
straightforward calculation then shows that q*(l) ¥* 0. The fact that t\{f) lies 
in the kernel of [RP4; G/0]-»[RP4 ; G/TOP] follows essentially from the 
remark after (3). 

Now suppose M = RP2 X S2, then one can show by a procedure entirely 
analogous to the proof of Theorem 6.18 that there exists a normal map 

ƒ 
K0-± M with o(f) = 0 and rj(f) ^ 0 and there is by Theorem 6.14 therefore 
a simple homotopy equivalence g: K -» M # t(S2 X S2) = Mr K = 
K0 # t(S2 X S2), with rj(g) = r?(/) 7*= 0 and o(g) = 0. However the group 
DIFF(M,) is not sufficiently well known to rule out the possibility that g is in 
fact only an exotic auto equivalence (which was impossible for M = RP4). In 
fact the map ƒ: S2 X RP2 -» (S2 X RP2) V S 4 " ^ S2 X RP2, where a is 
the generator of ^4(S

2), is a homotopy equivalence not homotopic to a 
PL-homeomorphism because i?DIFF(/) ^ 0 in [S2 X RP2; G/PL]. r)TOP(f) = 
0 in [S2 X RP2; G/TOP] and it is unknown whether ƒ is homotopic to a 
homeomorphism. 

By a technique similar to the construction of Q above one can produce a 
simple homotopy equivalence Z-» S2 X RP2 between some manifold Z and 
S2 X RP2 with y\(h) =£ 0. But again Z may nevertheless be diffeomorphic to 
S2 X RP2 . 

A similar situation occurs upon replacing S2 X RP2 by S 3 X Sl. Applying 
Theorem 6.15 one can realize the generator of L5(Z) by a normal cobordism 
(W, B) between id*; X = S3 X Sl # S2 X S2, and some (simple) homotopy 
equivalence ƒ: M -+ X. Then using the argument of [Sh 1, §6, CS 1, §3] one 
obtains 

PROPOSITION 6.19 [CS 1]. Let SPL((S2 X S 1 ) # ( S 3 X S2)) be Ker TJ, TJ as 
in Theorem 6.3. 7%ert there are precisely two elements in SPL((53 X Sx) # (S2 

X S2)). 

Notes. 1. The existence of a homeomorphism representing the nontrivial 
element above can be shown to be equivalent to the existence of an almost 
parallelizable closed topological four-manifold of index 8. In fact it can be 
shown that if any nonstandard 4-dimensional normal invariant is represent-
able by a homeomorphism then such a manifold exists. 

2. An explicit construction of the nontrivial element in S p ^ S 3 X 
Sl) # (S2 X S2)) can be found in [Sch 1]. The construction goes as follows: 
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Let P be the Poincaré homology sphere and suppose a E trx(P) is any 
noncentral element (there are 118 such). 

Consider the natural embedding of P in S5 (i.e. P = {z2 + z\ + z\ = 0} n 
{\zx\

2 + \z2\
2 + |z3|

2 = 1} c C3(zj, z2, z3)). Now S5 - P is a homology circle. 
Remove from S5 a tubular neighborhood of i* and of a circle in 5 5 — P 
generating HX(S5 — P) « Z. Call what is left Ĥ . An easy calculation shows 
that W is a cobordism between £ 3 X S1 and P X S1 satisfying HJJV, d(W) 
= 0 and P X {pt} -*dxW->W induces the trivial map TTX(P) -> TTX(W). Now 
let Af be the manifold obtained by doing surgery on a in the normal 
homology equivalence P X Sl -> S3 X Sl. 

It is easy to verify that this surgery then gives rise to a new PL cobordism 
W' between dxW = M and d0W = S3 X Sl # S2 X S2 such that W has 
trivial normal bundle and H+(W, utW\ Z) = 0. Furthermore we can show 
that the identity map of S3 X Sl # S2 X S2 to itself extends to a normal 
degree 1 map F: W-Ï(S3 X S1 # S2 X S2) with ƒ - F\dxW: M-> S3 X 
S1 # S2 X S2 & homotoçy equivalence. Then by an explicit calculation 
using Rohlin's theorem it can be shown that ƒ is not PL s-cobordant to the 
identity (what is demonstrated is that: ƒ being PL s-cobordant to the identity 
implies there exist a closed almost-parallelizable PL manifold of index 8. This 
is impossible by Rohlin's theorem, ƒ may however be TOP s-cobordant to the 
identity). Whether M is itself PL homeomorphic (via some homeomorphism g 
not homotopic to the identity) to S3 X Sl # S2 X S2 is not known. In [FP], 
Fintushel and Pao show that M # S2 X S2 is diffeomorphic to S3 X 
S1 # 2(S2 X S2). Also Akbulut (Private Communication) has shown that 
M # P = S3 X Sl # IP # Q. 

The techniques and consequences of Theorems 6.14 and 6.15 do not enable 
one to obtain direct nonstable information on 4-manifolds whose fundamen­
tal groups m do not satisfy / ^ ( ^ Z2) == 0. New techniques such as the 
homological surgery, Cappell and Shaneson used in constructing Q seem to 
be necessary. 

6.6 Some five-dimensional A-cobordisms. We note that all of the results in 
dimension 4 obtained above are relevant only to the question of determining 
a manifold X, or perhaps X # r(S2 X S2), up to s-cobordism or A-cobordism 
via calculation of normal invariants and surgery obstructions. Not having an 
^-cobordism theorem in dimension 4 we are still left with the problem of 
determining when two s-cobordant 4-manifolds are in fact diffeomorphic. No 
effective technique for doing this is known! Actually the techniques used in 
the proofs of Theorems 6.14 and 6.15 above can be used to prove (see also the 
work of Quinn [Q] to be described shortly) the generalization of Theorem 1.3 
cited in Chapter 1, that is, that A-cobordant 4-manifolds are stably diffeomor­
phic and that if the cobordism is an s-cobordism it is stably diffeomorphic to 
a product. 

If the two ends of the A-cobordism are known a priori to be diffeomorphic 
then some partial results can be obtained. We thus present a Theorem (due to 
Barden [Bd] in the simply-connected case and Shaneson [Sh 1] in the TTX = Z 
case) giving what seems to be at present the most information we have on the 
structure of 5-dimensional Zi-cobordisms! 
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THEOREM 6.20. Let (W, V0, Vx) be an h-cobordism with W connected, 
dim W = 5 and TTX{W) = {e} or TTX(W) = Z and W orientable. Suppose r: 
W -» V0 is a retraction with rx — r\Vxa diffeomorphism. 

Then there is a diffeomorphism <j>: V X 7 -> W with <}>(x, 0) = x and </>(x, 1) 
= rx~\x)for x G K0. 

PROOF. Suppose firstly that mx W = {1}. Let JU: (W, V0, Vx) -* (7, 0, 1) be a 
Morse function. Then F = (rl5 /ut) is a homotopy equivalence and thus repre­
sents an element of S(V X ƒ, F X 37) (by hypothesis F | K X 37 is a diffeo­
morphism). We must show that F is the trivial element. Recall the exact 
sequence 

L6{\)^ SflFF(V Xl,Vx 37)-^ g? I F F(F X 7, V X 37) 

of Theorem 5.9. 
We recall that L6{\} = P6 = Z2 and one can represent the nontrivial 

element of L6{1} by a degree 1 normal map (<£, B) with <J>:S'3XS'3-»S'6 (sec 
[Sh 1], [Sh 2]). Then the action of Z2 on S5(F X 7, F X 37) is defined by 
taking an element h: (K,dK)->(V X I, V X 37) in S5(V X I, V X 37) and 
forming the connected sum in the interior, h X I # <j>: (K X I # S3 X S3) 
- > F X / # S 6 = V X I. Using the additivity of surgery obstructions (and 
the fact that a(h X 1) = 0) we see that o(h X I # <f>) = a(</>) so that the 
action of 7,6{1} on S5(F X 7, V X 37) is trivial. Thus 17 above is an injection 
and it suffices to prove that TJ(F) = 0. We claim however that 

%{V X 7, V X 37) « Î 5 (2F + ) « [ 2 F + , G/O] « 0 

( 2 F + = F X / / F X 37). To see this note that V being simply connected 
has a CW decomposition consisting of a zero cell, a 4-cell and some 2-cells. 
Thus 2F+ has a corresponding decomposition consisting of a 1-cell, a 5-cell 
and some 3 cells. But as we mentioned previously 7r,(PL/0) = 0 for i < 6 
and thus ^2/+ i(^/0) ^ ^i+iC^/^L) = 0 for i < 2. In particular then by 
obstruction theory [2 K+, G/O] = 0. Thus rj(F) = 0, concluding the proof. 

If ITX{W) = Z then using the fact [Sh 3] that L6(l) -» L6(Z) is an isomor­
phism the proof of the injectivity of t] goes through unchanged. In this case 
however 9P IFF(F X 7, V X 37) ^ 0 , so a different strategem must be used. 
What is done is to construct a homomorphism 7: 5^IFF(K X 7, V X 37) -» 
Z2 with the property that for h: (M, dM) -> (F X 7, F X 37), A a homotopy 
equivalence that is a diffeomorphism on the boundary, y(r}(h)) = 0 if and 
only if v\(h) = 0. 

Next a homotopy equivalence h: Vxl-+Vxl is constructed with 
h\ V X 37 the identity and i\{h) i* 0. (h is constructed by showing that (1) a 
generator of H3(V) = Z is spherical, (2) letting a0 G 7r5(V X I) be the 
element obtained by composing the nontrivial map S5-» S3 with the map 
S3-> F X (|, | ) representing the generator of 7/3(F), (3) defining h: V X I 
-^ F X 7 as the identity outside some disc D5 c K X ( | , | ) and so that the 
obstruction to homo toping h to the identity rel(F X 7 — D) is precisely 
a0 G H\V X I, (V X I - D), <n5V) œ <rr5v/(4) using a 'Thorn construction' 
argument to show that r}(h) ^ 0. (See p. 350 of [Sh 1] for details.) 
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Lastly if TJ(F) ^ 0 then letting <J> = h ° F we see that y(i?(<?>)) = 0 so 
TJ(4>) = 0, and thus <f> is the desired diffeomorphism. 

6.7 Stable surgery and the Whitney trick. As we have mentioned repeatedly, 
the major difficulties in the classification of 4-manifolds arise as a result of 
the failure of Whitney's lemma in dimension 4. We have exhibited methods of 
getting around this failure by using a knowledge of the diffeomorphisms of 
M # r(S2 X S2) as well as the existence of embedded spheres representing 
the homology class e + Xf O, f as in Theorem 6.16) in H2(M # r(S2 X S2)) 
to represent other classes £ by embedded spheres and thus do stable surgery. 
The problem with this approach is that it is usually quite difficult to 
understand DIFF(X) for a 4-manifold X and for the purposes of doing 
surgery it is generally not necessary to have a complete picture of all of 
DIFF(Ar). For example in the proof of Theorems 6.6 and 6.7 we made use of 
various algebraic information (such as Proposition 6.8) the proof of which is 
far from trivial. We would therefore like to sketch different approaches to 
stable surgery due to Lawson [Law 1], [Law 2], [Law 3], Quinn [Q] and Casson 
[Cas 1] and based on a cute trick of Norman's [Nor] to circumvent the failure 
of Whitney's lemma in dimension 4. 
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Let us return to Whitney's lemma as stated in Chapter 1. 
Thus let Pp, Qq be submanifolds of Mm with p + q = m and suppose 

/?, q EL P n Q are transversal intersection points with (P • Q)p = - ( P • g)^ . 
Let a, /? be paths in P, resp. g , connecting p with # so that a U /î is an 
oriented circle. Then the proof of Whitney's lemma runs as follows ([RS], 
[Whit 1]). (See Figure 6.2.) 

(1) Let D be an embedded 2-disc in M with 3D = a u /? = y and Z) n (P 
U Ô) = 3 ^ 2 - (D is called a Whitney disc. It exists in sufficiently high 
dimensions by a general position argument. See [RS, p. 71].) In dimension 
m = 4 we can only find an immersed disc ƒ: Z)2 -» M with df(D2) = a U /J 
and Z) n (P U 6 ) s=s 9 ^ 2 U {transversal intersection points xv . . . , xr, for 
some r > 0}. 

(2) Let (N9 Bl9 B2) be a regular neighborhood of D2 in (M, P, Ô). Then it 
is easily seen that (N, Bt) is an unknotted ball pair (i = 1, 2) and that 
(i?! • B2) (keeping boundaries fixed) is just zero. Then letting 
(Sm'\ S{-\ Sf" 1 ) « d(N, Bl9 B2) it can be shown (if m > 4) that Sf"1 is 
unlinked from S | " ! in S"""1. 

(3) Then there exists a ball B ' c S m _ l with dBp = Sp~l and 5 P n B2 -
0 and ^^ can be used to isotope P to P ' with P ' n Q = P fl Q - {/>,#}. 

Now for m = 4, Step (2) above works but there is the problem of the 
self-intersections of D and its intersection with P \j Q. Norman's trick is then 
based on the following lemma. 

LEMMA 6.21. Suppose M is a smooth connected closed 4-manifold and let ft\ 
N2 -> M be proper nrpoint immersions with ft\\dNt an embedding, i = 1, 2. (A 
proper map ƒ: JV-» M is one which satisfies f~l(dM) = dN and an n-point 
immersion is one which has n-distinct transverse self-intersections) Suppose 
there exists an embedded 2-sphere S2 in int(Af) which intersects f(Nx) trans-
versely in a single point x. 

Then: (1) There exists a proper (nx — lypoint immersion fx: Nx-± M with 
f^N^ftfN,. 

(2) If S2 has trivial normal bundle there exists a proper embedding fx: 
Nx -» M, with fx(Nx) homologous to fx(Nx) andfx\dNx - f\dNx. If M is l-con-
nectedfx can be chosen homotopic tofv 

(3) If in (2) above S2 is disjoint from f2{N2) then there exists a proper n2-point 
immersion f2\ N2-> M - S2 with f2(N2) n fx(Nx) = 0 , /2|3iV2 = /2|3iV2 and 
[/(iV2)] homologous to [f2(N2)] + r[S2]for some r G Z. 

PROOF. (See Figure 6.3.) Let/? be a self-intersection point offx(Nx) and let 
Aj be an open disc in one sheet oîfx(Nx) about/? and A2 an open disc in S2 

about x. Let a be a path in fx(Nx) connecting p and x (starting in the sheet 
not containing Ax). We can pipe fx(Nx) - àx together with S2 — A2 along a to 
obtain the requisite fx. US2 has trivial normal bundle we can take n-disjoint 
cross sections to eliminate all self-intersections of fx and get an embedding fx. 
Homologically at each stage we are forming a sum fx[Nx] ± [S2] and if we 
have the embedding fx satisfying [fx(Nx)] = [fx(Nx)] + r[S2] we can use the 
fact that fx(Nx) still intersects S2 transversely to obtain a new embedding ƒ,: 
Nx -+ M with [f(Nx)] - [fx(Nx)] - r[S2] = [fx(Nx)] leaving 3 ^ unchanged. 
Lastly if M is 1-connected we use Hurewicz's theorem to change a homology 
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to a homotopy. To prove (3) we form connected sums/2(iV2) # r[S2] exactly 
as above to make it disjoint from fiiN^. 

S2 

A W fx(NÙ W 
FIGURE 6.3 

If a: JV-» M is a proper immersion we shall say it has a complementary 
2-sphere if there exists a 2-sphere S2 c int(M) intersecting a(AT) transversely 
in one point. S2 will be called a strong complement if in addition it has trivial 
normal bundle. (More generally we shall say the a,-: Nt -» M are complemen­
tary if they intersect transversely in one point in int(M).) Note that if a: 
N -» M0 is a proper «-point immersion, where M0 = M — {4-disc}, then 
there clearly always exists an immersion cc: N -* M # S2 X S2 with i <> a|8iV 
= a|3iV and â: N -» M having a strongly complementary 2-sphere (where /: 
M0 -» M # S2 X 5 2 is the obvious embedding). 

Using the methods of Lemma 6.21, Quinn [Q] and Lawson [Law 1], [Law 
2], [Law 3] prove the following. 

THEOREM 6.22 (STABLE S-COBORDISM, COMPARE THEOREM 1.7). Suppose 
(W5, M+, M_) is a PL s-cobordism with product structure on the boundary 
cobordism from 3M+ to 3Af_. Let J be an arc from M+ to M_. Then for some 
k the product structure on the boundary extends to (W # k(S2 X S2 X ƒ), 
M + # k(S2 X S2 X {0}), M^ # k(S2 X S2 X {1})). 

