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To my parents 

1. Introduction. The emergence of Transformation Groups as a separate 
branch of mathematics about a hundred years ago is connected with the 
names of Sophus Lie and Felix Klein. The invariant theorists of the day 
asked to find all invariant polynomials of a given linear group G. Let us fix 
the field C and let/: Cn+1 -» C be a polynomial mapping. A related question 
asks for Aut(ƒ), the group of linear transformations leaving ƒ fixed. Call z a 
critical point of ƒ if the partial derivatives df/dz; vanish at z. A critical point is 
called isolated if it is the only critical point in some neighborhood of z. In the 
context of invariant theory ƒ is homogeneous of degree m. If m > 2, then 0 is 
a critical point, and if it is isolated, then it is the only critical point of/. Lie 
[49] noted (without proof; for history and a proof see Orlik and Solomon 
[59]): 

THEOREM. If G is a linear group leaving a homogeneous polynomial ƒ of 
degree m > 3 invariant, and the critical point of f at 0 is isolated, then G is 
finite. In particular, Aut( ƒ) is finite. 

In his famous lectures on the icosahedron Klein [45] observed the connec­
tion between the binary icosahedral group G and the polynomial f(z0, zx, z^ 
= ZQ + z\ + z\. The ring of invariant polynomials of a representation of G in 
SU(2) is generated by three homogeneous polynomials of degrees 6, 10, 15. 
There is one polynomial dependence among them which (up to coefficients) 
reads z% + z\ + z\ = 0. Thus C2/G is isomorphic to the hypersurface V = 
f~l(0) in C3. In fact V is the cone over Poincaré's dodecahedral space. The 
critical point 0 of ƒ is isolated and it is also called an isolated singularity of V. 
Such a singular point has a (nonunique) resolution, consisting of a nonsingular 
ajgebraic variety V and a proper map ir\ V-> V such that the restriction TT: 
V — 7r~l(0)-± V — 0 is an isomorphism. Finding a resolution is in general 
rather cumbersome. However, this polynomial has a symmetry which may be 
exploited, in that for t E C we have ƒ(*%, tl0zx, t

l5z^) = t^fiz^ zv z^), so Kis 
invariant under the action of the multipUcative group of nonzero complex 
numbers, C*. We shall return to this in §7. 

This survey will consider some highlights of the interaction between Trans­
formation Groups and Singularities from the last decade. I wish to thank I. 
Dolgachev, A. Durfee, H. Hamm, L. Kauffman, W. Neumann, T. Pétrie, R. 
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Randell, R. Schultz and P. Wagreich for providing valuable suggestions and 
references. 

2. Degree of symmetry. In the case of a homogeneous polynomial ƒ, the 
group Aut(/) is a measure of its symmetry. Given an arbitrary compact, 
connected smooth manifold Mm, one possible generalization is to consider 
the dimension of the largest compact Lie subgroup G of Diff(Mm). This is 
called the degree of symmetry, N(Mm) by W. Y. Hsiang [41]. It is a rather 
coarse invariant, which nevertheless has interesting properties. Since M 
admits a G-invariant Riemannian metric, the elements of G operate as 
isometries of M and the methods of differential geometry may be applied. In 
fact the following was known already fifty years ago, see Eisenhart [26, p. 
239]. 

THEOREM. For all Mm, N(Mm) < \m(m + 1) and N(Mm) = \m(m + 1) if 

and only if Mm is the {standard) m-sphere Sm or projective space Pm. 

It was not envisioned then that the topological sphere could support exotic 
smooth structures. The degree of symmetry of an exotic sphere is consider­
ably less than that of the standard sphere. For example Hsiang [41] proved 
that if K is an exotic (4k + l)-sphere, then N(K4k+l) < k(2k + 1) + 1. One 
may ask which are the "most symmetric" exotic spheres. These were found 
when Brieskorn [9] discovered that exotic spheres "occur in nature," i.e. that 
for certain polynomials ƒ: Cn+l -> C with an isolated critical point at 0, we 
may choose a small sphere S2n+l centered at 0 so that the link K = S2n+l n 
ƒ ~ *(0) is an exotic sphere. 

