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STOCHASTIC INTEGRATORS 
BY KLAUS BICHTELER 

ABSTRACT. The most general reasonable stochastic integrator is a semi-

martingale. For a large class of integrands the stochastic integral can be evalu­

ated pathwise. 

The notion of a semimartingale is a notion ad hoc. It is the result of an 
effort to generalize to the utmost the two known techniques of stochastic inte­
gration: If Z = M + F is a decomposition of the semimartingale Z into a local 
martingale M and a process V of finite variation then one can define J^XdZ as 
J^XdM + JçXdV. The second summand is an ordinary Stieltjes integral taken 
pathwise, while the first one is defined by Ito's technique. 

The question arises whether this is the best one can do. More precisely, for 
which processes Z can one define ƒ • dZ in such a way that the integral has 
"reasonable" properties? Somewhat disappointingly, the theorem below states 
that every reasonable stochastic integrator is a semimartingale. This might come 
as a surprise in view of the very modest criterion of reasonableness adopted. 

On the positive side, the proof of the theorem yields an equivalent defini­
tion of the integral which obviates the need to split the integrator Z as Z = M + 
V and which lends itself to a pathwise computation of ƒ XdZ for a large class of 
integrands X. 

Stating our criterion of reasonableness requires some notation. Underlying 
everything is a complete probability space (£2, G, P) equipped with a filtration 
F = (Ff: 0 < t < °°) that has the usual properties [5], [7]. Let T denote the 
collection of all stopping times that take only finitely many values, each of them 
finite; let A denote the ring of subsets of the base space B = £2 x [0, °°) gener­
ated by the stochastic intervals ((S, T] ], S < T in T; and denote by R the vec­
tor lattice of step functions over A. Now if Z: B —• R is any process then 
dZ(((S, T]]) := ZT -Zs, extended by linearity, defines a linear map 

dZ: R->L°(^ ,G, i > ) . 

The following definition spells out our criterion of reasonableness. 
DEFINITION. An adapted process Z is an Lp-integrator, 0 < p < °°, pro­

vided 
(A0) if An is a decreasing sequence in A with void intersection then 
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dZ(An) —> 0 in L° (i.e. in measure), and 
(Bp) The set {dZ(X)\ X E R, \X\ < 1, X = 0 on (ft, <*>))} is bounded in 

Lp , for every instant t < ©°. 
A simple upcrossing argument shows that, in the presence of (B0), (A0) is 

equivalent with the existence of a right continuous version of Z with left limits 
(r.c.1.1.). Therefore, Z will henceforth be assumed r.c.1.1., so that (B ) is the 
only additional restriction. 

THEOREM 1. Let Z be an adapted r.c.LL process. The following are 
equivalent 

(I) Z is an Lc^integrator (ie., satisfies B0)); 
(II) Z is a semimartingale', 
(III) There is an extension ƒ • dZ of dZ to a class of processes such that 

the dominated convergence theorem holds. 

The implications (III) —-» (I) and (II) —> (I) are almost evident. The 
methods of proof of (I) —• (III) —• (II) have many other applications and are 
perhaps more interesting than the theorem itself, and so we provide a brief sketch. 

(I) —> (III). We shall prove the corresponding statement for all pG [0, °°) 
simultaneously. Let p denote the usual translation invariant metric on Lp, and 
define a function metric G on the set of all processes in Daniell's way: if H > 
0 is the supremum of a sequence in R, set G (H) = sup{p JdZ(X)): XG R, 
\X\ < # } , and for an arbitrary process F: B —» R set Gp(F) = Gp(F; Z, P) = 
inf{Gp(H): \F\ <H, H as above}. Gp is an upper gauge in the sense of [1] 
(cf. also [2], where their simple theory is developed in detail). The closure L = 
Lp [Z, P] of R in Gp-mean is a complete space of processes on which the 
dominated convergence theorem holds, and ƒ • dZ: L p —̂  Lp is defined as the 
extension of dZ: R —* Lp by continuity. All this is, of course, but a slight ex­
tension of ITO's procedure. Despite their down-to-earth definition, the upper 
gauges G are most useful devices. 

For the implication (III) —* (I) we establish a lemma that has many other 
applications. 

LEMMA . Let Z be an L°(P)4ntegrator, Tan a.s. finite stopping time, and 
0 < q < 2. There exists a probability measure P\ equivalent with P on G, such 
that the stopped process ZT is a (global) Lq(P'yintegrator. 

Choose, for instance, q = 2. Any Z2(P')-integrator is easily seen to be a 
P'-semimartingale and hence a P-semimartingale. We apply this to ZT and let 

Here is a brief proof of the lemma. The linear map dZT: R —> L°(P) is 
bounded when R is given the sup-norm topology; and R has the same finite-
dimensional subspace structure as a space L°°(IJ). By a deep factorization theorem 
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of Maurey [6] and Rosenthal [9] there exists a function ƒ in L°(P) and a 
continuous linear map U: R —> Lq(P) such that </Zr(X) = ƒ • £/(X) for all 
XG R. Set P' = c/(l + ƒ«) • P, where c is chosen so that P'(£2) = 1. 