(Recall that as in Chapter 1 we can obtain the diffeomarphism on the ends 
with only the assumption that the cobordism be an A-cobordism.) 

THEOREM 6.23 (SPECIAL HANDLEBODY-DECOMPOSITION). Suppose 0 ¥> N3 c 
dM4 is a submanifold and (M, N) is \-connected. Then for some k, 
(M # d k(D2 X S2), N # k(Sl X S2)) has a handle decomposition with no 
I-handles. 

(Theorem 6.23 is false without stabilization if 3M ¥= 0 . See our description 
of Casson's counterexample in Chapter 4.) 

In addition one could prove analogues of the Cappell and Shaneson stable 
surgery results, Theorems 6.14 and 6.15 using the above approach. We shall 
content ourselves with describing an alternative proof of Lemma 6.13 due to 
Casson which does not depend on Theorem 6.7. 

file:///-connected
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The basic idea behind the proofs of Theorems 6.22 and 6.23 is to use 
Lemma 6.21 to replace the Whitney lemma by the following 

LEMMA 6.24 (STABLE WHITNEY LEMMA). Suppose a: P2 -» M4 , /}: Q2 -> M4 

are proper nrpoint immersions with disjoint strongly complementary 2-spheres 
Sp9 SQ such that SP n KQ) = «(P) n S f i » 0 . Suppose a(P) intersects p(Q) 
transversely with p, q G a(P) n )8(Q) having algebraic intersection 
(a(P), P(Q))p = -(a(jP), fl(Q))q- Then there exists proper nrpoint immersions 
a': P 2 - * AT # S 2 X S2 , j8': £ -» M 4 # S2 X S 2 vWtfi strongly complemen­
tary 2-spheres such that if i: M 0 -» M4 # S2 X S2 is the obvious embedding 
then a\P2) intersects fi'{Q) transversely, a\P2) n £ ' (ô 2 ) = iot(P2) n *0(Ô2) 
— {/?} — {#} am/ a^^2) regular homotopic {isotopic if nx = 0) to ia(P2), i as 
above. 

PROOF. Let y be the circuit y = a u P constructed in the proof of the 
Whitney lemma above and suppose D = t](D2) is an immersed disc with 
D n (P U Q) = 3Z>2 U {transversal intersection points}. 

Using the note preceding Theorem 6.22, if we extend our maps a, /?, TJ to 
a, /?, TJ into M # S2 X S2 then /(/)) has a strongly complementary 2-sphere 
SD which is disjoint from a(P), /?(£), 1(5/»), i(SQ). Using S^ we can make TJ 
into an embedding and using i(SP), i(SQ) we can make TJ(Z>2) disjoint from 
a(P) u /?((?). Then we can continue the proof of the Whitney lemma so as to 
get the desired result. 

Then the proof of Theorem 6.22 can be obtained by imitating the proof of 
the s-cobordism theorem in higher dimensions until the use of the Whitney 
lemma is needed. At that point Lemma 6.24 and the following Lemma 6.25 
whose proof we leave to the reader (sec [Q]) and [Law 1], [Law 2], [Law 3] 
suffice to complete the proof. 

LEMMA 6.25. Let M4 be a closed 4-manifold and suppose a,: S2 -* M4 are 
either proper nrpoint immersions or embeddings, i = 1 , . . . , N9 and there exist 
£ E H2(M, ZTT^M)) - 7T2(M) with w2H(^) - 0 such that [a,(S2)] • % = 8y 

and in the embedding case TT^M — a/S2) -» fl^M is an isomorphism for i = 
1 , . . . , N. 

Then: (1) There exist proper nrpoint immersions a,: S2-* M4 # k(S2 X 
S2) for some k > 0, i = 1,. • . , N9 such that (i) each af has a strongly 
complementary 2-sphere S( c M4 # k(S2 X S2) with all the Sê pairwise dis­
joint and Sf n àj(S2) = 0 , i ¥=j, and (ii) the d, are regularly homotopic 
(isotopic in the embedding case) to ia(: S2 -» M4 # k(S2 X S2), i: M — d4 -» 
M4 # k(S2 X S2) the obvious map. 

(2) Suppose a, above extends to a,: S2 X D2 -* M4 andX(al, aj) = /xCa,) = 0 
all 1 < i, j < N where A, /A are the intersection and self-intersection forms 
defined as in [Wa 3]. Then the a, can be taken to be disjoint embeddings. a,: 
S2 x D2 -» M4 # k(S2 X S2). 

(3) Furthermore if in (2) above there exists an embedding /?: S2 -» M4 with 
strongly complementary 2-sphere such that [fi(S2)] • [ax(S

2)] = ± 1 and 
IKS2)] • [at(S

2)] = Ofor i > 1 then there is an isotopy in M # k(S2 X S2) of 
P to ft such that P(S2) is disjoint from âj(S2)for / > 1 and intersects ax(S

2) 
transversely in one point. 
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(With reference to Lemma 6.25 we note only that to carry out the 'algebraic 
complement implies stable geometric complement' part of the proof of 
Theorem 6.22 we need to know that boundary spheres S in the middle level 
of our cobordism satisfy ITX(M — S) « ^i(M) to apply part 1 of the lemma. 
This follows immediately from the fact that such boundary spheres have 
strongly complementary 2-spheres S' in M # k(S2 X S2).) 

Theorem 6.23 can also be proven using Lemmas 6.24 and 6.25, though 
there are some additional technical details for which we refer to [Q] and [Law 
1], [Law 2], [Law 3]. 

We conclude this section with a direct proof of Lemma 6.13 (and thereby 
complete the proof of Theorem 1.2) due to Casson based on the above type of 
reasoning. In particular noting the way we proved Lemma 6.13 it suffices to 
prove 

THEOREM 6.26. Let M be a connected sum of copies of S2 X S2 and 
S2 X S2. Then any isometry of (H2(M), LM) is induced by a diffeomorphism. 

The proof of Theorem 6.26 is based on the following two lemmas whose 
straightforward proofs we omit. 

LEMMA 6.27. Suppose M is a l-connected 4-manifold and S c M is an 
embedded S2 with [S]2 = 0 and S', S" 2-spheres complementary to S with 
[S']2 = [S"]2. Then there exists an autodiffeomorphism g of M with g(S') = S" 
and g{S) = S. 

LEMMA 6.28. Let M be a l-connected 4-manifold and suppose x is a primitive 
ordinary element of H2(M) with x2 = 0. Suppose M = N # E for some 
4-manifold N and E an S2-bundle over S2. Let S be the class in H2(M) of a 
fiber of E. Then there exists an autodiffeomorphism f of M with f+(S) == x. 

PROOF OF THEOREM 6.26. Suppose M » Ex # • • • # Ek, Ei an S2 bun­
dle over S2 where we assume without loss of generality that £,, i < t, is the 
nontrivial bundle and Ei9 i > t, the trivial one. 

( l)If /c==la direct construction demonstrates the truth of the theorem. 
(2) If k > 1 let S, be the class of the fiber of E, in H2{M) and note that St is 

a primitive ordinary class. Thus if x E H2(M) is primitive and ordinary with 
x2 = 0 there is by Lemma 6.28 an element g E DIFF(M) with g(Sk) = x. 
Suppose <j> is an isometry of H2(M). Then taking x = <j>(Sk) we see g+(Sk) = 
<t>(Sk). Let Sk be the class in H2(M) of a cross section of Ek. Then [g+(Sk)]

2 = 
[<KS/c')]2 and both g*(Sk) and <K^) are complementary to x. Thus by Lemma 
6.25 we may assume without loss of generality that g(Sk) = <t>(Sk). Thus 
g~ V | # 2 ( # ? . M 1 J £ | )

 anc* 8il^\H2(Ek) are isometries and our proof concludes 
by induction. 

6.8 Flexible handles. Casson [Cas 2], [Cas 3] has devised a different 
approach to possibly getting around the 4-dimensional difficulties inherent in 
the Whitney lemma. In essence his idea is to repeatedly attempt to replace 
cancelling pairs of points by means of Whitney discs even though intersec­
tions are introduced. With care though all such intersections can be 'banished 
to oo' and results up to proper homotopy obtained. More precisely we have: 
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THEOREM 6.29 (CASSON). Suppose W4 is a simply-connected smooth ^-mani­
fold and a, ft E H2(W\ Z) with a2 = ft2 = 0 and a • ft = 1. 77*e« //œre exwte* 
o/* tf/?etf se/ V c JF vv/f/i the proper homotopy type of S2 X S2 — {pt} swcA fAtff 
a,/? e I m ( # 2 ( F ) ) . 

If K above were, in fact, diffeomorphic to S2 X S2 — (pt) then one could 
do 4-dimensional surgery without further restrictions. In particular, many 
stable 4-dimensional results could be replaced by corresponding absolute 
results. For example smooth manifolds M with intersection form LM = fs8 © 
Es or LM = El6 would exist. 

To prove Theorem 6.29 we begin by introducing some notation. Thus 
suppose W is an oriented 4-manifold, not necessarily compact. The element 
of H2(W; dW) represented by a m a p / : D2 -» W carrying Sl into 9W will be 
written [ƒ]. Maps/ , g: D2 -> W carrying Sl to disjoint subsets of W have an 
intersection number ƒ • g. This is invariant under homotopy (rel S1), and may 
be obtained by counting the intersections (with signs) of transverse approxi­
mations to ƒ and g. We can then state: 

LEMMA 6.30 (CASSON). Let W4 be a smooth simply-connected manifold and 
suppose f: D2 -» W4, i = 1, . . . , n, are proper maps with 

(i)fi\dD2 -» dWdisjoint embeddings, 
(n)lfl]-[fi] = 0foralli¥=j, 
(iii) There exist a, E H2(W) with a2 even and at • [fj] = 8y. 
Then there exist disjoint open sets Vi c W such that: 
(1) (Vi9 Vt D dW) has the proper homotopy type of (D2 X R2, Sl X R2), 
(2) Vt n dW is an open regular neighborhood off(S *), 
(3) ft is homotopic (rel S1) to a map into Vt. 

The Vi are called flexible handles. If they were in fact diffeomorphic to 
honest 2-handles then W in Theorem 6.29 would in turn also be diffeomor­
phic to S 2 x S 2 - (pt) . 

PROOF OF THEOREM 6.29. Let a, ft be as in Theorem 6.29. Using the 
Hurewicz theorem and the fact that a2 = ft2 = 0 we can find immersions^: 
S2 X R2 -> W, i = 1, 2 representing a and ft such that fx(S

2 X 0) intersects 
f2(S

2 X 0) transversely. Let x be a point of positive intersection and let B be 
an open 4-ball about x so that / . = j j l / " 1 ^ - £) satisfies (i) [fx] • [/2] = 0, 
(ii) ƒ. is an immersion of D 2 X R 2 into X = W - £ with / I S 1 X R2 an 
embedding. Note that a, /? pull back to classes a, /? in H2(X) which satisfy 
5 - L/il = iSf • [ ƒ J = 0, fi- [/2] = i8- [/^ - 1 and à2 - )82 = 0. Then applying 
Lemma 6.30 we can find Vv V2 as in that lemma. Setting V == B u Kj u F2 

— {any boundary} we see that V has the desired properties. 
Before discussing the proof of Lemma 6.30 we give an additional applica­

tion. 
Suppose W is an open manifold. Then 
(1) U is a neighborhood of oo in W if W — U is compact. 
(2) W is r-connected at oo if every neighborhood U of oo contains a 

neighborhood V of oo such that every map Kr ~> V (Kr an r-complex) is null 
homotopic in (/. 

Then in dimension n ¥" 1, 3, 4 we have the Browder-Levine-Livesay-Wall 
theorem which says: 
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THEOREM 6.31 [BLL]. Let Wn be a FL-manifold with compact boundary, 
n *£• 1, 3, 4. Then W U {oo} (the one-point compactification of W) is a PL-
manifold if and only if H^(W) is finitely generated and W is [(n — l)/2]-
connected at oo. 

As a consequence of Lemma 6.30 we can now prove: 

THEOREM 6.32 (CASSON). There exists a smooth open 4-manifold W with the 
proper homotopy type of either S2 X S2 — (pt) or S3 X R, but not diffeomor-
phic to any closed manifold — {pts} (i.e. the ends of W don't have neighbor­
hoods of the form S3 X R). 

PROOF. Let P be the Poincaré homology sphere and consider Y = P X I. 
Let a be a noncentral element of n^Y) (there are 118 such) and surger Y 
along a smooth Sl in int(7) representing a. Call the resultant manifold X 
and note that irx(X) = 1 and 3 * = P u (-P). 

Then using the exact sequence associated to the surgery it is easy to check 
that H*(X) = H*(S2 X S2 - 2 {pts}). In particular there exists a, p e 
H2(X; Z) with a2 = /?2 = 0 and a • /? = 1 and so by Theorem 6.29 there 
exists an open set F c I as in that theorem with a, f$ E lm(H2( V)) and V 
proper homotopy equivalent to S2 X S2 — {pt}. Then (1) either V is not 
diffeomorphic to a closed manifold — {pt} and we are finished or (2) V is 
diffeomorphic to some M — {pt}. In case (2) the ends of V have a neighbor­
hood diffeomorphic to S3 X R. 

We can then decompose X as an interior connected sum Z # S2 X S2 

where Z is a manifold with dZ = P u (-P) and #*(Z) = H+(S3). Joining 
the ends of Z together we get a manifold homotopy equivalent to S3 X Sl 

and letting W be its universal cover we find that W is proper homotopy 
equivalent to S3 X R. However neither end of W has a neighborhood 
diffeomorphic to S3 X R. For suppose one end had such a neighborhood. 
Then attaching a B4 in the obvious fashion we see that there exists an 
embedded P in W separating its ends and bounding a contractible manifold. 
But this contradicts /x(P) ^ 0 so is impossible. 

Recently Freedman [Fr 2] has extended Casson's methods to obtain the 
following more definitive result. 

THEOREM 6.32'. (1) There is a manifold W which is proper-homotopy equiv­
alent to S3 X R and not diffeomorphic to it. 

(2) There is a manifold P, proper-homotopy equivalent but not diffeomorphic 
toS3 X Sl - {pt}. 

(3) There is a proper-homotopy R4, Q, which admits a smooth Z2 action with 
fixed point set = (Poincaré homology sphere) — {pt}. Furthermore either Q has 
a topologically exotic end (and so is not homeomorphic to R4) or there is a 
topological spin 4-manifold of index 8. 

(4) Any homology 3-sphere bounds an open 4-manifold X4, such that X4 is 
proper homotopy equivalent to a contractible manifold — {interior pt}. 

Freedman's result is based on an 'inversion' of Casson's Lemma 6.30. That 
is he shows that if V is as in Theorem 6.29 it is possible to find a compact 
'pscudospine' C which is topologically S2\/ S2 and is smoothly embedded in 
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V, except at the wedge point, such that V — C is proper homotopy equivalent 
to S3 X Rl. In particular we have the following result: 

THEOREM 6.29'. (1) Suppose W4 is a simply-connected compact smooth 
4-manifold and a,]8G H2(W, Z) with a2 = p2 * 0 and a • p = 1. Let H be 
the complement in H2(W9 Z) of the subspace generated by (a, /?} and let L be 
the intersection form of W restricted to H. Then there exists a simply-connected 
open submanifold X c W with one end, which is proper homotopy equivalent to 
S3 X R such that the intersection form ofX is isomorphic to L. 

(2) Let P be any simply-connected (compact) Poincaré space of dimension 4 
and suppose P has a manifold 0-skeleton. Let P~ be P minus a point from the 
interior of this zero cell. Then there exists a smooth manifold proper-homotopy 
equivalent to P~. 

In particular there exist smooth manifolds E, E' each having only one end, 
which is proper homotopy equivalent to S3 X R, such that LEœ E%® E% 

and LE, ca. El6. We shall reduce the proof of Casson's Lemma 6.30 to a series 
of sublemmas whose proofs, shown to us by Casson, we give in detail. For the 
proofs of Freedman's theorems, which use the same methods as those we 
shall use in proving Lemma 6.30 see [Fr 2], [Sb 5]. 

LEMMA 6.33 (CASSON [Cas 2], [Cas 3]). Suppose W4 is a smooth simply-con­
nected 4-manifold and ƒ: Z>2—» W is a proper immersion with /|3Z>2 an 
embedding such that there exist a E H2(W) with [ƒ] • a = ± 1. Then ƒ is 
regular homotopic rel 9 to a proper immersion g: D2 —» W with *nx(W — g(D4)) 
» 1. 

A proper homotopy of f(D2) to g(D2) obtained by pushing 
along the loop w. 