Consider the polynomial given by/(z) = z\ + z\ + • • • +*2*+i- W SO(2A: 
+ 1) acts on the coordinates (zv..., z2*+i) a s a subgroup of U(2k + 1) then 
ƒ is invariant. Moreover, ƒ _1(0) is invariant under the Sl = U(l) action given 
by 

t(z0, Zj, . . . , Z2k+i) = (t ZQ, t Zv . . . , t Z2k+l)' 

Thus the link K4k+l has N(K) > k(2k + 1) + 1. It turns out that for k J- 2J 

- 1 K is an exotic (4k + l)-sphere, so N(K4k+l) - k(2k + 1) + 1. Since 
N(S4k+l) = (4k + l)(2k + 1), we may say with tongue in cheek that the 
standard sphere is roughly four times more symmetric than the exotic sphere 
K4k+l. For sharper limits on the degree of symmetry of other exotic spheres, 
see Schultz [81]. 

3. Exotic actions. Let S2n+l be the standard sphere and T: S2n+l -> S2n+l 

a smooth free involution, i.e. T(x) ¥* x for all x, and T2 = id. Then Q2n+l = 
S2n+X/T is a smooth manifold homotopy equivalent to projective space, 
p2«+i ^ e cajj j a n e x o t i c involution if g is not diffeomorphic to P. Exotic 
involutions were first found by Hirsch and Milnor [39] and Bredon [8]. A 
particular class is easily described using the Brieskorn polynomials f(x) — zjf 
+ z\ + • • • + zjk+j, k > \yd odd. It may be shown that the link K(d) of the 
singularity at 0 is a standard sphere if d = ± 1 mod 8. The involution 
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T(z0, zl9..., *2*+i) = Oo> ~zi> • • • > ~~z2*+i) & free on # . Atiyah and Bott 
[6] use their fixed point formula to show that depending on d there are 22k 

distinct exotic involutions among these, see also Giffen [30]. 
Another interesting question is whether a given group can act on a given 

manifold or class of manifolds. For example linear free actions of finite 
groups on spheres have been classified. A necessary condition on the group 
for the existence of such an action is that all subgroups of order pq be cyclic 
(p, q are not necessarily distinct primes). It is therefore natural to ask whether 
the meta-cyclic group of order pq can act freely on any homotopy sphere. 
Pétrie [66] gives a construction whose starting point is one of the singularities 
in consideration. Let m = {x,y\xp = yq = l,yxy~l = xa], p odd, q odd 
prime, a a primitive #th root of 1 mod/? and (a — \9p) = 1. Let mp be the 
normal subgroup generated by x and irq the subgroup generated by y, which 

is also the quotient group ir/irp. Thus 1 —> T̂ , —> w—̂  ŵ  •—> 1. Let Vp and Vq be 
one-dimensional complex representations of irp and irq. Let C[TT] resp. C[7rp] be 
the group rings of m and irp. Let i+Vp = C[TT] ®c^]Vp and \ttj*Vq be the 
one-dimensional complex representation of IT defined by Vq viewed as a C[TT] 
module via j . Then V = i+Vp (Bj*Vq is a complex (q + l)-dimensional 
representation of TT. If zl9..., zq are complex coordinates for i+Vp and zq+l 

is a complex coordinate fory* Vq9 then the polynomial 

f(zl9 . . . , z , + 1) - z\ + zf + • • • +z j + z€'+1 

with / = #" is invariant under the action of 7r. With proper choice of t and e, 
IT acts freely on Kt = f~\t) n Se. Unfortunately, Kt is not a homotopy 
sphere. It may be altered to yield the desired result by equivariant surgery, see 
Pétrie [66] for the nontrivial details. 

4. Milnor fibration. Let ƒ: Cn+l -* C be a polynomial map with a critical 
point at 0. Let Se

2n+l be a small sphere about 0, let Vt = {z Œ Crt+1|/00 = /} 
and Kt = 5e

2n+1 n Kr Milnor [51] proves the following. 

THEOREM. TAe mapping f/\ f \: S2n+l\ K0-+ Sl is the projection of a smooth 
fiber bundle. 

