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THE QUEER DIFFERENTIAL EQUATIONS FOR 

ADIABATIC COMPRESSION OF PLASMA 

BY GUDMUNDUR VIGFUSSON1 

This announcement presents some results on the "Queer Differential Equa­
tions" (QDE) of adiabatically evolving plasma equilibria. These are nonlinear 
differential-functional equations of the form Ai// = F(V, i//, i//', i//"), where V = 
V(\jj) is the volume (area) inside the levelsets i//(r) = \jj, a constant, and the deriv­
atives on the right hand side are with respect to the dependent variable V, e.g., 

We describe properties of microcanonical averages and their derivatives 
and a simple example of the nonlinear problem. An existence and uniqueness 
theorem is given for the associated linearized problem, which is also a functional-
differential equation. Finally we will mention an isoperimetric problem related 
to the geometry of QDE's. 

A few of these results are in [1] and will be further expounded in [2] — 
[4]. For the initial development of this problem and the relevant physics see 
[5] —[7] and the references therein. For a related problem, see also [8], [9]. 

Averages. S is a simple domain in the plane and z = \p(t), r E 5, a surface 
such that $ G Cn*a(S), n > 2, 0 < a < 1. Assume that the level lines i//(r) = 
\p are simple and Vi/> = 0 at only one point r0 G 5, i//(ro) = ^o- Let <*S ^e ^ e 

level line t//(r) = ^i (>^o)* ^ = : ^WO *s defined to be the area inside the 
curve t//(r) = \p and \)J(V) is the inverse of V($). 

V'ty) = f IVi/zl"1* 

is continuous in the interval / = (\pQi i//J. 
The function V(r) = V(\p(t)) is useful; it is C1 in S\r0. 

THEOREM 1. Let i// be as described above and assume that r0 Is an elliptic 
critical point Then V{x) = V(\jj(r)) is also in Cn,ot and r0 is an elliptic critical 
point for V = F(r). 

Consider g G Cm'a(S) and define on I, 
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?W=^«(r)IV*r1& 

Using Green's formula the differentiation with respect to level lines is given by 

/ i \ ~> d r ds r [ g ) ds 
(l) 'w%7L=^ r ) iSiavfev* j^i ' 

When g = l this allows us to compute V^n\\jj), The integrand in (l) is 
oscillatory with an unbounded amplitude when \p —» \p0 (i.e. r -—» r0) but the 
behaviour there can be adequately described by using a coordinate-transformation 
and Taylor series in the neighborhood of the critical point. In fact we have: 

THEOREM 2. Let \JJ G Cw ' a be as in Theorem l and g G C m ' a , then 

g G CP}0i/2(I), where p = min{m, « - l} . Ifk<pandr = max{fc + l - p / 2 

- a/2, a/2}, ftai (i// - \p0)
rg(k\^) —> 0 as: $ —• i//0. If m = 2k and n = 2k 

+ 2, #*<?« 7^k\$) can be defined continuously at \p = i//0. 

Finally notice that d> I V^l""1 ds = 1 and that the microcanonical average 

of £ is given by 

(2) <* V - W> - i KO i^î A 7^1 - f , KO j £ j 

Nonlinear problems. Consider on S 

(3) A* = - *", 

and admit for the moment only solutions with simple level lines. As boundary 
data we specify i//(r) = \J/l9 a given constant on dS. This is not sufficient for a 
well-posed problem. Using A\p = \j/'AV 4- \p"\ S/V\2 and (3) there follows 

(4) AV/(1 + IvFl2) = KF) , F l d 5 = F15 

where F t = V{^x) is the area of S. We can now ask if there exists an h in some 
properly restricted class of functions, such that the solution of (4), V = V(r), 

has simple level lines and satisfies the constraint y ds/\yV\ = 1. The solution 
of (3) is then given by i//(r) = \[>(T(r)) where \p = \jj(V) solves (5). It is now 
clear that other data is needed for (5), and physically it is natural to give i//(0) = 

No existence theorems are known for classical solutions of (3) for nontrivial 
geometries, but for simpler QDE's a few results are known. 

THEOREM 3. Let i// G C2,a(S), 0 < a < 1, have simple level lines and a 

nondegenerate critical point and solve A\j/ = F(V, \p), where F G C°°. Then 

\jjec*0. 

file:///jjec*0
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THEOREM 4. Assume that T is a plane annular domain. Let \jj G 
C2 , a(7), 0 < a < 1, have simple level lines and I Vi//I > 0 and solve A\p = 
F(V, $, \p') where F G C°°. Then i// G C°°. 

These follow from previous theorems and well-known theorems on the 

regularity of solutions of elliptic partial differential equations. 

THEOREM 5. Let S be convex, let A0 = 1 and (j)\bs = 0, and let 0 have 
simple convex level lines with a nondegenerate critical point. Assume that F = 
F(V) is C1 and F(0) =£ 0. Then ifF' is sufficiently small, 

(6) W=F(V), ^\bS = ^i 

has a solution in C2 with the same geometric properties as <p. 

This is proven by the iteration Ai//m = F(Ym^1\ V0(t) = F(0(r)). 

Linearized problem. The perturbed problem for At// = F(V, \p, i//', \jj") 
or (3) is also a QDE 

(7) L2<j> = - 2 ^ 0 

where 0 = d\jj/dt and 0(F) = <0>K. L2 is a second order elliptic operator, L2 = 
A - P, and Lt is a second order ordinary differential operator. P and the coef­
ficients of Lx are given in terms of i//, which is assumed to have a few deriva­
tives. 

What distinguishes the QDE (7) from (3) is that the contours used to de­
termine 0 from 0 are now assumed to be given; they are the level lines of i// == 

*(r). 
Then without being too specific, 

THEOREM 6. Assume that L2 and Lx are negative definite and have suffi­
ciently smooth coefficients. Let the level lines used to determine 0 be simple, 
have an elliptic critical point and several derivatives. Specify the boundary 
values <p\dS = 0j and 0(0) = 0O. Then there exists a unique classical solution 
for (7). 

The proof uses the Green function of L2, G = G(r, r'), and its double 
average G(V, V') = «G)v)v,9 and 

THEOREM 7. The double average of a parametrix (or Green function) for 
a second order elliptic partial differential operator is a parametrix for a second 
order ordinary differential operator L v, i.e. LVG = I' + A. I is the identity and 
A is a compact integral operator. 

Using this, some manipulation transforms (7) into a Fredholm integral 
equation of the second kind for 0. 
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Isoperimetric problem. The function K{V) = < I SJV\2)V can be interpreted 
as the capacity of the (given) distribution of level lines on S. It is a purely 
geometrical quantity. 

Let (pEC1 and consider the functional 

(8) $ M = ®[V\ = J^1 <p(K(V))dV. 

The isoperimetric problem we are interested in is to find the extrema of 
$ subject to the constraint é I VFl""1 ds = 1. In particular, when 0(f) = 
(1 -f t)~x, then the "Euler's equation" for (8) is (4) with an unknown h which 
has to be chosen so that the constraint is satisfied. 

In all the arguments above we have assumed a simple geometry, but non-
simple level lines are actually more relevant for physical applications and exten­
sive numerical schemes have been developed by H. Grad and coworkers to study 
these cases; see the cited references. 

The functional in (8) can be reinterpreted so as to include the more compli­
cated geometries. In fact for the special case of 0 mentioned above, finding the 
supremum of $[F] over a properly constrained class of F's would then corre­
spond to finding the solution of (4) with the simplest geometry. 

This variational formulation will be used to study examples of bifurcation, 
exchange of stability and evolution into more complicated geometries. 
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