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RESEARCH ANNOUNCEMENTS 

ON THE DIFFERENCE BETWEEN CONSECUTIVE PRIMES 

BY D. R. HEATH-BROWN AND H. IWANIEC 

It was shown by Huxley [1] that 

TT(X) - 7t(pc -y) ~ f — (** < y < Jfcc), (1) 
log* 

for any constant # > 7/12. It follows that 

P » + i - P i . « P » (2) 

for # >7/12, where /?„ is the wth prime number. At present the asymptotic 
formula (1) is not known for any û <7/12. However Iwaniec and Jutila [2] 
have recently shown that, if one asks only for 

n(x) - TT(X -y) » -2— (a* < y < Vix\ (3) 
log* 

then t? > 13/23 is admissible. It follows that (2) holds with & = 13/23. Here 
7/12 = 0- 5833 . . . , while 13/23 = 0 • 5652 . . . . Moreover they indicated 
that the condition & > 13/23 could be relaxed to # > 5/9 = 0 • 5555 . . . , by 
an elaboration of the argument. The constant 5/9 was the limit of their method. 

We can now extend the range of validity of (2) and (3) as follows. 

THEOREM. For any d > 11/20 and x > x(&) we have 

1 y 
< X ) - T T ( X - - J O > — : 

212 log* 
in the range xô < y < lâx. Thus 

Pn + l~Pn«Pt 

Note that 11/20 = 0 • 5500 . . . . This constant is the limit of the present 
method, since t> > 11/20 is required in the lemma quoted below. 

The proof of our theorem, like that given by Iwaniec and Jutila, uses a 
combination of the Hnear sieve and certain weighted zero-density estimates for 
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the Riemann zeta-function. However, we use a sharper bound (see below) for 
the remainder term in the linear sieve. Moreover, we take account of several 
positive contributions in our basic decomposition of rt(x) - n(x - y) in (4), 
which were ignored by Iwaniec and Jutila. 

We now give an outline of the proof. First we must introduce some nota­
tion from sieve theory. For any finite set A of integers we define 

Atf = {ne A;d\n}, 

S(A, z) = # {n G A; p\n =* p > z}9 

W/~(A, z, D) = 5(A, z) - Z S(Aqp, q), 
(D/p)l/3<q<p<z 

where q and p run over primes, and 2 < D < z4. We then have the fundamental 
Buchstab identity, namely 

5(A,z2) = 5(A,z 1 ) - Z 5(Ap,p). 
zi<p<Z2 

We take 

A = {n;x-y <n <x}, 

then 

7r(x)-n(x-y) = S(A,x1!2) 

= S(A,z)~ Z S(Ap,p)- Z S(Ap,p) 

= FT(A. *,!>) + Z 5(AW ,«)- Z S(AP,P) 

Z S(Ap,OV/>)1/3) + Z S(AW,*) 
D^KpKx1'2 D1f2<p<x1'2 ^ 

(D/p)1/3<q<p 

= Zi +Z2 - Z 3 ~Z4 +Z5> (4) 

say. ^ give a lower bound for Sj by means of the linear sieve. Usually the 
sieve is applied to give bounds for S(A, z), and these involve a parameter D. 
However the same lower bound applies to the smaller quantity W~(A, z, D). 
This saves a term S2 . To apply the sieve we need an estimate for a remainder 
sum and this is provided by the following lemma. 

LEMMA. Let r\ > 0, 11/20 + 2T? < * < 7/12, 0 < 0 < (6* - l)/5 - 3r? 

and 1 <M, N<x*. Suppose \am\, \bn\ < 1. Then 
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M<m<2M \ mn mn mn' 
N<n<2N 

for some 5 = 6(97) > 0. 

This is a crucial improvement over the corresponding result of [2]. 
The term 2 4 in (4) is also estimated by the linear sieve, from above. How­

ever because of the summation over primes occurring in 2 4 , there will be a 
corresponding sum over primes in the remainder term. The range of this sum is 
too large to be dealt with by a direct appeal to the above lemma, and we there­
fore apply Vaughan's identity, which enables us to split the range into manage­
able parts. 

For 2 3 we give an asymptotic formula, by using weighted zero-density 
estimates. We also apply such estimates to S2 and 2 5 . However only certain 
subranges of p and q can be dealt with in this way, and the remaining terms, 
being nonnegative, are discarded. Of course, to discard judiciously chosen non-
negative terms is the underlying idea in any combinatorial sieve method. 

Full details of the proof will be published elsewhere. 
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