The value of the integral is, of course, the same as that arrived at by the 
procedure outlined in the first paragraph. Note that no splitting Z = M + V 
has to be found, though. Despite its definition as a limit in p-mean (0 < p < °°), 
the integral is local in nature. In order to clarify the meaning of this statement, 
we make a small observation. The process t —> f^XdZ is evidently again an 
Z°-integrator when X £ L0 [Z; P] and so has a r.c.1.1. version, which is unique up 
to indistinguishability. This version is denoted X * Z. It is almost evident from 
our definition of the integral that when the paths of the pairs (X, Z) and 
(X', Z') coincide a.s. on some set £20 C Q then so do those of X * Z and X' * Z'. 
When the integrand X is left continuous and has no oscillatory discontinuities 
then the integral X * Z can actually be evaluated pathwise. Note that the inte­
grand F(YJ) in a stochastic differential equation dY = F(YJ)dZ driven by an 
L°-integrator Z is of this description, and that the following theorem actually 
furnishes an algorithm approximating the integral pathwise. 

THEOREM 2. Let Z be a semimartingale and X a r.c.U. process whose 
maximal process |X|* = sup{|X5|: 0 < s < t} is a.s. finite at all finite instants 
t. Let X_ denote the left continuous version of X. Then almost surely X_ * Z 
is uniformly on bounded intervals the limit of the sequence of processes Yn 

given by 

Y?=£XTn(Z
Tn^At--ZTnM)> 

where T% = 0 and T?+1 = inf{* > T?: \X n - Xt\ >2~n}. In fact, for 

any eus. finite stopping time T 

(D £ir"+ 1-r"i*<oo a.s. 
^ n 

In other words, one can approximate the integral by Riemann sums, where 
the partition is chosen not according to the values of the integrand but according 
to the variation of its values. The argument will show that some errors are per-

missible. Essential is only that the T? are so chosen that max,|X - X '|* n 

is summable over n. It is clear how to set up an electronic device that will compute 
an approximation of flX_s(œ)dZs(cci) as it receives the signals X^OJ) and Zs(co). 

Here is a sketch of the proof. Since X has no oscillatory discontinuities 
and is bounded on every bounded interval a.s., the T" increase without bound as 
i —• °°. Consider the left continuous process 
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Clearly \Xn -X\< 2'n uniformly on B = SI x [0, ~). Now Y^ ff
0X

n dZ, 
and by the Dominated Convergence Theorem, Y" •—• J^XdZ for all t > 0, wi 
measure. This is not yet good enough,but it reduces everything to showing (1). 
To do this, choose q - 2 and let P' denote the measure provided by the lemma. 
We can arrange matters so that \X\% G L2(P') as well. This implies that Xn 

' l((o,r] ] belongs to L x [Z, P']. Using in the third line below a semimartingale 
analogue of an inequality of Burkholder-Davis-Gundy [4] we obtain 

felY»*1-¥»{*<& = £P l(,y»+i-y"|*;/>') 

< I C f C ^ r ] ] ; ^ 1 -X")*Z,/>') 
= c i E G1((ATW + 1 ~XW) • 1((0tT]]\Z, P') 

<CX 2jGi(2~w + 1 • l ( ( o r ] ] ; Z , P') 

= ^ 2 : 2-w + 1 G 1 ( l ( ( 0 ) r ] ] ;Z ,P ' )<oo . 

Hence S | Yn+1 - Fn|y» < °° P-a.s. Here Cx is a universal constant. The passage 
toP' is needed so the upper gauge used is homogeneous and the factors 2~n + l 

can be taken out in the equality of the last line. 
AN APPLICATION. Let F be a Lipschitz function. For x E R set XXy0 = x 

and xx'n + 1 = x + F(Z^,W) * Z Then X*'w converges uniformly on bounded 
intervals to the unique solution of Xx = x + F(Z^) * Z. In fact, 2 jX*'w + 1 -
Xx>n\* < oo a.s. for all a.s. finite stopping times T [3], [8]. The r.c.1.1. iterates 
are only defined up to indistinguishability each. However, they can be fixed 
further as follows: when the algorithm provided by the theorem and used to 
compute F(X*'W) * Z converges set Xx>n+X equal to its limit; else set Xx,n + 1 

= 0. Similarly, if 2 lx*'" + 1 - X*>n\* < <*> for all f > 0 set Xx = lim Xx*n\ 
else set Xx = 0. Evidently Xx(co) is arrived at by measurable operations from x 
and (Zs(oS): 0 < s < t). It is a version that depends in a jointly B(R) x ft-
measurable way on (x, co). 

Essentially the same remark applies when Z = Z is a vector of semimartin-
gales and F a matrix of local Lipschitz functions. It shortens considerably the 
proof [8] that if Z is a (strong) Markoff process then so is the pair (X, Z). It 
obviates the need of finding a Doob-decomposition Z = M + V common to 
each starting probability of Z. 

ACKNOWLEDGEMENT. I learned the fundamental factorization theorem of 
Maurey and Rosenthal from John E. Gilbert in his Harmonic Analysis Seminar in 
Austin, Texas, 1977/78. 
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ADDED IN PROOF. I was advised by Professor Dellacherie that the identity 

of L°-integrators with semimartingales was known to him and G. Mokobodzki 

for over a year and is to be published in Séminaire de Probabilités de Strasbourg 

XIII, Lecture Notes in Math., Springer-Verlag, Berlin. Their proof, simplified by 

G. Letta, amounts in essence to establishing the factorization theorem of Maurey-

Rosenthal for the case q = 1. Note that at present factorization through L2 is 

required in the proof of Theorem 2 and similar results [3]. 
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