If 0 is an isolated singularity of VQ9 then the following is true: 
(i) The typical fiber F = Ft is diffeomorphic to Vt n Be and it is an 

(n - l)-connected parallelizable smooth 2n manifold. The homotopy type of 
F is that of a bouquet of «-spheres whose number, /i is called the Milnor 
number of the singularity. 

(ii) For \t\ < ô, K = Kt are all diffeomorphic smooth (n - 2)-connected 
(2n — l)-manifolds. Moreover, the closure of F is a compact manifold with 
boundary K. 

(iii) s2n+l - K is obtained from F X [0, 2TT] via a diffeomorphism h: 
F-* F called the characteristic map. The induced map h+: Hn(F) -» Hn{F) is 
called the monodromy. 

Thus S2n+l is decomposed as a union of the codimension 1 submanifolds 
Ft91 E [0, 2TT] together with K0 in such a way that the closure of each fiber Ft 
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is K0. Such a decomposition is called a book structure or an Alexander 
decomposition, see Figure 1 below. 

FIGURE 1 

(iv) For n > 3, K is simply connected and we have a short exact sequence 

0 - # „ ( * ) - > Hn(F)1'^H„(F)-+ #„_ , (* ) -<> 

where I is the identity map. In particular, Hn(K) = Hn_l(K) = 0 if and only 
if 7% — h+ is an isomorphism. In this case j£ has the homotopy type of S2n~~x 

and it is called a homotopy sphere. A theorem of Smale implies that K is in 
fact homeomorphic to S2n~x. In general K is not diffeomorphic to S2""1, as 
we noted in the examples of Brieskorn. 

These results have been extended to singularities of complete intersections 
by Hamm [35]. 

5. Foliations. Polynomials with singularities played an essential role in the 
construction of codimension one foliations of all odd dimensional spheres. By 
a codimension one C00 foliation of an m-manifold M we mean a decomposi­
tion of M into a union of disjoint connected codimension one subsets 
{&a}aEiA called the leaves, such that every point x G M has a neighborhood 
U and a system of local C00 coordinates x = (x„ . . . , xm): i/-» Rm such that 
for each leaf £a, the components of U n £a are described by the equation 
xm = 0. If M has boundary, then we require that each component of the 
boundary be a leaf and the foliation extend to a smooth collaring of M by 
defining the leaves in the collar dM X [0, 1] to be the components of 
dM X {/}. 

It is easily seen that for compact manifolds the vanishing of the euler 
characteristic is a necessary condition for a codimension one foliation. This 
rules out even dimensional spheres. Clearly, Sl is foliated by its points. Reeb 
constructed a foliation on S3 as follows. First foliate a strip of the plane by 
congruent curves, each asymptotic to the boundary as pictured in Figure 2. 
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FIGURE 2 

Rotate about the center line to obtain a foliation of R X D2. Now divide by 
Z using the periodicity of the foliation to obtain a foliation of 5 1 X D2 whose 
leaves are planes except for the boundary torus. Two such solid tori foliate 
S3. It was natural to ask whether all odd dimensional spheres admit a 
codimension one foliation. 

Notice that if p: Mm-+Nn is a smooth fiber bundle and there is a 
codimension one foliation of Nn, then/?"1 pulls it back to a codimension one 
foliation of Mm. 

We noted that the Milnor fibration decomposes S2n+l as a disjoint union 
of the codimension one submanifolds Ft together with the link K. It is not 
hard to see that K is embedded with a trivial normal bundle so K X D2 c 
S2*+1. The construction by Lawson [48] and Durfee [22] depends on the 
following observation. If there is a codimension one foliation of K X D2 such 
that d(K X D2) = K X Sl is a leaf, then S2n+l has a codimension one 
foliation by "wrapping the leaves around" K X Sl. This latter is shown in 
Figure 3. It remains to obtain a foliation of K X D2. Here they use induction. 
If K X D2 may be fibered over a lower dimensional sphere which has a 
codimension one foliation, then the bundle projection pulls the foliation back 
to the desired foliation of K X D2. Thus it suffices to find polynomials with 
isolated singularity whose link manifold K fibers over an odd dimensional 
sphere. Explicit computations show that 

/(z) = z\ + z\ + • • • + z*, for n odd 

and 

/(z) - (z0 + z2)(z% + zf) + z\ + • • • +z2, for n even 

have this property. Subsequently Thurston [87] proved that the euler char­
acteristic is the only obstruction to the existence of a codimension one C00 

foliation. 