FIGURE 6.4 
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(AU immersions are assumed to be /i-point immersions for some /i, in this 
and all succeeding statements.) 

Note. Actually the above lemma is true for arbitrary 4-manifolds under the 
hypothesis that there exists a E H2(W) with S ^ e ^ ^ t / ] • a** = 1, where W 
is the universal cover of W and ƒ is a lift of ƒ. In this case the conclusion is 
W — g(D4) ^ W induces an isomorphism of irx( W — g(D4)) and irx( W). 

PROOF OF 6.33. Since [ ƒ] • a = ± 1 a straightforward homology calculation 
shows that HX(W - f(D4)) « 0. Thus K « mx{W - f(D4)) is perfect. Picking 
an appropriate basepoint for TTX( W — ƒ(/))), let Z be the element of K 
represented by a meridian of a tubular neighborhood of f(D4). Using van 
Kampen's theorem we see K is normally generated by Z. Then using the 
perfectness of K we obtain that Z = [Z"', Zv>]... [Z\ Zv»] for some ui9 

vt E K. Thus # is generated by conjugates of [Z, Z w , ] 5 . . . , [Z, Z"*], where 
w/ = VjU,'1. It thus suffices to show that given any w E K there will be a 
regular homotopy (rel S1) of ƒ to some proper immersion g: D2 ~> W such 
that Z w commutes with Z in W — g(D2). But if g is constructed by pushing ƒ 
along w as in Figure 6.4 then it is readily verifiable that [Z, Zw] = 1 in a 
tubular neighbor of g(D2). 

In the obvious fashion we now obtain: 

COROLLARY 6.33'. Let W4 be a smooth simply-connected 4-manifold and the 
ft: D2 —» W, 1 = 1 , . . . , / ! proper immersions with ^|9Z>2 embeddings and 
[fi\ ' [fj] ~ 0 all i =£j such that there exist a„ i = 1, . . . , «, satisfying [f.] • ay. 
= 8^. Then the ft are regularly homotopic rel 3 to proper disjoint immersions g(: 
D2-* W with <ïïx(W - U # 2 ) ) = { 1 } . 

(Note that, conversely, mx(W - g(D4)) = 1 implies there exists /? E 
i/2(JF) with [g] • /I = 1. In fact, this is equivalent to HX(W - g(D4)) = 0.) 

LEMMA 6.34. Let W be a 4-manifold and let f: D2 -» M̂  èe a proper n-point 
immersion, for some n, withf(D2) having regular neighborhood N in W. 

Then there are disjoint framed circles Tv . . . , Tn in dN — f(Sl) such that if 
H is obtained from N by attaching 2-handles on Tv . . . , Tn then (H,f(S1)) c~ 
(B4, unknotted circle). Further Tx, . . . , TN can be compatible with any giveit 
spin structure on N. 

FIGURE 6.5 
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PROOF. We first note that the diffeomorphism type of (N,f(D2)) is com­
pletely determined by the number of positive double points p, and negative 
double points q, of the immersion ƒ. It thus suffices to prove the lemma for 
the case n = p = 1 since the more general case can then be taken care of by 
means of a connected sum and orientation reversal argument. 

Thus suppose ƒ has one positive double point. Let K be the knot of Sx in 
D2 X Sl shown in Figure 6.5. Identify I with an arc in Sl and let J 
« S 1 — ƒ. Let i: Z>2-*9Z>3 be an embedding, inducing the embedding i: 
D2 x Sl->dD3 X Sl. 

K n (D2 X I) has two components K0> Kx, meeting D2 X 0, D2 X 1, 
respectively. Let A0, Ax be unknotted arcs in D3 X dl such that dAt = i(dKt), 
(t « 0, 1). Let B0, Bx be discs in D3 X I intersecting transversely once, with 
dBt = At \J i(Kt), {t = 0, 1), and such that D3 X I is a regular neighborhood 
of B0 u Bx. Let B2 be an unknotted disc in D3 X J such that dB2 = A0 u Ax 

U i(K n {D2 X J)). B2 can be chosen so that B0 u Bx u B2 is the image of 
a transverse immersion ƒ+: D2-> D3 X Sl with one double point. If the 
orientation of D3 X Sl is compatible with the right-handed orientation in 
Figure 6.5 the double point of ƒ+ has positive sign. 

Observe that D3 X Sl is a regular neighborhood of f+(D). Let a G dD -
i{D2) and let T = a X S1 c 9(Z)3 XS 1 ) ; T inherits a framing from the 
product structure of d(D3 X Sl). If H+ is obtained from D3 X Sl by 
attaching a 2-handle on T, then (H+,f+(S1)) s (J?4, unknot). 

But (H+9f+(S1)) es* (//, /(S1)) so our first assertion is verified. 
To see that T can be compatible with any given spin structure on N, choose 

a disc neighborhood B4 of the double point of ƒ so that R = N — B4 is a 
regular neighborhood of JP =/(2>2) - £4. Then i* — P X D2 and any Z)2-
bundle automorphism of R fixing dP X D2 extends to an automorphism of N 
fixing a neighborhood of f(Sl) in 3Af. It is easy to choose such an automor­
phism h for which h{T) is compatible with the given spin structure. 

The open sets required for Lemma 6.30 will be constructed as monotone 
unions of compact submanifolds. These compact submanifolds will be ob­
tained by an inductive process, described in terms of the following definition.. 
Let Sx,..., Sk be disjoint circles in the boundary of a simply-connected 
4-manifold W. An envelope for Sl9.. . , Sk is a compact submanifold N of W 
such that 

(1) each component of iV contains exactly one of Sx, . . . , Sk, 
(2) N n dW is a regular neighborhood of (J ,•<*$ *n ̂ > 
(3) Sj, . . . , Sk are null-homotopic in N, 
(4) W — N is simply-connected, 
(5) there are disjoint framed circles 7\ , . . . , Tn (called bands) in dN — dW 

such that, if H is obtained from N by attaching 2-handles on 7 \ , . . . , r„, 
then (//, Ui^Si) a (J /<i t (J5

4, unknotted circle), 
(6) if PF — N has a spin structure, then Tv . . . , Tn are compatible with 

some spin structure on W. 
LEMMA 6.35. Let W be a simply-connected 4-manifold and let fx, . . . , fk: 

D2 -> W satisfy the hypothesis of Lemma 6.30. There are disjoint transverse 
immersions gx,. . . , gk: D

2 -» W such that gt is homotopic (rel Sl) tof and any 
regular neighborhood of U ,-<*&(^2) w an envelope for f \(Sl)9 . . . 9fk(S

l). 
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PROOF. Suppose ƒ , , . . . , X-i a r e homotopic (rel Sl) to disjoint transverse 
immersions gv ..., gr_x with Xr = W — U l<rgl(X>2) simply-connected. The 
induction starts with r = 1 and Â  = W. Since gjr = / ^ = 0 if î < r, / r 

represents zero in H2(W> Xr) a %( W, A",.), so ƒ,. is homotopic (rel S1) to a 
map Ar: D2->Xr. By hypothesis, there is an element <xr Œ H2(W) with 
[Xlar = 1> [&Jar = [/lar = 0 if i < r. It follows that ar is the image of an 
element yr G H2{Xr) with [hr]yr = 1. By general position and Lemma 6.33 hr 

is homotopic (rel S1) to a transverse immersion gr: D
2 -> Xr with Xr+l = Xr 

— gr(D
2) simply-connected. By induction,/,,. . . , fk are homotopic (rel S1) 

to disjoint transverse immersions gl9..., gk with W — U i<kg;(D2) simply-
connected. 

Let TV be a regular neighborhood of U i<kgi(D2) in W. By construction 
and Lemma 6.34, N satisfies condition (l)-(5) in the definition of envelope. 
To verify condition (6), suppose that W — N has a spin structure. Let 
fi G H2(W\ and put y - j8 - S ^ ^ s K Then [&]y = 0 (j -
1, 2, . . . ,&) , so y is in the image of H2(W - N). Since W — N has a spin 
structure, Y2 is even. By hypothesis, a? is even, so /?2 is even for all 
/î G H2(W). This implies that fT has a spin structure; by Lemma 6.34 
r „ . . . , Tn can be compatible with the induced structure on N. 

LEMMA 6.36. Let W be a simply-connected 4-manifold, let Su . . . , Sk be 
disjoint circles in dW and let N be an envelope for Sv . . . , Sk with bands 
Tx> . . . , Tn. There are disjoint transverse immersions gl9 . . . , gn: D

2 ->W — N 
with gj(Sl) = Tt such that any regular neighborhood of N U U i<ngj(D2) is an 
envelope for Sv . . . , Sk. 

The proof requires the following definition. Let/: D2 -» W be a map such 
that ƒ \Sl is an embedding into 3 W. For any framing <j> of f(Sl) in dW9 let W^ 
be the manifold obtained from W by attaching a 2-handle on (f(S*), <J>). Let 
a^ G H2(W^ be represented by ƒ together with the core of the handle. There 
is a unique choice of <j> (up to homotopy) making a£ = 0; this is called the 
induced framing/. Two framings <J>, \p have a well-defined difference <j> — xp G 
771(S02) a Z. Let 5: S 2 - > ^ be a map, and let f # s: D2-> W be a 
connected sum of ƒ and s. Then (ƒ # s)* - f* = 2[ ƒ][.$] + [s]2. 

PROOF OF LEMMA 6.36. Let X = W - JV; since this is simply-connected, 
there are maps fv .. . Jn: D2-> X with/(51) = Tt. The first step is to find 
elements a , , . . . , <xn G H2(X) with [/Jo, = ôtJ and o â, = 0. 

Let H be the manifold obtained from N by attaching 2-handles on 
r „ . . . , Tw; then if is a disjoint union of balls. Let T[ c B# be the belt of 
the 2-handle attached on Tt. Then dN - dW - U ,<fl7} * 9H - U KfcSi -
U j<nTj- Since S j , . . . , S ,̂ T[,..., T'n bound disjoint singular discs in H, 
the linking number of Tj with St or T( is zero (if defined). It follows that the 
parallels of T'v . . . , Tn are null-homologous in dH - U ,<*$ - U j<n

Tr 
Equivalently, the meridians of Tv • . . , Tn are null-homologous in dN — dW 
- UJ^TJ. 

This implies the existence of elements a\y. . . , a'n G H2(dN — dW) with 
[7;.]a; = 8̂ .. Let a, be the image of aj in H2(X); then [/]ay. = 80 and o,ay = 0. 
The next step is to adjust / i , . . . , ƒ, so that ff coincides with the preferred 
framing on Ti9 and fjj = 0 whenever i =£j. 



FOUR-DIMENSIONAL TOPOLOGY: AN INTRODUCTION 121 

By condition (6) in the definition of envelope, if X has a spin structure then 
the preferred framing <f>, on Tt is compatible with some spin structure on W. 
But ft is compatible with any spin structure on W9 so </>, - ft is even. If X has 
no spin structure, then there is an clement £ G H2(X) with ft2 odd. Let s: 
S2->X represent /?; then (ƒ # s)* -ft is odd. Replace ft by ft # s if 
necessary to make </>, — ft even. Let <f>, — ft = 2m,., and let st: S2-* X 
represent a,. Replace ft by ƒ # m^.; since [^]a, = 1 and a? = 0, this replaces 
ft b y # + 2m, - *,. 

Finally replace ^ by ƒ # 2y<l(-//jÇ>y Since [ƒ]«,. = 8̂ . and a,a, = 0, this 
makes^jÇ zero for ƒ 7*= y without altering^. Observe thatfv ... ,fn: D2-*X 
now satisfy all the hypotheses of Lemma 6.30. 

Let 
g\9 • • • 9 8n' D2 —» X be the immersions obtained by applying Lemma 

6.35 to ƒ„ . . . , ƒ„: Z>2 -> * . Let P be a regular neighborhood of U ,<W&(J?2) 
in X, so small that P n 9A" c 9JV. Since g,. is homotopic (rel S1) tofi9 g* — ft 
is the preferred framing on 7}. 

N \j P satisfies conditions (l)-(4) for an envelope of Sl9 . . . , Sk. By 
Lemma 6.35, P is an envelope for Tl9 . . . , Tn in ̂ , and by hypothesis JV is an 
envelope for Sl9..., Sk in W. If A" — i> has a spin structure, then X and W 
have spin structures. By Lemma 6.34, bands Ul9 . . . , Up can be chosen for P 
compatible with a spin structure on W. If X - P has no spin structure, let 
Uv . . . , Up be any bands for P. 

Let # be obtained from P by attaching 2-handles along Ul9... 9 Up; then 
(K, Ui<nTi) at U |<W (B4, unknot). Since the framing induced on a circle in 
S3 by any null-homotopy in B4 is untwisted, the preferred framing gf on Tt 

corresponds to the untwisted framing of the unknot. 
Let H be obtained from JV u P by attaching 2-handles on [ / „ . . . , t^,, so 

ƒƒ = JV u K. The above description of (K9 U ,<„^) shows that H is obtained 
from AT by attaching 2-handles on Tl9..., Tn. Since JV is an envelope for 
S i , . . . , S*, (# , U/^S , ) » U ,<* (#4> unknot). This verifies conditions (5) 
and (6), so JV u P is an envelope for Sl9 . . . , Sk with bands I / , , . . . , Up. The 
result of Lemma 6.36 follows immediately. 

PROOF OF LEMMA 6.30. Suppose/^ . . . , fk: D2 -> W satisfy the hypotheses 
of Lemma 6.30. Apply Lemma 6.35 to obtain immersions gl9..., gk: D

2 -» 
W, and let JV, be a regular neighborhood of U,-<*&C02)« Suppose an 
envelope Nr for fi(Sl)9 . . . , fk(S

l) has been constructed with bands 
7*1, . . . , r„. Apply Lemma 6.36 to obtain disjoint transverse immersions 
hX9...9hn: D2-±W - Nr with h^S1) = 7;., and let JVr+1 be a regular neigh­
borhood of JVr u U i<nhi{D2). Since JVr+1 is an envelope for 
fi(Sl)9 . . . ^ ( S 1 ) , this process yields an infinite sequence Nx c JV2 C • * * 
of envelopes. 

Let F = U r=iJVr and let Vé be the component of V containing ff(S*). 
Since JVr is contained in the interior of JVr+1, F is an open set. Clearly 
Vir n dW is an open regular neighborhood of / (S1) and ƒ is homotopic 
(rel S1) to a map into Vr It remains to prove that (Vi9 Vi, C\ dW) has the 
proper homotopy type of (D2 X R2, S1 X R2). Assume for simplicity that 
k = 1, so K is connected; in general the components of V can be treated 
separately. Of course, the envelope JVr may still have several bands 
Tv . . . , Tn. 
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By condition (5) in the definition of envelope, irx(Nr) is generated by 
conjugates of [Tx], . . . , [Tn]. Since Tt is null-homotopic in Nr+V inclusion 
induces the zero map 7Tx(Nr) -» ^iW+i). By condition (5) again, Ht(N^ * 0 
for 1 > 2, it follows that V is contractible. 

Let Yrs —Ns — Nr and Mr = 9iVr — dW9 so y r j is a regular neighborhood 
of the union of Mr and a 2-complex. It follows that inclusion induces a 
surjection *nx(Ms) -> fl^y^). 

The most important consequence of condition (5) is that the manifold 
obtained from Mr by surgery on 7\, . . . , Tn is diffeomorphic to Sl X D2. 
This implies that the quotient of irx(Mr) by the subgroups generated by 
conjugates of [7\], . . . , [Tn] is cyclic. The quotient is generated by a meridian 
zr to gx(S

l) in 3Mr, and is infinite since it maps onto HX(H - g(D2)). It 
follows that the map irx(Mr)-^ 7rx(Yr^) induced by inclusion has infinite 
cyclic image generated by zr. 

If r < s < t then Yrt = Yr^ u Yst; by van Kampen's theorem, the map 
irx(Yrs) -» TTx(Yrt) induced by inclusion has infinite cyclic image generated by 
zr. Let Yr = U ^LrYry, then irx{Yr) is infinite cyclic, generated by Zr. Observe 
that YXD Y2D . . . is a base of neighborhoods for the end of V. Since zr is 
homotopic to zr__x in yr_p inclusion induces an isomorphism iTx(Yr)-+ 
^i(^r-i)- It follows that the end of V has an infinite cyclic fundamental 
group. 