/ / /Pf 

% 

FIGURE 3 
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6. C*-actions. Klein's and Brieskorn's polynomials are examples of a very 
tractable class called weighted homogeneous or quasihomogeneous polynomials. 
Call f(z0, ..., zn) quasihomogeneous with degree d and exponents q0,..., qn 

if ƒ(*%, . . . , tq»zn) = tdf(z0, . . . , zn). The variety V = ƒ _1(0) admits the 
corresponding C*-action. We shall assume here that the integers d; q^ . • . , qn 

are all positive (in which case the action is called "good"), but there are 
situations where it is essential not to make this assumption, see Orlik and 
Wagreich [63]. In the terminology of Milnor [51] ƒ has weights wt = d/qt. 

We have noted that one important invariant of an isolated critical point is 
its Milnor number /*. This number is hard to compute in general, but for 
quasihomogeneous polynomials we have a result of Milnor and Orlik [53]: 

THEOREM. If f is a quasihomogeneous polynomial of type d; qQ,.. . , qn with 
an isolated critical point, then 

f.= Û (</-?,)/ïïft = â(w (-l). 
1=0 i = 0 1=0 

Note that a priori this product is not an integer. This result has been extended 
to complete intersections by Randell [77] and Hamm and Greuel [37]. 

Additional information about the Milnor fibration is in the characteristic 
map h: F-+F and its induced map in homology, the monodromy. Let 
£ = exp(2m/d). Then we have A(z 0 , . . . , zn) = ( £ % , . . . , £^z„). The eigen­
values of the monodromy transformation h+ are computed by Milnor and 
Orlik [53], but this suffices only to determine the rank of Hn„xK and Hn_2K. 
In order to find the torsion coefficients of Hn__2K it is necessary to obtain the 
integer matrix of h+ with respect to some basis. This been done for some 
types of quasihomogeneous polynomials by Randell [74] and Orlik and 
Randell [58], but for arbitrary quasihomogeneous polynomials the problem is 
still open. 

The space V0 — {0} is invariant under the C*-action and the orbit space 
X = V0 — {0}/C* is in a natural way a compact complex space. The orbit 
map w: V0 — {0} -» X is almost a bundle projection with fibers C*. It is 
called a Siefert bundle. It is interesting to determine when A" is a manifold, 
see Neumann [54], Edmunds [25] and Randell [76]. Many of the algebraic 
topological and algebraic geometrical invariants of X may be computed 
explicitly in terms of the integers d; q0, .. . , qn\ see Randell [75], [76]. 

When ƒ is a sum of polynomials in distinct variables, we have the following 
result of Oka [56]. 

THEOREM. Let f be a polynomial in Cn X Cm such that f (z, w) = g(z) + h(w) 
for each (z, w) Œ Cn X Cm, where g(z) and h(w) are quasihomogeneous poly­
nomials in Cn and Cm respectively. Let Ff = f~\l) C Cn X C", Fg = g~l(l) 
C C" and Fh = h~x{\) c Cm. Then there is a natural homotopy equivalence 
between Ff and Fg * Fh, where Fg * Fh is the join of Fg and Fh with the strong 
topology. 

COROLLARY (SEBASTIANI-THOM [82]). The monodromy of ƒ is the tensor 
product of the monodromies of g and h. 
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A particularly simple example is provided by the one-variable case f(z) = 
za. The fiber F = /_ 1(1) consists of a points and JU, = rank H0(F) = 'a - 1. 
Choosing a suitable basis the monodromy matrix is given by the companion 
matrix of the polynomial (ta - l)/(f - 1): 

[ 0 1 0 • • • 0 1 

M = ° ° l •"• ° 
a 0 0 1 

L- i - l ••• - i j 
Thus for the Pham-Brieskorn polynomial 

/(z) = z0
flo + z? « + • • • + zrt̂  

the monodromy matrix is the tensor product 

M = Mao ® Möi ® • • • ® Afv 

The link of f(z) + TV7* may be viewed as a "/^-cyclic suspension" of the link of 
f(z) and there is a periodicity in the signature of the Milnor fiber as a 
function of p. This in turn has connections with knot cobordism groups and 
the so called knot- and link manifolds, see Jânich [42], Hirzebruch [40], Erie 
[27], Bredon [8], Durfee and Kauffman [24] and Kauffman and Neumann 
[43]. 

Let ƒ be a homogeneous polynomial of degree m with an isolated singular­
ity. Let G = Aut(/) be the group of linear automorphisms of/. If m = 2, then 
ƒ is invariant under some orthogonal group e.g. as in §2. If m > 3 then Lie's 
theorem quoted in the introduction shows that G is finite. Since G acts on the 
Milnor fiber, we have a representation of G on Hn(F; C). The character and 
eigenvalues of this action were computed by Orlik and Solomon [59]. 

7. Resolution of singularities. Suppose V is an algebraic surface in Cw+1 

with one singular point 0 £ K . Then it has a resolution consisting of a 
nonsingular algebraic surface V and a proper map m\ V-+ V such that the 
restriction IT: V - 7r_1(0) -» V - 0 is an isomorphism. Let X « ^"^O). Then 
X = U 1 = \Xt where each Xt is a compact, nonsingular curve and Xt n Xj is 
either empty or consists of a single normal crossing. Thus V arises by 
collapsing X to a point in V. In particular the link K of 0 G F is diffeomor-
phic to the boundary of a tubular neighborhood of X in F. We may associate 
a weighted graph T to the resolution as follows. To each curve Xt assign a 
vertex e, weighted by a nonnegative integer g„ the genus of Xt and a negative 
integer (— /*,) corresponding to the euler class of the normal bundle of Xt in V 
or equivalently the algebraic intersection number Xt • Xt. The graph T con­
tains all topological information about the resolution, so when we are given a 
singularity finding a resolution will mean finding a weighted graph T. If V is 
invariant under the action of a group G9 we call ( V, TT) an equivariant 
resolution if V admits a G-action and m is an equivariant map. 
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FIGURE 4 

Now suppose V admits a "good" C*-action, i.e. Fis embedded in C1"*"1 and 
it is invariant under the C*-action t(z0>..., zn) = {t^z^ . . . , t^zn) with 
qi > 0. Then ^ * F n S2w+1 is a closed 3-manifold invariant under the 
U(l) c C* action. Closed 3-manifolds with circle action have been classified 
by Raymond [78]. The main result of Orlik and Wagreich [61] is that the 
S ^manifold K determines the resolution of the singularity of V, i.e. there is 
an algorithm for determining the graph T from the equivariant invariants of 
K = {*» SI («i> &), • • • > («r> fir)}- Here g is the genus of the 2-manifold 
K/Sl; the pair {a,, ft} refers to an orbit with isotropy Z^ and slice repre­
sentation determined by ft, 0 < ft, < a, and (a„ ft) = 1 and b E Z is a 
"chern class". 

Using orientations as in Orlik and Wagreich [63] we have: 

THEOREM. If V is an algebraic surface with a good C*-action and an isolated 

r,sr 

FIGURE 5 
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singularity at 0 whose link is K = {b; g; (ax, /${), (a2> £2), * • * ' (ar> Pr)} then 
the graph T of an equivariant resolution is given by Figure 5, where the genus of 
the center curve is g and all other curves have genus 0 {omitted from the 
notation), and the integers btj > 2 are obtained from the continued fraction 
expansions: 

ok-Pi b* ~ 
1 

If V c C3, then there are simple formulas for all the invariants of A" in 
terms of d; q^ qx, q2, see Orlik and Wagreich [63]. For example if we have a 
Brieskorn polynomial ZQ0 + z\x + 222> then with the notation [a, b] = 
LCM{a, b) and (a, b) = GCD{a, b) we have: 

2g = 
d(qo, qx) d{qx, q2) d(q2, q0) 

%q\<l2 %<l\ 
(d,q0) (d,qx) 

% 4\ 

(4, q2) 
42 

92% 

1. 