We close this chapter with an alternate construction of the manifold W in 
Theorem 6.32 using the link calculus which is more geometrically appealing 
[Kirb 6]. We first construct a manifold Q as follows: Let X c Sl X int B2 be 
the Whitehead continuum (see [Rlf, p. 182], [W 1]), defined as X = 
fl/x^'OS1 X B2X where a: Sl X B2 -> Sl X B2 is the imbedding shown 
below (a should have O-twisting about its core) 

Sx xB2 

a(Sx xB2) 

Regarding S2 X S2 as the union of a 0-handle # £ , t w o 2-handles B2
x X Z)2, 

B% X D2 and a 4-handle J53, define a compact subset C = £3 u cXx u c ^ , 
where each Xt is a Whitehead continuum constructed in int B? X dD2 c 8^3, 
the cocore attaching tube of the ith 2-handle, and where Xt is coned off to the 
center of the 2-handle B2 X D2. Then Q = S2 X S2 ~ C. 

(The open subset B2 X int D2 - cXt of the open 2-handle B2 X int D2 is 
then a flexible 2-handle. In fact it is the simplest possible flexible 2-handle. 
The manifold Q can then be regarded as the union of an open 0-handle int BQ 
and two flexible 2-handles.) Now either Q is not diffeomorphic to some 
S2 X S2 — {pt} and we are finished or one can again show that there exists a 
smooth open manifold W with the proper homotopy type of S3 X R but not 
diffeomorphic to it. The question of whether or not Q is diffeomorphic or not 
to S2 X S2 — {pt} can be reduced to a question in knot theory as follows. 
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Let L0 be the Whitehead link as pictured below 

and let Lx be its untwisted double 

This construction can be iterated by replacing O by \Zs o r 

call the nth iterate Wn. 
Then Q is diffeomorphic to S2 X S2 — {pt} if and only if for some n > 0, 

Wn is null-concordant. (Recall that a link L in S3 is null-concordant if and 
only if it bounds a disjoint union of 2-discs in D4 with 3D4 = S3 D L.) 

Note that the compact subset C = S2 X S2 — Q is cell-like (i.e., homo-
topic to a point in any arbitrarily small neighborhood) and satisfies the 
cellularity criterion (i.e., Q is 1-connected at oo); (see [McM]). However, C is 
smoothly cellular (= the intersection of a nested sequence of smooth 4-balls) 
<=» some Wn is null-concordant. 

CHAPTER 7. FOUR MANIFOLDS AS SUB AND SUPER-MANIFOLDS 

7.1 Representing 2-dimensional homology classes of 4-manifolds. As we 
pointed out in the preceding chapter, it was shown by Kervaire, Milnor and 
Rohlin [KM 1], [R 2] that there exist 1-connected closed smooth 4-manifolds 
M with i G H2(M) not representable by a smoothly embedded sphere. 
Although not relevant to the problem of doing surgery in dimension 4 the 
question of representing such £ is still of interest. 

More particularly we have the following questions. 
(I) What is the minimum genus of a smoothly embedded connected 

orientable surface Fg which can represent £. 
(II) How does the allowable minimum genus change if we require that Fg 

be only PL or just topologically (nonlocally flatly) embedded. (Note that by 
Wall [Wa 6] every locally flat PL embedding F2 ^ M4 is isotopic to a smooth 
embedding F2 *-> M4.) 

In this section we consider the first question and discuss question II in §7.2. 
In discussing question 1 we first note that, as a consequence of [Thm] every £ 
can be represented by some smoothly embedded orientable surface. (The 
analogous result is not necessarily true in higher-dimensions. See [Thm].) 

©; 
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There have been two essentially different approaches to the question of 
realizing £. One approach ([Tr], [MM 3], [At 1]) uses the connection between 
4-manifolds and algebraic invariants of links and the other (Hsiang and 
Szczarba, Rohlin) [HSZ, R 2] is a more direct use of cobordism theory and 
the Atiyah-Singer G-signature theorem. 

We begin with the second approach to the problem of realizability. In [R 2] 
Rohlin proves the following result: 

THEOREM 7.1. Let X be a smooth connected closed 4-manifold with HX(X) = 
0. Let F be an oriented connected closed two dimensional submanifold of X 
realizing £ G H2(X) with genus (F) = g and set b2{X) = rk H2(X; Z). 

Then 
(1) if £ is divisible by 2 then 

\e/2-a(X)\-b2(X)<2g (1) 

(2) ifp is an odd prime and £ is divisible by k = pn, then 

\((k2 - l)/2k2)e - o(x)\ - b2(X ) < 2g. (2) 

(Hsiang and Szczarba proved a somewhat weaker version of the above in 
[HSZ] by essentially similar methods. We discuss only Rohlin's result.) 

As a corollary one can obtain for example: 

COROLLARY 7.2. (1) Let X = CP2 with y the generator of H2(CP2). Suppose 
£ = ny. Then 

(Ï)if2\n;g>\n2- I while 
(ii) if h\n, h an odd prime power, then g > (\n2 — 1) — (n2/4h2). 
(2) Let X = S2 X S2 with £1? £2 natural generators of H2(S

2 X S2). Suppose 
£ — n\%\ + n2^ 

(i)ifl\nxandl\n2;g >\\nxn2\ - 1 
(ii) if h\nl9 h\n2, h a prime power and h odd then 

g >\\nxn2\ - 1 - \\nxn2\/h
2. 

Note that in case (1) £ can be realized by algebraic curves of genus 
\{n — l)(/i — 2) if « TÉ 0 and there is no known realization by a surface of 
lower genus (Thorn conjectures that there is no lower realization). 

Similarly in case (2) £ can be realized by algebraic curves of genus 
(\nx\ — l)(|fl2| """ 1) a n d no lower genus realization is known. Both in cases (1) 
and (2) the upper bound on the realization is about twice as large as the lower 
bound obtained above. One should also note that Theorem 7.1 says nothing 
about the possibility of representing £ by a nonlocally flat sphere and one 
obtains no information about PL realizability of 2-homology classes. Theo­
rem 7.1 is also not a generalization of Theorem 1 of [KM 1] (see our Lemma 
1.13) giving more information in some cases and less in others. (In particular 
Corollary 7.2 gives far more information about realizability for S2 X S2 or 
CP2 than does Corollary 1.13. However for X = CP2 # CP2 with yv y2 the 
obvious generators of H2(X), Corollary 1.13 implies that yx 4- 3y2 is not 
realizable by an embedded sphere while Theorem 7.1 says nothing about this 
case.) Note that by 6.5 both yx and 3y2 are realizable by smoothly embedded 
spheres. 
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The proof of Theorem 7.1 goes as follows. 
(a) Let F be a surface realizing £ e H2(X). For any m dividing £ it is 

possible to construct an m-fold cyclic branched covering manifold Y of X 
branched over F. Let <n\ Y -» X denote the canonical projection. 

(b) Let U = X — T(F) and V = Y\u the corresponding unbranched m-
sheeted cover. (F(F) a tubular neighborhood of F in X.) 

One then computes using only simple homology theory that 

b2{Y) = m62(JT) + 2(m - l)g + 2ft1(K), 

bx{Y)-bx{V). (3) 

One can show by algebraic means that if m = 2 or m is an odd prime 
power then bx(V) = 0. 

(c) Y is an m-fold cyclic branched covering space and thus there is a 
natural action of Zm on Y with Y/Zm = X. Let / / « 7/2<T; Q and notice 
that the intersection pairing • on H2( Y; Z) extends naturally to a Hermitian 
pairing • on H. Let ?T: Y -> F be the natural generator of the group Zm of 
covering transformations of Y (?T is the covering transformation which 
rotates the fibers of the normal disc bundle T of F = 7r_1(F) through an 
angle of lir/m) and let ?T+: / / - > / / be the induced isometry of (/f, •) on 
itself. Note that 5^ = id and writing co = e

2™/m ict F r be the <or-eigenspace 
of ?T, 0 < r < w. Then (//, •) decomposes as an orthogonal direct sum 

H = F 0 © • • • ©Fm_! 

and letting or( Y) be the signature of • restricted to Er one can obtain (see 
Rohlin [R 2], Casson and Gordon [CG]). 

or(Y) = o(X)-^m-rK (4) 
mz 

(The proof of (**) relies heavily on the 4-dimensional G-signature theorem.) 
(d) Again on strictly algebraic grounds one can obtain that 

V r' ' b2(X ) + 2g if r>0. 

Thus clearly for all r, 0 < r < m. 

2£2r(m - r) 
o(x) 

w 
2 

<b2{X) + 2g 

and the desired inequalities follow by taking r = 1 if m = 2 and r = /: if 
m = 2A: + 1. 

Although rather far away from the problem of finding embedded spheres 
to represent homology classes it is still of interest to see what kind of 
estimates one can get on the genus of a nonorientable 2-manif old F represent­
ing a homology class. (Recall that if F is nonorientable then g(F) = 2 — 
X(F), x(^) the Euler characteristic of F.) In this case Rohlin shows by 
methods analogous to those he used for the orientable case that: 
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THEOREM 7.3. Suppose X is as in Theorem 7.1 and A is a nonorientable 
surface realizing the zero element of H2(X; Z). 

Then 

\±a-o{X)\-b2(X)<g 

where a is the Euler number of the normal bundle of A {the so called *normal 
Euler number' of A). 

COROLLARY 7.3' (SEE [Whit 2], [Mas]). Suppose F is a closed nonorientable 
2-manifold and i: F °-» S4 a smooth embedding. 

Then \a\ < 2g, where a is the normal Euler number of F. Furthermore, for 
every integer n with \n\ < 2g and n = 2g (mod 4) there exists an embedding in: 
F*-* S4 with the normal Euler number of in(F) equal to n. 

PROOF. The inequality \a\ < 2g follows from Theorem 7.1' applied to 
X = S4. The realizability follows by noting that (i) If F * RP 2 then for any 
embedding F0-» S4 we have a(F) = ± 2 depending only on the orientation 
of S4. (ii) Every nonorientable surface F equals T F J . ^ R F 2 ) , . and by taking 
connected sums of (S 4 , RP2) and (S4, -RP 2 ) one can achieve all possible aF 

in ~2g, -2g + 4 , . . . , 2g — 4, 2g as desired. 
One can also relate the Euler number of a to the signature of M and thus 

prove a nonorientable version of Theorem 1.12. 
In particular if M4 is an oriented, connected closed 4-manifold with 

HX(M4\ Z) = 0 and F2 is a closed not-necessarily orientable surface realizing 
a characteristic element in H2(M; Z) then one can define a quadratic func­
tion [Mt 1] <£: HX(F2; Z2) -» Z4. [In this context quadratic means <f>(u + t>) = 
<>(w) + <f>(v) + 2/jt(w, t>), JU, the intersection pairing on HX(F2; ZJ = H.] Then 
following E. H. Brown [Brwn], one can define an Arf type invariant K(<f>) G 
Z8 associated to <j> by 

M e/f V V2 / 

One can then prove 
(1) K(F2) is an isotopy invariant of F2 . 
(2) K(F2) = x(F2) (mod 2), where x(^2) is the Euler characteristic of F2 . 
(3) If F 2 is orientable, K(F2) = 4 Arf(F2), where 4: Z2 -» Z8 is the nontri-

vial homomorphism. 
One then has the following theorem of Guillou and Marin [GM] 

THEOREM 7.4. [NONORIENTABLE ROHLIN] (COMPARE WITH THEOREM 1.12). 
Let a(F2) be the normal Euler number of the number F 2 °-> M4 then 

o(M4) = a(F2) + 2K(F2) (mod 16). 

COROLLARY 7.5. (THE GENERALIZED WHITNEY CONGRUENCE [R 3]). 

o(M4) = a(F2) + 2X(F2) (mod 4). 

We now recall the connection between the problem of realizing £ and 
numerical link invariants. Thus suppose X is a smooth oriented compact 
4-manifold with HX(X) — 0. Let £ G H2(X) and suppose F is a connected 
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oriented 2-manifold realizing £. Let T be a regular neighborhood of the 
2-skeleton K of X in some cell-decomposition of X. Then by general position 
we may assume that F intersects K and T transversely and lies within some 
slightly larger regular neighborhood T_ of K such that T - Tœ dT X L 
Then by the assumed transversality of F and T we have that F n T consists 
of some number of disjoint smoothly embedded discs in T with F n dT their 
boundary circles. Set L = F n 37, M = 9T and F = F - .F_n T. Then F is 
simply F with a number of discs removed and so F and F have the same 
genus g. Now L is a smooth link in the 3-manifold M and bounds an oriented 
compact 2-manifold F c M Xj. Thus the problem of establishing a mini­
mum bound for the genus of F is equivalent to determining the minimum 
genus of an orientable surface F c M X I bounding a given link L c M. In 
many cases of interest X has a handle decomposition with no 3-handles. M is 
then simply S3 and L is thus a classical link L c S 3 . The problem of whether 
£ is representable by a sphere is then exactly equivalent to whether L is a 
weak slice link in the sense of ([Fox, p. 173-Property 4], [Tr, p. 163]). (By [M 
3] X will have such a decomposition whenever it is, for example a complete 
intersection surface. In particular CP2, S2 X S2 and V4 have such handle 
decompositions. See our discussion in Chapter 3.) 

In the classical case (where M = S3) Tristram obtained some estimates on 
the minimum genus of a surface F in S+ — (upper hemisphere of S4) 
bounding a link Lin S3 = dS+. 

Mv 

- 1 1 

0 - 1 

FIGURE 7.1 
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We recall that if L is a link in S3 there will always exist an orientable 
embedded 2-manifold V in S3 with dV = L. F is called a Seifert surface for 
L. Furthermore the interior of V, V can always be bicollared in S3 to obtain 
an embedding of V X [-1, 1] in S3 - L. Then if x G HX(V) is represented 
by a 1-cycle * in F we let x + denote the homology class carried by x X 1 in 
V X [-1, 1]. 

We then define the Seifert form fv of L by 

fv(*>y) = lk(x,y+) îorx,y G J&Ti(t5). 

Corresponding to any choice of basis for HX(V) we also have the Seifert 
matrix Mv of L. (Example: If L is the right-handed trefoil knot, then in 
Figure 7.1 we exhibit a Seifert surface V and associated Seifert matrix Mv.) 
(see [Fox]). Note that Mv induces a bilinear form on Z2g X Z2g -» Z, where g 
is the genus of V corresponding to / : / / ^F ) X HX(V) -» Z and two matrices 
Mv, Mv. correspond to the same form if and only if they are congruent. 

Now suppose (/, Zw, Z) is any bilinear form and <o a complex number with 
|to| = 1 and <o J± 1. Let <7 be the form on Z" x Z " t o C defined by 

%x,y) = (1 - «){/(*, ƒ) - «/(ƒ, x)}. (5) 

(If Af is a matrix representative of / then M + M' — coM' — cöAf will be a 
matrix representative of w/.) It is easy to verify that w/ will always be a 
Hermitian form and thus have a well-defined signature which we denote by 

"jo. 
Now for any link L c S3 and Seifert surface V for L we can form ufv as 

above. We let aw(F) denote the signature and njy) denote 1 + nullity (*fv) 
(nullity ufv = 2g — rk Mv). If co is a /^^th root (p prime, k = 1 if p = 2) of 
unity ^ 1 one can show that aw(F), ww(F) are in fact independent of the 
choice of Seifert surface V for L and thus for any primitive/?th root of unity £ 
one has numerical link invariants which we denote by oJ^L), ww(L). (If 
co = -1 we write o2(L), n2(L) instead of o_x{L\ n_x(L) and if p = 2m 4- 1, 
w * £w, £ = e27ri//> then aw(L), flw(L) are sometimes written as op(L), np(L).) 

In [Tr] Tristram shows that if F is a smooth connected surface spanning the 
link Lin SX then 

\op(L)\+n,{L)-tiL)<2gF (6) 

where \i(L) = number of components of L and gF is the genus of F. (Actually 
Tristram's proof shows that for any prime/?, and anypkth root of unity co ^ 1 
(A: = 1 if p = 2) 

| a w ( L ) | + n w ( L ) - M ( L ) < 2 g F . ) (6') 

Thus by reducing the problem of representing £ G H2(X) Jto a problem in 
link theory one can get estimates on the minimum genus of F representing £. 
In particular as direct corollaries of (6) one finds the following generalization 
of Examples 1 and 2 in [KM 1]. 
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COROLLARY 7.2'. (1) Let a, b denote the generators of H2(S
2 X S2) repre­

sented by S2 X * and * X S2, respectively. Suppose £ = qa + rb E H2(S
2 X 

S2) with g.c.d. (q, r) > 1. 
7%e« £ w «0/ representatie by an embedded sphere. 
(2) Le/ y be the generator of H2(CP2). 
Suppose £ = ny. Then if n > 3, £ is not representable by an embedded sphere. 

(Actually, as we shall see shortly, Tristram's inequality contains signifi­
cantly more information than is contained in this theorem. In fact it also 
implies Corollary 7.2 of Theorem 7.1.) 

Now suppose M is not a 3-sphere but an arbitrary 3-manifold and L is a 
link homologous to zero in HX(M). Then as in [MM 3] one can show that L 
has an orientable spanning surface V in M. However as opposed to the case 
when M = S3 not all such spanning surfaces will be homologous in H2(M, L) 
but will differ by elements of H2{M). In [MM 3] it is shown how one can still 
define a Seifert form fv associated to the Seifert surface V of L and then 
define aw(F), n^V) as the case of classical links. Now however, although 
°jy\ nu(V) will t>e independent of the particular choice of F in a given 
homology class ?T in H2(M, L) it might depend on the choice of homology 
class ?T. Thus one can define numerical link invariants devoted by o„(L9 $"), 

Analogous to Tristram's inequality one obtains the following result: 

THEOREM 7.6 [MM 3]. Let M be a compact oriented 3-manifold with HX(M) 
free and suppose L is a link in M homologous to zero. Let F be a spanning 
surface for L in M X I and let ?T denote the image of the homology class of F 
in H2(M, L). Then if <o is a pkth root of unity ^ 1, p a prime and k = 1 if 
p = 2 we have 

K ( L , ?T)| + nu(L, S) + bx(M ) - n(L) - 8(L) < 2gF (7) 

where bx(M) = rk HX(M, Z) and 8(L) = rank of a minimal generating set of 
HY(M9 Z)/i^Hx(L9 Z). 
In particular if HX(L) -* HX(M) is onto 

aw(L, ?J) + ntt(L, 9) + bx(M) - ii(L) < 2gF. (7) 

(Notice that if M is a homotopy 3-sphere (7') becomes (6') again.) 
As a consequence of Theorem 7.5 one has in principle a technique for 

estimating the minimum genus of £ G H2(X) for a 4-manifold X with Hx(dT) 
free. (X need not satisfy HX(X) = 0. Recall T is a regular neighborhood of 
some 2-skeleton of X.) How do the estimates in (6') and (7') compare to those 
of (1) and (2) when HX(X) - 0? 

In [MM 1] it is shown that if M = S3 then 

o2(L) = o(X)-\e and n2(L) - M(L) - b2(X). (8) 

Thus (6') implies (1) and both approaches to the problem of estimating the 
minimal genus come up with the same number in the case M = S3. 

As an interesting aside on the type of information not provided by either 
Rohlin's theorem or the results of [Tr], [MM 3] we note the following fact 
pointed out by Akbulut [At 2]. 
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Suppose K is a framed knot in S3 with framing r E Z and let Kr be the 
4-manifold it represents. Then using Tristram's theorem (equation (6)) one 
can show (see [At 1]) that if the/?-signature op(K) of K is nonzero for a prime 
number dividing r then H2(K

r) cannot be represented by a smoothly em­
bedded sphere. However let K be the knot in Figure 3.10 of Chapter 3. Then 
it can be shown by direct calculation that op(K) ̂  0 all prime p but the 
generator of H2(K

 + l) is representable by a smoothly embedded sphere! In 
fact Akbulut shows that the manifolds K+l and R + l

9 where R is also 
pictured in Figure 3.10 of Chapter 3 are the same and that R is a slice knot. 
Thus the generator of H2(R

 + l) — the generator of H2(K
+) is representable 

by a smooth sphere even though op(K) ̂  0. Thus, for example if M4 is a 
4-manifold and F2 is a 2-homology class with F2 • F2 = ± 1 which is repre­
sentable by a PL embedded sphere then the knot cobordism invariants of the 
link of the singularity of F2 in M4 can't be obstructions to representing F2 by 
a smoothly embedded sphere. We note however that by [CS 10] if op(K) ¥" 0 
for any p9 then the generator of H2(K°) is not representable by a smoothly 
embedded sphere. Thus if F2 above satisfies F2 • F2 = 0 the knot cobordism 
invariants are almost exactly the obstructions to representing F2 by a 
smoothly embedded sphere. See [CS 5], [CS 8], [CS 10], [CS 13] for details. 

7.2 PL-representations. We now consider question II. That is, how much 
better can we do if we allow PL (nonlocally flat) embeddings to represent our 
homology classes? The first result in that direction is also in [KM 1]. We 
have: 

THEOREM 7.7. In S2 X S2 or CP2 every 2-dimensional homology class can be 
represented by a PL-embedded sphere. 

We give an algebraic proof for CP2. A similar proof can be given for 
S2 X S2. Thus let y be the canonical generator of CP2 and suppose £ = ny 
for some n > 1. (If n is negative we construct a spherical representative for 
-ny and then simply change orientation.) Then if [x : y : z] are projective 
coordinates for CP2 it is easily verified that the curve C: Xn + Yn~~lZ = 0 is 
a PL-embedded sphere representing ny. (Note that Xn + Yn~lZ can be 
thought of in the following way: Decompose CP2 as the +1 disc bundle U 
over S2 and a 4-disc V (i.e., D4 with a 2-handle attached via O and an 

+ i 
additional 4-handle). Then one can check that ^ = C n 3 f / = C n 3 F i s a n 
(n, n — l)-torus knot in S3, C n U = Dv is a smooth 2-disc in U with 
dDv = Kand C n Vis the cone on Kin V = D4. Thus C has one bad point, 
namely the vertex of the cone C n V.) 

(We point out that although the above theorem shows that all classes in 
H2{S2 X S2: Z) can be represented by PL-spheres we have no information at 
all on the minimum genus of a smooth representative of 2a + 3b in H2(S

2 X 
S2; Z)! If we translate this question into the corresponding link-theoretic 
question we obtain a link Lkl such as in Figure 7.2A. Note that if / = 0 or 
k < 1 then the Tristram inequality (6) rules out the possibility that Lkl 

bounds a punctured 2-sphere in B4. The next simplest case is k = 2, / = 1, 
pictured in Figure 7.2B. Even for this simple case the minimum genus of the 
punctured surface it bounds in B4 is unknown!) 
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k k 

FIGURE 7.2A 

FIGURE 7.2B 

Returning to question of PL-embeddings we have the following more 
general theorem about PL-representations. 

PROPOSITION 7.8. Let X be a closed PL A-manifold containing a 2-dimen-
sional subcomplex K such that 

(1) Kis acyclic. 
(2) The boundary of a regular neighborhood T of K is S3. Then every 

homology class £ E H2(M; Z) can be represented by a YL-embedded sphere. 

Note that if X has a handlebody decomposition with no 3-handles then it 
clearly satisfies the hypothesis of the above proposition. Clearly then if X has 
a special handlebody decomposition (in the sense of Chapter 3) it satisfies the 
requisite hypothesis. (It is as yet unknown whether every 1-connected 4-mani-
fold has a handlebody decomposition with no 3-handles.) To prove Proposi­
tion 7.8 we recall by our discussion earlier in this section that if F is any 
smooth manifold representing £ we can by a general position argument insure 
that F n T is a finite number of discs Dl9. • . , D^ and F n 3T a link in S3 

with disjoint components Kx, . . . , K^. By connecting the components by 
disjoint bands we can without altering the homology class of F connect up 
the various Dt to produce a 2-cycle F* homologous to F with P n ^ a 2-disc 
and a(F" n T) = F* n dT a knot K in S3. Coning off AT in a regular 
neighborhood N of 3 T in M — T provides us with the requisite PL 2-sphere 
homologous to F* and thus representing £. 
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The analogue of Proposition 7.8 for 4-manifolds with boundary =£ S3 is not 
true! In fact Akbulut [At 2] proves: 

PROPOSITION 7.9. There exists a compact 4-manifold W4 (with boundary) 
which is homotopy equivalent to W$ # CP2 (W$ a Q-homology ball) such that 
the generator £ e H2( W; Z) « Z cannot be represented even by a VL-embedded 
sphere. 

We will not give the proof of this theorem but simply note that it is based 
on use of the Casson-Gordon invariant of [CG]. Full details can be found in 
[At 2]. In Figure 7.3 we give link pictures of the manifolds W0, W, and 
indicate which homology classes are not representable. 

Similar in spirit to the above is an example of Matsumoto and Venema, 
[Mt V], of an open subset W' of R4 which has the homotopy type of S2 but 
such that no nontrivial class in H2(W'; Z) can be represented by a PL-em­
bedded 2-sphere. (A standard basis of H2(W' # S2 X S1; Z) can, however, 
even be represented by smoothly embedded 2-spheres.) 

We note that the same failure of the Whitney trick which does not allow us 
to represent 2-dimensional homology classes of a 1-connected 4-manifold X 
by embedded spheres can also prevent one from geometrically separating two 
smooth spheres in X which are algebraically separated. 

More precisely there exists a compact closed 1-connected 4-manifold X and 
£i, £2

 e H2(X) such that £i • £2
 = 0, £v £2 are representable by smoothly 

embedded 2-spheres but if Sv S2 are any such 2-spheres then Sx n S2 *£ 0 . 

+ 1 

u/4 W=WÎ#CP2 

N o t e : / a ^ Q ) = # , ( £ 4 ; Q ) The homology class [£], corresponding 
to the unknot £ above generates 
H2(W;Z) and is not representable by a 
PL-embedded sphere. 

FIGURE 7.3 
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In fact we have the following example of [KM 1], 
Let Yj, y2 be the canonical generators of H2(CP2 # CP2; Z). Then by 

[Bord], 3Y2 can be represented by a smoothly embedded sphere while clearly 
y{ can be so represented. However although yj • 3y2 = 0 it is never possible to 
separate smooth spheres representing them! (Suppose such a separation were 
possible. Then if S*, represents YI and S2 represents 3Y2 we can pipe S* and 
S2 together to get a smoothly embedded 2-sphere S representing Yi + 3Y2-
But Yi + 3Y2 is characteristic for CP2 # CP2 and thus by the Kervaire-
Milnor theorem cannot be so represented.) 

Similar results can be obtained even if we reduce our demands to having 
the relevant homology classes represented by only PL (nonlocally flat)-em-
bedded spheres. The same methods used to prove Proposition 7.9 also give: 

PROPOSITION 7.10 (AKBULUT) [At 2]. There exists a compact spin 4-manifold 
M4 (with boundary) which is homotopy equivalent to M$ # S2 X S2 where M$ 
is a homology Sl X D3 such that: 

(i) M4 is Z[Z]-homology equivalent to (M$ # S2 X S2) (where ~ denotes 
infinite cyclic cover) and 

(ii) there are hyperbolic classes £j, £2 E H2(M, Z[Z]) that cannot be repre­
sented by a PL-embedded S2\y S2. In fact there is no embedded homology 
S2 X S2 — Int B4 in the interior of M4 representing (£v £2)-

The manifolds Af0, M are exhibited (via framed link pictures) in Figure 7.4. 
In particular any choice of PL-embedded spheres Sv S2 representing ^ , £2 

must then have card(5'1 n S2) > 1. (A similar proposition has been proven by 
Freedman in [Fr 1] using somewhat different methods.) 

M4=M4#S2 xS2 

Let If, £2 be the homology classes corresponding to the com­
ponents 17 j , 772 -17 j of the link L above. It is easy to see that 
{£j, £2} a r e a hyperbolic pair and it can be shown that they 
are not even PL-re presentable by S2 x S 2 . Clearly both T^, T?2 

are individually representable by S2>>s. 

FIGURE 7.4 

Proposition 7.10 is in some sense more devastating to any hope of mimicing 
higher-dimensional surgery techniques in dimension 4 than the nonembed-
ding results cited earlier, as it shows that 'surgery kernels' cannot always be 
PL, let alone smoothly, represented by geometrically hyperbolic sphere pairs, 
even though the individual homology classes can be represented. 
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Similar examples of algebraically but not geometrically disjoint homology 
classes can also be constructed. We recall that in Chapter 1 we defined the 
Arf invariant of any characteristic element of H2(W), W a 1-connected 
compact smooth 4-manifold. Then Matsumoto [Mt 4] has shown by straight­
forward geometric calculations of the appropriate Arf invariants that: 

PROPOSITION 7.11 (MATSUMOTO, [Mt 4]). Suppose W is a simply-connected 
compact smooth 4-manifold with 

(i) Xx, . . . , Xn E H2{W; Z) characteristic, 
(ii) Xt + Xj characteristic for all i <j, 
(iii) 2A .̂ characteristic. 
(1) If the Xt are represented by disjointly embedded PL 2-spheres, then 

Arf(2 Jf/) = SArftY,) (mod 2). 
(2) If the X{ are represented by continuous maps with pairwise disjoint images, 

then 

Arff 2 x\ s 2 Arf(*, + Xj) + nl J ] Arf(^)j . 

EXAMPLE. (1) In Figure 7.5 let [Xx], [X2] be the 2-homology classes 
corresponding to the components Xx, X2 of the framed link L representing a 
4-manifold W. It is easy to see that [Xx], [X2], [Xx] + [X2] are characteristic. 
Now lk(Xx, X2) - 0 so [Xx] • [X>] = 0. But A r f ^ ] ) = Arf([*2]) - 0 and 
ArfflJfJ + [X2]) = 1 so [Xx], [X2] cannot be represented by disjointly em­
bedded PL-spheres. 

FIGURE 7.5 

ç l p o = w4 

(2) Let L„ be the framed link of n components pictured in Figure 7.6 and 
suppose Mn is the associated 4-manifold. Let £, = [X(] be the elements of 
H2(Mn) corresponding to the components Xt of L. 

Then £„ £, + |,, 2£ are all characteristic and an explicit calculation shows 
that 

* « « . + • • • + « - { £ : ; î 

Arffc) - Arffe + $) - 0 (1 <j). 

Thus if n = 3, £1? £2* £3 cannot be represented by continuous maps with 
pairwise disjoint images, even though \ • § = lk(Xt, Xf) = 0 for all i,j. (If 
n > 4 it is not clear what the situation will be. In [Kob] K. Kobayashi proves 
a homotopic version of the Whitney trick and uses it to show that two 
homology classes £1? £2 E H2{M), M 1-connected, with £, • £2

 = 0 can always 
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be homotopically separated. Thus n = 3 is the minimum number for the 
above phenomena.) 

We give one last example [Mt 4] illustrating the mess arising in 4-manifold 
theory due to the failure of the Whitney trick. 

= M* 

• • • f v >>* y >•«• 

n components 
n>A 

FIGURE 7.6 

EXAMPLE (MATSUMOTO, [Mt 4]). We recall that the Kummer surface F4 can 
be constructed by taking _7"4/a, where o is the canonical involution 
a(Zv Z2, Z3, Z4) = (Z1? Z2, Z3, Z4) and resolving the 16 singular points pi9 as 
described in Chapter 2. ( F4 is ^ in the notation used there.) In the process 
of resolving the singularities of T4/o we introduce 16 smoothly embedded 
2-spheres L, (i.e. the zero-sections of the -2 disc bundles used to replace 
neighborhoods of the/?,) such that Lt • Lj = -28ir Now b2(V4) = 22 and there 
clearly exist homology classes 0 ^ { G H2(V4) with £ • L, = 0 all i [simply lift 
a class in T4/a which does not contain the#]. Now F4 is simply connected 
so £ can always be represented by a continuous map/: S2 -» F4. 

Claim. There exists no homotopy of ƒ to a map g such that g(S2) n 

PROOF. Suppose such a map g existed. Now F4 - U Lt = T4/o — 
{^u • • • >P\6) S(> ^ would lift to a map g: S2-> T4 - {16 points}. But 
7T2(r

4 — points) = 0 so g must be null homotopic contradicting £ ̂  0. 

73 Surgery and embedding phenomena. One of the major contributions of 
surgery theory is to provide new tools for answering when one can embed a 
manifold Mm into another manifold Vm+q. To translate this problem into 
terms amenable for surgery calculations suppose that/: Mm-» Vm+q is an 
embedding. For simplicity let us temporarily assume that ƒ is smooth. Let D 
be a closed tubular neighborhood of Af in F and let E be the closure of its 
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complement. Note that D is essentially the disc bundle D(v) of the normal 
bundle v of M in K, and we clearly then have a diffeomorphism of E u D(y) 
andK. 