There are d/[qx, q2] orbits with a0 = (qv q^ and q0P0= 1 mod a^ 0 < /?0 < 
a0. Cyclic permutation of the indices determines the other exceptional orbits. 
Finally, 

4<tfl?2 1-1 ". 

As an illustration consider Klein's polynomial z$ + z\ + z\ = 0, invariant 
under the C*-action with d = 30, q0 = 6, qx = 10, q2 = 15. Direct computa­
tion yields K = { - 1 ; 0; (5, 1), (3, 1), (2, 1)}. Since 

! - * 
1 - 2 - 1 
2 2 

and 5 _ „ 1 
4 - „ 1 

>4 
we obtain the resolution shown in Figure 6. 

FIGURE 6 

We conclude that for the binary icosahedral group G the quotient C2/G 
may be embedded in C3 as the hypersurface defined by z% + z\ + z\ = 0 and 
the resolution of its singularity at 0 yields the Dynkin diagram of the 



712 PETER ORLIK 

exceptional Lie group of type E%. The table below displays this connection for 
all the finite subgroups of SU(2). See also Arnold [4], Brieskorn [10], Durfee 
[23] and Hazewinkel, Hesselink, Siersma and Veldkamp [38]. 

subgroup of SU(2) 

cyclic of order (n + 1) 
binary dihedral of 

order 4(n - 2), n > 4 
binary tetrahedral 
binary octahedral 
binary icosahedral 

equation of quotient 

z0»
+1 + z? + rf 

Q \ •" Z \ "* 1. 

zl + z\ + z\ 
Z0 ~*~ Z0Z\ "*" Z2 

4 + A + 4 

diagram 

Â 
A, 

E6 

E7 

E8 

8. Deformation. Let ƒ: Cn+1 -» C be the germ of a holomorphic map at 0 
and assume that 0 is an isolated critical point. Let 0 be the ring of 
holomorphic functions at 0 and let (9/) • (9 / /9z 0 , . . . , df/dzn) be the ideal 
generated by the partial derivatives of ƒ. Then 0 /(9/) is a finite-dimensional 
vector space over C. In fact Palamodov [65] showed that din^© /(9/) = /x, 
the Milnor number. A topology may be defined on 0 so that for polynomials 
it is the usual topology given by the euclidean distance of the coefficients of 
the respective monomials. Let 9H be the maximal ideal of holomorphic 
functions vanishing at 0 and let H be the group of biholomorphic coordinate 
transformations fixing 0. A germ ƒ is called simple if there is an open 
neighborhood of ƒ in <3lt which intersects only finitely many orbits of H. 
Arnold [3] proved the following: 

THEOREM. The simple map germs are 

An:zZ+x + z\ + zl+ • • • + 4 

Dn\z\zx + z»~l + 4+ • • ' + 4 

E6:z% + zî + zî+ - - - +zl 

En\z\ + z0z\ + z | + • • • +zl 

Es:z* + z\ + z\+ • • • +zl 

A deformation (unfolding) of ƒ is a holomorphic map germ F; Cfl+1 X C* 
-» C X Ck such that F(z, 0) = (/(z), 0). Let tl9...,tk be the coordinate 
functions in C*. If ƒ has an isolated critical point at 0, then the particular 
deformation defined by E(z, t) = (F(z, 0, 0 with F(z, 0 = f(z) + 2^= 1 

8i(z)tt> where 1, g l 9 . . . , gk represent a basis of 0 /(9/) is called semiuniversal. 
The remarkable connection between the quotient spaces of finite subgroups 

of SU(2) and certain Lie groups was explained by Brieskorn [10]. Let G be a 
Lie group of rank r of type A, D or E. Let h: G -* T/ W be the orbit map of 
the adjoint action sending each x E G to its conjugacy class. Here T is a 
maximal torus and W is the Weyl group of G. An element * E G is called 
regular if the dimension of its centralizer ZG{x) is minimal, dim ZG(x) = r. It 
is known that h is smooth at x if and only if JC is regular. Call x E G 
subregular if dim ZG(x) = r + 2. Let @ be the Lie algebra of G, % the 
Cartan subalgebra and x: © -» 3C/ W the map induced by h. Let N{%) be the 
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subvariety of nilpotent elements of ©. Let S c ® be a transversal slice to the 
subregular orbit. Then S has codimension 2 in N(&) and Brieskorn [10] 
shows: 

THEOREM. The singularity of the surface S n N(®) corresponds to the type of 
the Lie group G and the restriction x\s

: S-*%/W realizes a semiuniversal 
deformation of this singularity. 