If we wish to translate these data into homotopy theoretic terms we could 
say that any embedding/: Mm -» Vm+q determines 

(1) a (q — l)-spherical fibration over M (S(v) in our case), 
(2) a finite CW complex E D S(P% 
(3) a simple homotopy equivalence h: E \j D(v) -» K. 
Note that D(v) is of course diffeomorphic to the mapping cylinder M(p) of 

p:S(v)->M. 
This motivates the following definition. 
DEFINITION (PE) Suppose Afm, Vm+q are compact manifolds. Then a 

Poincaré embedding 9 of M in F is 
(1) a (q - l)-spherical fibration £ = (S, M, P) with projection/?: S -» M, 
(2) a (finite) CW-complex £ D S , 
(3) a simple homotopy equivalence h: E u Af(/?) -* F 

where M(/?) is the mapping cylinder of/?, and E n M(/?) = 5. We will let £#, 
£^, h9 denote the £, £, h associated to a Poincaré embedding 0. 

(If 9 * 2 then since G(2)/0(2) is contractible we can replace (1) by the 
existence of a 2-plane bundle £ over M. The parts of S and M(/?) are then of 
course played by the sphere bundle S(Q and disc bundle D(£) associated to £.) 
If | is an oriented bundle we will say the Poincaré embedding is oriented. 
Although the motivation for our definition above shows only that smooth 
embeddings determine Poincaré embedding one can show that PL or TOP 
embeddings do also. (See [Wa 3, §11] for the PL or TOP locally-flat case and 
[CS 5] for general PL embeddings if q = 2.) 

We note that the concept of a Poincaré embedding is a homotopy theoretic 
concept and could as well have been defined on the level of Poincaré 
complexes. (We could define a relative version for embeddings (M, dM) -» 
(V, dV) in the obvious fashion, but suppress such considerations for simplic­
ity. We point out however that all the theorems we shall quote have relative 
analogues. See [Wa 3, §11], for details if q > 3 and [Cap 3], [CS 5] if q < 2.) 

The fundamental questions we now discuss are 
(1) Suppose there exists a Poincaré embedding 9 of Mm into Vm*q. When 

is 9 induced by a smooth or PL embedding/: Mm «-» Vm+q. 
(2) Suppose/: Mm -> Vm+q is a homotopy equivalence. When is ƒ homo-

topic to an embedding? 
To answer 1 and 2 above we consider the related splitting problem for 

simple homotopy equivalences. 
Thus suppose that/: Mn -> Xn is a simple homotopy equivalence between 

closed manifolds and Ym c X is a connected locally-flat submanifold. 
We say that ƒ is splittable (actually s or simply-splittable) along y if ƒ is 

homotopic to a map g transverse to Y such that g\g~lY: g~lY -* Y is a 
simple homotopy equivalence. We say g is (simply) split (along Y). 

(In the above definition we have assumed dX = dM = 9 Y = 0 . We could 
have admitted boundaries at the cost of adding some complications to the 
definition. Henceforth we assume all our manifolds are unbounded. We could 
also have stated the definition and subsequent theorems under the weaker 
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assumption that X, Y were a Poincaré complex with Y having a linear normal 
bundle in X.) 

Now suppose ƒ: Mn -> Xn and Ym are as above. We can by general 
position always assume that ƒ is already transverse regular to Y. Then as in 
[Wa 3, §11] there is a natural bundle map b with domain the stable normal 
bundle of f~lY, covering f\f~lY. Let/1 - f\f~lY. 

Let 2( / ) G I^(w,(y)) denote the surgery obstruction associated to the 
normal cobordism class of (J1, b). We call 2(/) the abstract surgery obstruc­
tion of ƒ. Then it can be shown ([Br 2], [Br 3], [Wa 3]) that for problems of 
codimension (q) > 3 the vanishing of 2(/) is a necessary and sufficient 
condition for the splittability of/. (It is also necessary to assume dim V > 5.) 
Furthermore, (1) in such codimensions a Poincaré embedding of PL (resp., 
TOP) manifolds is always induced by a unique (up to isotopy) locally-flat PL 
(resp., TOP) embedding. (The smooth case is a bit trickier. See [Br 2], [Wa 3].) 
(2) Any homotopy equivalence F: MM -» Vm+q is homotopic to an embed­
ding provided M, V are compact and q > 3, m + q > 5. 

As far as 4-dimensional topology go these results give no new information 
about embedding 1-manifolds into 4-manifolds. All such results are easily 
handled by general position arguments. One can however get some useful 
information about embeddings of 4-manifolds into manifolds of higher di­
mension. Clearly M4 -> V% is always homotopic to an embedding by a 
general position argument. Thus the only cases of interest are questions about 
maps M4 -» V7. Interesting theorems in that direction are then the following 
results of Hirsh [Hi 3] and Boéchat and Haefliger [BH]. (Both results can 
actually be proven entirely without the use of surgery theory.) 

THEOREM 7.12 [Hi 3]. Let M4 be a compact, connected, unbounded orientable 
PL 4-manifold. Then there is a (locally-flat) PL embedding of M4 into S7. 
(Note that there exist locally-flat PL embedding of M4 into S7 which are not 
concordant to smooth embeddings [Hi 3], [Hi 4], [BH]). 

THEOREM 7.13 [BH]. Let M4 be a compact, connected, unbounded orientable 
smooth 4-manifold. 

Then M4 smoothly embeds in S7 if and only if there exists a class W E 
H2(M; Z) such that W is characteristic and W2 = a(M). (It is not known 
whether such a W always exists or not. One can always find a characteristic 
element in H2(M; Z) and for any characteristic element W, W2 = o(M) 
(mod 8).) 

We now turn to codimension q < 3. As the codimension 2 situation is the 
most complicated we first consider q = 1 and then turn our attention to 
q = 2. The simplest form of the codimension 1 splitting problem can be 
phrased as follows 

Suppose W is homotopy equivalent to a nontrivial connected sum, is W 
itself a nontrivial connected sum. (We say W is a nontrivial connected sum if 
W = M # JV, with M and N not homotopy spheres.) 

Clearly this is just the special case, Y = Sn~l, of the codimension 1 
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splitting question which asks: If f: Wn -» Xn is a (simple) homotopy equiva­
lence and Yn~l c Xn is a submanifold (to which we can assume without loss 
of generality ƒ is transverse) then is ƒ homotopic to a map ƒ with f\f~\Y): 
ƒ " *( y) -> y a (simple) homotopy equivalence. 

For the connected sum question one has the following results in dimension 
7*4. 

THEOREM 7.14. Let n ^ 4 aw/ suppose W9 M, AT are closed connected n-
manifolds. 

Suppose Wn is homotopy equivalent to the nontrivial connected sum M # N. 
If neither TTX(M) nor TTX(N) have elements of order 2 then Wn is itself a 
nontrivial connected sum M' # N' with (M', N') homotopy equivalent to 
(M, N). 

(The cases n > 5 will follow from a theorem of Cappell [Cap 1] which we 
will quote as Theorem 7.17. The case n = 3 is true with no conditions on 
nx(M) and irx(Q) by a result of Stallings [St 2] while f or n < 2 they follow 
from the classification of 1- and 2-manifolds.) 

Even if n ¥= 4 some condition on 7rx(P), TT\(Q) is necessary as the following 
theorem of Cappell [Cap 2] shows. 

THEOREM 7.15. There is a closed differentiable Ak + l-manifold W, simple 
homotopy equivalent to Rp4k+l # RP4*+1, k > 1, which is not as a differen­
tiable, PL or even as a topological manifold a nontrivial connected sum. {It is 
however normally cobordant to Rp4k+l # RP4k+l.) 

The proofs of Theorems 7.14 and 7.15 depend (if n > 5 in Theorem 7.14) 
on high-dimensional surgery techniques and have no analogues in dimension 
4. Notice that the extension of Theorem 7.14 to dimension 4 would imply that 
all simply-connected 4-manifolds M with indefinite intersections forms of 
type I can be completely decomposed as M = kP # IQ where P is homotopy 
equivalent to P and Q is homotopy equivalent to Q. (This would show that 
the conjectures of [MM 1] fail) and would, of course, also show that all 
simply-connected 4-manifolds M are ACD (actually either M or (-M) would 
beACD). 

Theorem 7.14 is a consequence of the general codimension 1 splitting 
theorem of Cappell [Cap 1]. CappelFs theorem gives very general conditions 
on when a homotopy equivalences splits along a codimension 1 submanifold. 

In particular, one has: 

THEOREM 7.16. Let n > 5 and H = DIFF, TOP or PL. Suppose X is a 
closed H-manifold of dimension n + 1 with TTX(X) = G and suppose Y is a 
closed codimension 1 submanifold with trivial normal bundle, TT^ Y) = K, such 
that K is square-root closed in G. 

Suppose X — y has two components (resp., one component) with fundamental 
groups Gi9 i = 1, 2 (resp., group J). 

Then if the natural map Wh(Gx) © Wh(G2) -»Wh(G) (resp. Wh(/)-* 
Wh(G)) is surjective every homotopy equivalence f : W'-» X is splittable. 
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Note. Actually if n is even, one need only assume that the image of the 
torsion of ƒ, $(f) G Wh(G), is zero in Wh(G)/Wh(Gj) 0 Wh(G2) (resp., 
Wh(G)/Wh(/)) . For n odd an additional invariant of the homotopy class of 
ƒ, 9(f) must vanish. For all « > 5 if ƒ is a simple homotopy equivalence it is 
splittable. (A general discussion of what happens in the more general case 
when K is not-square-root closed can be found in [Cap 4], [Cap 5].) 

THEOREM 7.17. Let H = DIFF, TOP or PL. 
Let f: WnJtX -» Xn*1 be a homotopy equivalence with W, X closed H-mani-

folds. Suppose Yn is a simply-connected closed submanifold ofXn+l. 
Assume also n > 4 and either TTX(X) has no elements of order 2 or one of the 

components of X — Y is simply connected. Then ƒ is splittable along X. 

Notice that Theorem 7.17 (as opposed to Theorem 7.16) does give informa­
tion about splitting homotopy equivalences along codimension 1 manifolds 
Y4 of dimension 4. Also the cases n > 5 of Theorem 7.14 are special cases of 
the corresponding results in Theorem 7.17. 

Actually Theorem 7.16 (and the note succeeding it) is extendable to the 
case when dim Y = 4 as well. 

There are two alternative approaches. One can either emulate Theorem 6.4 
and add the conditions that H2(

tnx(Y)\ Z2) = L5(TTX(Y)) = 0 and obtain the 
same conclusions as in Theorem 7.17 or settle for a stable splitting result. 
(That this was bound to occur follows from our general discussion of the 
problems of 4-dimensional surgery in Chapter 6.) 

We state these results as: 

THEOREM 7.18. (1) Theorem 7.16 (and the note succeeding it) is also true if 
n . A provided L5(TTX(Y4)) « 0 and H2(TTX(Y); Z2) - 0 [Cap 1]. 

(2) In general if n = 4 in Theorem 7.16 then the hypotheses of Theorem 7.16 
(and the succeeding note) guarantee that ƒ is splittable along a submanifold Y' 
isomorphic to Y # k(S2 X S2), for some k > 0, obtained by adding on copies 
of S2 X S2 to Y, each S2 X S2 lying in some neighborhood A X I c X, A a 
4-simplex of Y. By a small homotopy of ƒ it can always be assumed that 
f\r l(Y')=f\rl(Y) # k(idS2XS2) [ c s i ] . 

The foregoing show that one can therefore handle problems associated with 
4-dimensional submanifolds of 5-manifolds in a large number of cases. 

What about extensions to n = 3, that is questions about codimension 1 
submanifolds of 4-manifolds? 

Here almost nothing is known! At the present time we have no general 
techniques which handle such problems! 

The extent of our lack of knowledge about problems of 3-manifolds 
embedded in 4-manifolds is amply illustrated by our failure to prove the 
4-dimensional PL Schoenflies conjecture! 

We recall 
PL SCHOENFLIES CONJECTURE (SC(n)). Let Sn~l be a PL-embedded sub­

manifold of Sn. Then Sn — Sn~{ consists of two components each of which 
has closure a PL «-disc. 
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REMARKS. By duality theory Sn — Sn~x always has exactly two compo­
nents. If /i * 1, SC(1) is of course trivial. If n = 2, SC(2) is true even if we 
assume Sl is only topologically embedded. In fact SC(2) follows readily from 
the Jordan curve theorem for S'2. (Note that SC(2) immediately implies the 
2-dimcnsional annulus conjecture!) 

If n = 3 then the PL hypothesis is, of course, necessary, as shown by the 
existence of the Alexander and Antoine horned spheres! (See [Rlf] for an 
entertaining exposition.) Under the hypothesis stated above SQ3) was proven 
by Alexander in 1924 [Ax 2]. 

If n = 4 then SC(4) is still open. 
One can separate the question inherent in SC(«) into two questions (see 

[RS,p.47]). 
Suppose Sn 1 c Sn as above and Tn is the closure of some component. 
Then 
(1„) Is Tn a PL-manifold? 
(2„) If Tn is a PL-manifold is it a PL «-disc? 
Note that Tn is a manifold if and only if the other closure is a manifold 

[RS, Theorem 3.14]. Furthermore looking at links of a point in Sn~l we see 
that (lw) is equivalent to SC(« — 1). 

To separate (ln) and (2W) we recall that a proper embedding Mm c-> Nm+g 

is locally flat if each point/? G M has a neighborhood U in Nm+q such that 
(JV, M)n Uis isomorphic to (Dm X Dq, Dm X 0). 

Then in SC(«), the embedding of Sn~l *+ Sn is PL locally flat if and only if 
Tn is a PL-manifold! 

We thus divide SC(«) into two statements: 
SC(n)v Every PL embedding of Sn~l into S" is PL locally flat. [This is, as 

we noted previously, equivalent to SC(n — 1).] 
SC(n)2. If S

n~l ^ Sn is PL locally flat then Tn is a PL disc. 
If n ï£ 4 the answer to SC(n)2 is always positive. That is: 

THEOREM 7.19. Let Sn~~x <=-> Sn be a PL locally-flat embedded submanifold. 
Then if n ¥= 4, Tn is a PL n-disc. 

PROOF. If n > 3 this of course follows from the truth of SC(n) for those 
cases. 

In n > 5 we use the generalized (PL) Poincaré theorem in dimension > 5 
to deduce that since T \jd Bn is a homotopy sphere, T must then be an 
«-ball. 

Note then the truth of SC(«)2 f or n = 4 would imply that SC(«) is true for 
all«. 

As it is we do not even know if the closures of the components of 
S5 — i(S4) are manifolds if i is not locally flat! 

We do have the following results though if we either strengthen our 
hypotheses or weaken our expectations. 

THEOREM 7.20 (SEE [RS, p. 47], [Bron]). Let Sn~l ^ Sn be a TOP locally-
flat embedded submanifold (n arbitrary). Then Tn is a topological n-ball. 

Note that Theorem 7.20 implies the weak annulus theorem in all dimen­
sions. That is: 
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THEOREM 7.21 (WEAK ANNULUS THEOREM). Let Kv K2 be disjoint locally-flat 
(n — l)-spheres topological^ embedded in Sn. Let U denote the open region 
between them. Then U is homeomorphic to Sn~~l X (0, 1) and the union of U 
with either Kx or K2 is homeomorphic to Sn X [0, 1). 

(As we mentioned previously the annulus theorem of Kirby [Kirb 4] asserts 
that if n =£ 4 then the closure of U is homeomorphic to Sn~l X [0, 1]. This is 
still unknown if n = 4. If our Kt are PL then [RS §3] U is in fact PL-homeo-
morphic to Sn~l X [0, 1]. See [Kirb 4] for a complete discussion and further 
references.) 

We now consider the codimension 2 situation. Here the possibilities are 
more exciting since for 4-dimensional manifolds M4 there are many un­
answered questions both about maps F2 -> M4 (as we saw in Chapter 6) and 
about maps M4 -» V6. 

The techniques for studying codimension 2 splitting and embedding ques­
tions are due to Cappell and Shaneson and developed in the series of papers 
[CS 5], [CS 6], [CS 7], [CS 8], [CS 9], [CS 10], [CS 11]. The basic techniques 
used are (1) a subtle generalization of surgery theory to the problem of 
finding homology equivalences, and (2) a new classifying space for codimen­
sion 2 regular neighborhoods. We refer the reader to the above papers for 
details. For our use we extract the following theorems. 

THEOREM 7.22 [CS 5, CHAPTER 3]. Suppose ƒ: Mn -> X" and Ym c Xn are 
as in the discussion following Definition (PE) and let 2 ( / ) be the abstract 
surgery obstruction of f as defined there. 

Then if n — m = 2, m > 5 and n is odd, ƒ is (simply) splittable if and only if 
2 ( / ) is zero. 

In the even case the corresponding theorem is false unless additional 
restrictions are put on ƒ. As we are primarily interested in dimension 4 
manifolds we are forced to consider these added technical difficulties as well. 

As we mentioned above, Cappell and Shaneson in [CS 5] introduced 
functors r„, analogous to Wall's Ln, which measure the obstruction to a map 
being a homology equivalence. More precisely corresponding to any ring 
homomorphism <$: Z[irx] —> A they produce functors TJ^] to abelian groups, 
which are periodic of order 4, and a map of pointed sets ^„(X) -* Tn[^] such 
that (f b): M -> X is normally cobordant to a (simple) A-homology equiva­
lence if and only if o(f, b) = 0. Then we have: 

THEOREM 7.23 [CS 5]. Suppose in 7.22 above we have m > 4 and n even. 
Then f is (simply) splittable if and only if 2 ( / ) = 0 and a well-defined 

obstruction in a factor group Tn+l(<j>) vanishes. In particular if ITX(X — Y) = Z 
or 0 and n > 8, ƒ is (simply) splittable if and only if 2(ƒ) = 0. 

THEOREM 7.24 [CS 8]. Let 0 be an oriented Poincaré embedding of Mn in 
Wn+2

9 M a closed PL-manifold9 W a connected compact ¥L-manifold and 
(V1) 

n > 3. If n is even suppose ^i(E0) -* * TTX(W) is an isomorphism or TTX(W) = 
0 and 7TX(E0) cyclic. 

Then there exists a PL embedding f of M in W realizing 6 (f is not 
necessarily locally flat). 
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THEOREM 7.25 [CS 6], [CS 8]. Let ƒ: Mn ~> Wn+2 be a homotopy equiva­
lence, M a closed PL-manifold, W a compact connected PL-manifold, n > 3 
with wx(M) = f*wx{W). If n is even suppose either that (1) M, Ware oriented, 
H2(TTX(W); Z) - 0 and x(W), the Poincaré dual of / JM] G Hn{W), is a 
primitive generator of H2(W) « H\M) or (2) that <nx(W) = 0. 

Then ƒ is homotopic to a PL-embedding. 

COROLLARY 7.26. Let Mn be a closed connected oriented PL-manifold with 
n > 3. Suppose that the Hurewicz homomorphism 7rn+xÇ£M) -+ Hn+XC£M) is 
surjective. Then there exists a PL-embedding of M in Sn+2. 

Note that the hypotheses of Corollary 7.26 are satisfied by any spin 
4-manifold. 

We have in actuality: 

COROLLARY 7.27 [CS 11]. Let M4 be a closed connected oriented PL or TOP 
4-manifold then 

(1) There exists a PL (TOP) embedding of M into S6 if and only if 
w2(M

4) = 0. 
The embedding can be chosen to have only one non-locally-flat point x which 

is the vertex of a cone on a knot K c S5 with o(S5, K) = o(M). 
(2) There exists a locally-flat PL (TOP) embedding of M into S6 if and only 

ifw2(M
4) = <x(M4) = 0. 

One can actually get results corresponding to Theorems 7.25 and Corollary 
7.26 above for homotoping ƒ to an immersion as well. For dimension 4 
manifolds one obtains 

PROPOSITION 7.28. Let M4 be as in Corollary 7.27 above. Then 
(1) There exists a PL (TOP) immersion of M4 into S6 if and only if x(M) is 

even [CS 11]. 
(2) There exists a smooth (PL or TOP locally-flat) immersion of M4 into S6 

if and only if there exists X G H2{M) with X characteristic and X2 = 3a(M) 
[Hi 5]. 

We assert that if n is even, some assumptions on 7rx{Mn) in Theorems 7.25 
and 7.26 are indeed necessary. Recall that if Wm is a compact PL-manifold 
with boundary then a spine of W is a PL embedding <#>: Mn -» Wm, M a 
closed PL-manifold, that is a homotopy equivalence. 

Then in [CS 9], [CS 10] Cappell and Shaneson proved: 

THEOREM 7.29. Let n > 4 be even. 
Suppose Mn is a closed PL-manifold such that irx{M

n) is finite and has a 
central subgroup with nontrivial abelian quotient. Then there are infinitely many 
manifolds W simple homotopy equivalent to M such that any PL-map </>: 
Mn -» Wn*2 which is a simple homotopy equivalence is not homotopic to a 
PL-embedding. <f> will however always be homotopic to a PL-immersion. 

Thus there exist totally spineless manifolds in even dimensions greater than 
4. In particular our assertion concerning the necessity of restriction on 
^(M2*) in Theorems 7.25 and 7.26 follows from Theorem 7.29. 
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All of the above theorems have assumed that n > 3 or n > 4. Thus we can 
assert that the theory of maps of M4 -» W6 is completely explained by 
high-dimensional surgery-type techniques and does not differ from the gen­
eral theory of maps M2n -> M2n+2. 

The methods used in establishing Theorems 7.23 through 7.29 also give a 
great deal of information on high-dimensional knotting phenomena and the 
high-dimensional knot cobordism groups. (See [CS 5], [CS 13].) Essentially 
what is of relevance to us is that knottings of S4 in S6 are also higher-dimen­
sional phenomena with an associated theory entirely equivalent to the general 
theory of knottings of S2m c-> S2m+2. This is however not precisely true for 
knottings of S2 c^ S4. We discuss these in greater detail in the next section. 

It is also clear by our discussion in §1 and §2 that the analogues of 
Theorems 7.22 through 7.29 are not true for maps F2 c^ M4. An adequate 
theory to explain the possible phenomena associated with such maps is not 
yet available! Not surprisingly, however, the counterexamples of Theorem 
7.24 can be extended to lower dimensions. In [Mt 2], Matsumoto has shown 
that 4-dimensional manifolds also need not necessarily have spines. More 
particularly we have: 

THEOREM 7.30 [Mt 2]. There exists a compact 4-dimensional 1?L-manifold 
W4 with boundary such that 

(1) W4 is homotopy equivalent to T2. 
(2) No homotopy equivalence T2 -» W4 is homotopic to a PL-embedding. 

As Matsumoto's construction is so pretty we sketch it here. 
CONSTRUCTION OF W4. Let h: Sl -+ Sl X D2 be the embedding indicated 

in Figure 7.7. Essentially the same embedding S1 -» Sl X S2 was used by 
Mazur [Mz] jto construct a contractible 4-manifold. Extend h to a framed 
embedding h: Sl X D2 -* Sl X D2 in such a way that h followed by the 
natural inclusion Sl X D2 -> S3 is isotopic to a trivial knot with a trivial 
framing. Our manifold W4 is the mapping torus of the framed embedding h. 
More precisely, W4 is obtained from a product Sl X D2 x [0, 1] by identify­
ing (x ,{ )X{l ) with A(x, 0 X {0} for each O, £) G S1 X D2. Since h is 
homotopic to the zero cross section Sl X {0} -> Sl X D2, W4 is homotopi-
cally equivalent to T2. 

FIGURE 7.7 Mazur's embedding. 
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For a proof of assertion 2 in Theorem 7.23 we refer the reader to [Mt 2]. 
We recall that Mazur's construction [Mz], [Z 4], [AK 2] has had a long history 
of furnishing raw material for the construction of counterexamples or possi­
ble counterexamples in 4-dimensional topology. For further discussions of 
these we refer the reader to [Z 1], [Z 2], [Z 3]. We note that it is unknown 
whether a similar example exists with T2 replaced by S2. 

7.4 Codimension two phenomena: Knotting. In the previous section we 
mentioned that the knot theory of embeddings of S4 in S6 is entirely 
analogous to embeddings of S2m in S2m+2 for m > 3 and displays no 
intrinsically 4-dimensional phenomena. This is not completely true about 
knottings of S2 in S4. Although most of the properties that such knots enjoy 
are also characteristic of higher-dimensional knots as well, the fact that the 
4-dimensional Poincaré conjecture is still unsettled does lead to some com­
plications! 

We recall that A' is a knot in S"1 if and only if K is the image of an 
embedding i: Sn~2c-* Sn. For simplicity we shall assume that i is always a 
PL-locally-flat map. (Thus all our knots will be tame in the sense of [Fox].) 
We say two knots K{9 K2 in Sn are equivalent if there is a (PL)-homeomor-
phism h: Sn -» Sn with h(Kx) = K2. The equivalence class of a knot is called 
its knot-type. The equivalence class of the standard embedding of Sn~2c-> Sn 

is called the trivial knot-type. 
Generally most attempts to study the knot-type of a given knot K are based 

on studying algebraic invariants of the knot complement, Sn — K. For 
example, if AT is a knot in S3 then K has the trivial knot-type if and only if 
irx(S

3 - K) = Z ([Rlf, Chapter 4]). However if n > 5, then there exist in­
finitely many inequivalent knots K in Sn with 7rx(S

n - K) = Z and K not 
equivalent to the trivial knot [Rlf, Chapter 7]. Furthermore even if n = 3 
there exist inequivalent knots Kl9 K2 in S3 with TTX(S3 — Kx) isomorphic to 
nx(S

3 - K2). For example the square knot and granny knot (see Figure 7.8) 
are inequivalent [Rlf] but their complements are homotopy equivalent [Rlf]. 

We are thus led to inquire into the extent to which the knot complement 
determines the knot-type. More specifically suppose K9 is a knot in Sn. If 
T(K) is a tubular neighborhood of K with interior f(K)9 then Sn - f(K) is 
called the exterior of the knot K and denoted by X(K). It is a compact 
manifold with boundary K X Sl and its interior is isomorphic to the knot 
complement Sn — K. 

Now suppose Kl9 K2 are knots in Sn. As the example of the square and 
granny knots shows it is possible for inequivalent knots to have homotopy 
equivalent complements. However if we examine the exteriors of the square 
and granny knots it is possible to show (see [Rlf]) that there does not exist any 
homotopy equivalence rel 3 between them. (Equivalently no homotopy equiv­
alence of the exteriors preserves peripheral structure in the sense of [Hemp].) 
We arc thus led to ask: 

(1) Suppose Kl9 K2 are knots in Sn with X(KX) homotopy equivalent rel 3 to 
X{K2). Is Kx then equivalent to K21 

In the case of classical knots of Sl in S3, Waldhausen [Wald] has shown 
that if X(KX) is homotopy equivalent rel 3 to X(K2) then they are homeomor-
phic. One thus breaks up question (1) into two questions as follows: 
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Let Kv K2 be knots in Sn. then 
(1 A) Does X{KX) is homotopy equivalent to X{K^) rel 3 imply that A"(ATj) is 

homeomorphic to X(K$l 
(IB) Does X(KX) is homeomorphic to X(K£ imply that Kx is equivalent to 

K21 
A negative answer to (1 A) was obtained by Cappell in [Cap 3]. In particular 

he exhibits an infinite number of pairs of inequivalent knots Ki9 K{ in S7 such 
that X(Kt) is simple homotopy equivalent rel 3 to X(K[) but X(Kt) is not 
homeomorphic to X(Kf). 

Square Knot 

* i = 

-nx(S
3 - Kx) = GX= <x, y, z :xyz = yxy9 xzx = zxz). 

Granny Knot 

K, = 

ir^S3 - K2) = G2 = (x, y, z :xyx = yxy9 xzx = zxz) = Gt. 

Note that S3 - Kx and S3 - K2 are K(Gy 1) 
but X{KX) is not homotopic rel 3 to X(#2) 

FIGURE 7.8 

(The knots Kt constructed by Cappell are obtained via a process of 
'3-super-spinning' a knot pair (24, Kg), where S4 is a homotopy 4-sphere. Thus 
Wi(S7 - A)) = irx(2

4 - JÇ) and so the Kt are the 'knot groups' of some 
knotted S2. Quinn has shown that if n > 6 and TT is the 'knot group' of a 
classical knot Slc->S3 and <nx(S

n - JT,) = ir^S" - #2) = TT then (̂ATj) is 
homotopy equivalent rel 3 to X{K^) implies X(KX) is homeomorphic to 

Returning to Question (IB), we note that in [Glk] Gluck showed that if 
n = 4 there could be at most two inequivalent knots K, K' in Sn with 
homeomorphic knot complements. In [Kato], [Br 4], [LS 2] this result was 
extended to all n > 5. The actual realization of two inequivalent knots with 
homeomorphic (in fact diffeomorphic) complements is given in [CS 12]. The 
Cappell and Shaneson construction goes as follows. 

Let ,4 G SL(n + 1; Z) be such that 
(i) if A{r) G GL(C?P); Z) is the r-fold exterior product of A with itself then 

|dct(/ - A{r))\ » 1 for 1 < r < n, n > 2, and 
(ii) dctiA - XI) > 0 for X < 0. 
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Let <f>(A) be the obvious diffeomorphism of Tn+l = Rn+l/Zn+l inducing 
A on 7713

n',+1 ĉ  Zw+1 and denote the mapping torus of <f>(A) by MA. (MA = 
(Tn+\ x / ) / ( x > o) ~ (4>00O), 1)0 Denote the image of the origin in Tn+l by 
9 and let the embedded circle C c MA be the image of 0 X ƒ in MA. 

Now l e t D ^ X C c i ^ b e a tubular neighborhood of C = 0 X C. Let 
^ " M< - (^ n + 1 X C) with dNA = Dn+l X C. Suppose fi is the nontrivial 
bundle map of Dn+l X C corresponding to the nonzero element of 7rx(SO(n 
+ 1)) and let JL = fx\dDn+l X C. Write C - dD2. 

Set 2 0 - NA u 9Z>*+1 X Z>2 and let 2 t - i ^ u^ 9Z>"+1 X C (i.e. identify 
x E 3A^ with jL(x) G dDn+l X C to obtain 2^ . Then by [CS 12, Proposition 
l.B] both 2 0 and 2^ are smooth homotopy (n + 2)-spheres. 

Let £,. c 2, be the smoothly-embedded n-sphere 
dDn+l = dDn+l X 0 c az>w+1 X D 2 c 2,.. 

Then Cappell and Shaneson show [CS 12, Proposition 3] that there is no 
diffeomorphism from 2 0 to 2j that throws KQ onto Kv To actually produce 
inequivalent knots with the same complement it suffices to show that A G 
SL(w + 1; Z) with the desired properties actually exist. This is done for 
n = 2, 3, 4 in [CS 12]. (It is reasonable to suppose that such A actually exist 
for all n > 2, but in addition to the cases n = 2, 3, 4 exhibited in [CS 12] this 
has, at present, only been verified for n = 5.) In fact an infinite family of 
acceptable matrices A is produced. If n > 3 the truth of the Poincaré 
conjecture in dimension larger than 4 shows that 2, is PL-homeomorphic to 
Sn+2 and thus provides us with: 

THEOREM 7.31 [CS 12]. For n = 3, 4, there are infinitely many pairs of 
inequivalent spherical n-knots in Sn+2 such that each pair consists of two 
inequivalent knots with diffeomorphic exteriors. {The pairs are distinguished by 
their first Alexander polynomials.) 

[A knot K G Sn+2 is called spherical if K is smoothly embedded in Sn+2 

and diffeomorphic (rather than just PL-homeomorphic) to Sn.] 
The above method does not extend directly to 2-knots in S4. However 

using a somewhat different construction Gordon [Gor 2] manages to do just 
that! Thus suppose AT is a knot in Sn, n > 4. Let D2 X K be a tubular 
neighborhood of K in Sn and set X = Sn — D2 X K. Let fl be the restriction 
of the nontrivial bundle map of Sl X Dn~l to Sl X K = dX. Then set 
2 (#) = X uA D2 X Sn~2 and K* = 0 X Sn~2 c 2(/Q. Gordon then proves 
[Gor 2]: 

THEOREM 7.32. Let K be a knot of Sx in S3. Let I be a positive integer and let 
K^ be the l-twist spin of K in the sense of [Z 4]. 

Then 2(üT(/)) is homeomorphic to S4. 

LEMMA 7.33. Let K be a knot of Sn~2 in Sn, n > 3, and suppose I is an odd 
integer. Let K^ be the I-twist spin of K. If the universal cover of the I-fold 
branched cyclic cover associated to K is Rn, then the knots K^\ K^* are 
inequivalent. 

In particular one notes that if K is a (/>, q) torus-knot with 1// 4- \/p + 
l/q < I then the universal cover of the /-fold branched cyclic cover 
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associated to K is R3 [Gor 2]. (This is also true if K is any nontrivial doubled 
knot (in the sense of [Rlf]) and / > 1.) Thus Theorem 7.31 extends to 
knottings of S2 in S4 and we can state 

THEOREM 7.34 (GORDON, [Gor 2]). There exist infinitely many pairs of 
inequivalent knots of S2 in S4 such that each pair consists of inequivalent knots 
with homeomorphic exteriors. 

Having answered both (1A) and (IB) in the negative we can lower our 
sights and ask: 

(2) For which class of knots does (1 A) or (IB) hold? 
More particularly: 
(2') Suppose K is a knot in Sn with X(K) homotopy equivalent to Sl. Does 

X(K) have the trivial knot-type? 
As we pointed out above if n > 5 then there exist knots K in S5 with 

77-̂ S5 — K) = Z but K not having trivial knot-type. Furthermore by a result 
of Lashof and Shaneson [LS 2] if n > 6 then X(KX) homotopy equivalent to 
X(K2) and TTX(X(KX)) = Z implies that X(KX) is in fact homeomorphic to 
X(K2). Thus one can ask: 

(2") Suppose Kl9 K2 are knots in Sn with X(KX) homeomorphic to X{K^) 
and <rrx(X(Kx)) = Z. Is Kx equivalent to K21 

Presently the answer to (2") is unknown, for all n > 4. If n = 3 or n > 5 
then (2') has a positive answer. If n = 4 then (as usual) essentially nothing is 
known. That is we do not know if there exist nontrivial knots K in S4 such 
that TTX(S4 - K) = Z or whether S4 - K « Sl implies that K is unknotted! 

The proof that (2') has a positive answer if n > 5 goes as follows. 
Let K be a knot in Sn with exterior X(K). Let C be an Sl in the interior of 

X(K) linking K once and let N(C) be an open tubular neighborhood of C in 
X(K). Let W - X{K) - AT(C). Then W is a cobordism between C X Wn~x 

« 5 1 X S""2 and dX(K) = Sl X Sn~2. If X(/Q has the homotopy type of 
an Sl then a direct calculation shows that W is in fact an s-cobordism 
inducing a diffeomorphism between its ends. Then by the ^-cobordism 
theorem if n > 6 or by the results of Shaneson and Wall ([Sh 1], [Wa 3], see 
also Chapter 6) if n — 5, we can conclude that W = Sl X Sn~2 X I and so 
X(K) = Sl X Dn~l. But then # must be unknotted! Notice that if we knew 
that every ^-cobordism between Sl X S2 and Sl X S2 which induced a 
diffeomorphism on its ends was a product then (2') would be true f or n = 4 
as well. Conversely the failure of (2') for n = 4 would imply that the 
5-cobordism theorem is false for 4-dimensional ^-cobordisms! 

Although the theory of knots in S4 is not identical to higher-dimensional 
knot theory it differs even more radically from the theory of classical knots, 
i.e., ^ c S 3 . Perhaps the most basic results in the theory of classical knots 
are the unknotting and asphericity theorems whose statements we recall. 

UNKNOTTING THEOREM (PAPAKYRIAKOPOULOS). Let K be a knot in S3. Then 
K has the trivial knot-type if and only if<nx(S

3 — K) = Z. 
{If K is not PL then it may be nontrivial and still have TTX{S3 — K) = Z. See 

[Rlf]. As we mentioned at the beginning of this section all our knots will be PL 
and thus tame.) 
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ASPHERICITY THEOREM (PAPAKYRIAKOPOULOS). If K is a knot in S3, then 
TTtiS3 - K) = 0 for alii > 2. 

The unknotting and asphericity theorems were first proved by 
Papakyriakopoulos in [Papa 1], [Papa 2]. 

The unknotting theorems is a direct consequence of Dehn's lemma which 
was proved by Papakyriakopoulos in 1957 [Papa 1], [Papa 2]. (Dehn's lemma 
was first enunciated by M. Dehn [Dehn] in 1910 but his 'proof' contained 
serious gaps.) In the same paper in which he proved Dehn's lemma 
Papakyriakopoulos also stated and proved the sphere theorem which in turn 
implies that classical knot complements are aspherical. 

The statements of Dehn's lemma and the sphere theorem (in its simplest 
version) are: 

DEHN'S LEMMA. Suppose M3 is a 3-manifold andf: D2 -» M3 is a map of a 
disc with no singularities on dD2 {i.e., x E 3D2, x ïhy E D2=>f(x) ¥*f(y)). 
Then there exists an embedding g: D2 -» M3 with g(dD) = f(dD). 

SPHERE THEOREM. Suppose M is an orientable 3-manifold with TT2(M) ¥* 0. 
Then there is a 2-sphere S embedded in M which is not contractible in M. 

(In addition to [Papa 1], [Papa 2] one can find newer proofs of Dehn's 
lemma and the sphere theorem in [St 2] and [Hemp].) 

In dimension 4 both Dehn's lemma (i.e. replace M3 by M4) and the 
asphericity of knots are false! 

To show that Dehn's lemma is false in dimension 4 it clearly suffices to 
produce a compact 4-manifold with boundary M and a knot K in 9M such 
that K is null-homotopic in M but does not bound an embedded disc (even a 
nonlocally-flat embedded disc) in M. This is done in [AK 3]. In particular if 
WQ is the manifold with framed link diagram given in Figure 7.3 and £ is the 
knot in $WQ drawn there, then Akbulut shows that £ is null homotopic in WQ 
but does not even bound a nonlocally-flat PL disc embedded in WQI 

We note that WQ is a compact rational homology ball but is not contract­
ible. In [Z 3], Zeeman asked for a compact contractible counterexample to 
Dehn's lemma in dimension 4. Matsumoto and Venema in [Mt V] give an 
example of an open subset WQ of R4 which is contractible and satisfies 
SWQ^S1 X R2 but such that no homotopically essential loop on dW'Q 

bounds a PL-embedded disc in WQ. However WQ is of course not compact 
and a compact such example is still as yet unknown. If M4 is assumed to 
have special properties, such as M = AT # S2 X S2 or dM -» #imml(S

l X 
S2)t then Norman [Nor] showed that the 4-dimensional analogue of Dehn's 
lemma is true. More generally Fenn [Fenn] showed that if M has a 2-dimen-
sional spine and dM ^ 0 then any proper map ƒ: D2 —» M is properly 
homotopic to a locally-flat embedding! 

The existence of a knot K c S4 with TT2(S
4 — K) ^ 0 was demonstrated 

by Andrews and Curtis in [AC], Their K was a 1-spun trefoil knot. (See 
[Rlf, Chapter 3] for a discussion of spun knots and a presentation of the 
Andrews and Curtis proof that TT2(S

4 - K) ^ 0.) 
In [Ep] Epstein showed that if K is any nontrivial spun knot in S then 

ir2(S — K) is free abelian of infinite rank. This would suggest that although 
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m2 of a higher-dimensional knot complement is not zero it still might not 
contain any useful information. Actually as Fox pointed out in [Fox] it is 
more useful to consider 7r2(S

4 — K) as a Z[irx(S
4 — #)]-module and calcu­

late its module structure. This was recently accomplished by Lomonaco who 
in [Lorn] gives a procedure for computing n2(S

2 "" K) a s a Z ^ ^ S 4 — K)]-
module, for any knot K c S4. That TT2(S

4 """ K) actually gives information 
about K not already contained in TT^S4 — K) was demonstrated by Gordon 
[Gor 3] who constructed three twist spun knots with the same ir^S4 — K) but 
differing second homotopy modules. It is thus fairly clear that the theory of 
knots in S4 differs radically from knots in S3 and is indeed more closely 
related to higher-dimensional knot theory. 

Before leaving the question of knots in S4 we consider two other types of 
questions about knots in S4. 

(I) We have until now been restricting our attention to PL-knots. In [CS 13] 
Cappell and Shaneson showed that for each n; n > 5 there exist infinitely 
many inequivalent locally-flat TOP-knots Kn~2 c Sn which are not topologi­
cal^ equivalent to any PL-knot. Their proof is based on surgery-theoretic 
results not known in lower dimensions. We can thus ask: 

Question, (i) Does there exist a locally-flat topological knot K2 c S4 which 
is not topologically equivalent to a PL-knot? 

(ii) Is there a classical knot ^ c S 3 which is topologically a slice knot (i.e. 
bounds a locally-flat topological disc D2<^> D4) but not PL-slice. 

(II) Suppose V is an almost completely decomposable 4-manifold. Thus by 
'blowing up' a point of V we obtain the decomposable manifold V = V # P. 
Let o: V -> V be the 'blowing down' map and set L = o~l(p). Thus L is a 
smoothly embedded 2-sphere in V. Since V is completely decomposable we 
can without loss of generality suppose it arose by blowing up S4 at a finite set 
of points xx, . . . , xk. (We use blow up to refer to either o or â-processes as 
defined in Chapter 2.) Let a: V-* S4 be the blowing down map. Thus <t>\: 
V — <j>~l{xx, . . . , xn] -» S4 — {xl9 • . . , xn) is a diffeomorphism and 
without loss of generality we can suppose that <f>(L) is a smoothly immersed 
2-sphere in S4. We thus see that to any almost completely decomposable 
4-manifold V we can associate an immersed sphere K c S4. Conversely 
given any immersed sphere K c S4 we can construct a minimal (in some 
sense) decomposable manifold in which the strict image of K embeds. We are 
thus led to inquire about the existence of an appropriate equivalence relation 
on immersed S2's in S4 which would correspond to their arising from the 
same almost completely decomposable 4-manifold. In particular which 'singu­
lar knots' in S4 correspond to nonsingular hypersurfaces of CP3 and more 
specifically which 'singular knot' corresponds to V41 

7.5 Codimension two phenomena. II: THE ZARISKI CONJECTURE. There is an 
algebraic geometric analogue of the knotting phenomena associated with 
embeddings of Sn<^>Sn+2. Thus suppose Vn__x is a projective algebraic 
hypersurface in CPn. What is irl(CPn - Vn_x)l What would a complete set 
of topological invariants be for the embedding of Vn_x

<L^CPnfl One can 
motivate this question as follows 

Let al9 . . . , an be points in CPl and let IT = tf^CP1 — {av . . . , an}). 
Then Riemann showed that for any homomorphism <J>: <n -> Sr there exists a 
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Riemann surface V and a holomorphic map ƒ: V -> CP ' which is branched 
precisely over av ..., an such that the monodromy group of/: F - ^ C P 1 is 
precisely Im #. Since the structure of IT above is quite simple one has an 
attractive vehicle for studying the nature of mappings/: V->CPl. 

Now suppose F is a nonsingular projective algebraic surface. Then as 
mentioned in Chapter 2 we can find a generic projection of V into CP3, w: 
V-+CP3 such that V* — TT(V) has only ordinary singularities. Furthermore 
a generic projection p: F* -»CP 2 will have a branch curve T whose only 
singularities are nodes and cusps. We can now pose the following two 
questions. 

(1) Suppose C is an algebraic plane curve. What is TTX(CP2 — C)? 
(2) Suppose C is an algebraic plane curve with m = ^ (CP 2 — C). Let </>: 

7T -» Sr be a homomorphism. Does there exist a hypersurface F* c CP3 with 
projection/?: V* -» CP2 such that C is the branch curve oîp and F* -» CP2 

has monodromy group Im <f>? 
Clearly it suffices to study only C such that the singularities of C are only 

nodes (= ordinary double points) and cusps. 
In [ENR], Enriques answered question (2) in the affirmative and we are left 

only with question (1). The first results in this direction are: 

THEOREM 7.35 [Zar 1], [Zar 3]. Let Vn be an irreducible algebraic curve of 
degree n in CP2. 

Then 
(1) TT^CP2 - Vn) is abelian implies TT^CP2 - Vn) « Z/nZ. 
(2) Vn is nonsingular implies TT^CP2 — Vn) is abelian. 

It is not true, however, that all irreducible curves have complements with 
abelian fundamental groups. For example the curve C: (y2 — z2)2 4- x\x — 
z) = 0 in CP2 is an irreducible quartic with exactly three cusps and no other 
singularities. Then TT^CP2 - C) = <a, b: a2 = è2, a4 = 1, (abf « a2) which 
is nonabelian. This is the simplest example of a curve whose complement has 
a nonabelian fundamental group. We in fact have the following theorem. 

THEOREM 7.36 [Zar 3]. Let C be a curve of degree n in CP2 having p-nodes 
and q-cusps and no other singularities. Then ifn<4 and q < 2 then TTX(CP2 — 
C) is abelian. 

The example above clearly shows that if one allows cusps one can come up 
with nonabelian fundamental groups. We thus ask the following question. 

(3) Suppose C is an irreducible curve in CP2 whose only singularities are 
nodes. Is ̂ ( C P 2 - C) abelian? 

In [Zar 3], Zariski claims to have shown that the answer to question (3) is 
affirmative. The idea behind Zariski's proof was the following: 

Let 

i+j+k-n 

be a family of curves of degree n in CP2 where t e [0, 1] and suppose for 
t 7* 0 that all the Ft have the same type of singularities. We shall call F0 the 
limiting curve of the system Fr 
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Then (i) tx,t2 ^ 0 => Ft is ambiently isotopic to Ft and thus TTX(CP2 — Ft ) 
- TT^CP2 - Ft). 

(ii) In [Zar 3], Zariski shows that if F0 has no multiple components then for 
t =£ 0, <ÏÏX(CP2 - P,) is a quotient group of ^ ( C P 2 - F0). In particular if 
irx(CP2 - F0) is abelian then so is TT^CP2 - F0). 

(iii) Let AT„ be n lines in general position in CP2. Then ^ (CP 2 — Kn) is 
abelian [Zar 3]. 

As a consequence of (i)-(iii) one sees that any curve F c CP2 which can 
be embedded in a system Ft of curves with Kn as its limiting curve must have 
a complement with abelian fundamental group. 

In [Sev 2], Severi claimed to have shown that any plane curve of degree n 
with only nodes belongs to a system with limit Kn, Seven's proof is, however, 
erroneous and this is not known to be true. 

Until recently one was thus left with: 
ZARISKI CONJECTURE. Let C be a plane curve in CP2 with only node 

singularities. Then 7rx(CP2 — C) is abelian! 
This past spring Fulton [F 1] using a powerful connectedness theorem 

proved by him and Hansen [FH] was able to show that if C is an algebraic 
plane curve in P^A:), k an algebraically closed field of arbitrary characteristic, 
whose only singularities are nodes then irfg(P2(A:) — C) is abelian. By means 
of a beautiful modification of Fulton's argument Deligne [Del 1] (see also [F 
2], [Del 2]) showed how a proof that ^(P^C) - C) is abelian could be 
obtained. Thus Zariski's Conjecture is now a theorem. 

We note that solving the problem of the fundamental groups of comple­
ments of plane curves would essentially solve it for all hypersurfaces in CP" 
since Zariski has shown [Zar 4]: 

THEOREM 7.37 [Zar 4]. Let Vn„x be an algebraic hypersurface in CP". Then 
there exists an algebraically embedded image H of CP2 in CP" such that 
"i(CPn - Vn„x) - * i (# " » n K,.,). 

As it is known that for any d < \{n — l)(n — 2) there exists an irreducible 
plane curve of degree n with rf-nodes which can be degenerated continuously 
to Kny an alternative way to prove Zariski's conjecture for irreducible curves 
would have been to show that if Tl9 T2 are any two irreducible curves of 
degree n in CP2 with rf-nodes then there exists an autohomeomorphism <j> of 
CP2 with <MTi) = T2. (This is true if n < 3.) However this seems quite 
difficult to do. If we allow our curves to have cusps as well then it is known 
that there exist two irreducible curves Tv T2 of degree six with six cusps such 
that ITX{CP2 - Tx) 7* TT^CP2 - T2) [Zar 1]. Thus the placement problem for 
algebraic plane curves with node singularities is still open. 

AFTERWORD 
Having scattered various unsolved problems and plausible conjectures 

throughout the text of the article we refrain from repeating them now. For a 
very comprehensive collection of unsolved problems in low-dimensional 
topology we refer the reader to Kirby's exhaustive collection [Kirb 2]. The 
most pressing open problem of a more general sort is of course to find a 
4-dimensional substitute for the Whitney lemma or means to avoid using it. 
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The best current candidate for the former approach seems to be that of 
Casson [Cas 2], [Cas 3] and Freedman [Fr 2] while the best results obtained by 
avoiding any reliance on the Whitney lemma seem to be the ACD results of 
[MM 1], [MM 2], [Man 1], [Man 2], [Msh] and the fake RP 4 results of [CS 2]. 
New methods remain to be discovered and with them perhaps the key to a 
satisfactory understanding of what is happening in dimension 4. It is ironic 
that the worlds about which we know the least are our worlds: the 3-dimen-
sional world of physical geometry and the 4-dimensional world of space-time. 
It is hoped that in the preceeding pages we have clarified that which is within 
the grasp of our knowledge and delineated that which remains to be under­
stood. 
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