This construction was extended to the Lie algebras of type Bn> Cn, F4 and 
G2 by Slodowy [85]. 

9. Monodromy. If ƒ: Cn+1 -* C has an isolated critical point at 0 and F: 
Qn+k+i _^çk+i j s a semiuniversal deformation of/, then the set of critical 
values of F forms a hypersurface D c C * + 1 which is called the discriminant. 
For a suitable open set S c C u l and for S' = S — Z>, the fibers of F over 
S' are smooth with homotopy type a bouquet of «-spheres. Let Xs be a typical 
fiber, s G S'. The image of the natural map n^S', s)-> Aut(Hn(Xs; Z)) is 
called the monodromy group M. For more information on this group and its 
connection with the intersection form on Xs see Lamotke [47]. The surjection 
TTX(S', s)-> M gives rise to a regular covering S' -» S' with M as group of 
covering transformations. It can be shown that M is generated by reflections, 
and that it is finite if and only if X0 is a simple hypersurface singularity of 
even dimension. In general if G is a finite reflection group acting on V = C7 

then V/G is naturally isomorphic to C7, so in case of simple singularities the 
same holds for Hn(Xs; C)/M. Brieskorn [10] proved that in this case the 
covering S' -> S" extends to a covering S -» S ramified over D such that (for 
suitable F) the resulting map is equivalent to the orbit map Hn(Xs; Q - * 
Hn(Xs; C)/M. Looijenga [50] extended these results to simple-elliptic singu­
larities, making explicit use of the fact that if X0 admits a C*-action, then the 
whole construction may be made C*-equivariant, see also Pinkham [68], [69]. 

10. Newton diagram. Let N be the set of nonnegative integers and let R+ be 
the set of nonnegative real numbers. Let A' be a subset of N*+1. Denote by 
r+(AT) the convex hull of U mGK(m + R^"1) in R++1. The union of all 
compact faces of T+(A) is the Newton diagram T(K) of K. For a power 
series in (n + 1) variables z = ( z 0 , . . . , z n ) , ƒ = 2meN"+,amzm> « m G C w e 
define the support of/, suppƒ = { / « E N " + 1 | a w ^ 0 } . L e t T(f) = T(suppf) 
be the Newton diagram of/. Let T_(/) be the cone over T(f) with cone point 
the origin. Let y be a closed face of T(f) and define fy = 2meyamzm. The 
main part of ƒ is the polynomial 2m e r ( / )amzm . The main part of ƒ is called 
nondegenerate if for any closed face y E T(f) the polynomials 
z0(3/y /3z0), . . . , zn(dfy/dzn) have no common zero in {zECn+l\z0 . . . zn ¥* 
0}. Kushnirenko [46] proved the following interesting connection between the 
Newton diagram and the Milnor number. 

THEOREM. If f has an isolated critical point at the origin and if the main part 
off is nondegenerate-, then 

/ » - ( » + 1)!F„+1 - n\VH + • • • + (-1)"K, + ( -1 ) B + 1 

where Vn+l is the (« + Xydimensional volume of T_(f) and for 1 <q < n Vq 
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is the sum of the q-dimensional volumes of the intersections of T„(f) with the 
q- dimensional coordinate planes. 

For isolated singularities the Milnor fiber has homology only in dimensions 
0 and n, the latter of rank /A. Thus its euler characteristic equals x = 1 + 
( - l ) > s o 

X - K , - 2 ! F 2 + . . . + (-l)"(#i + l)!Kll+1. 

Varchenko [88] has shown that this expression gives the euler characteristic of 
the Milnor fiber regardless of the singularity of ƒ, provided its main part is 
nondegenerate. The Newton diagram of a quasihomogeneous polynomial Hes 
in a hyperplane so it is particularly tractable. This enables Oka [57] to obtain 
topological conclusions from assumptions about the behavior of the Newton 
diagram. 

11. Automorphic forms. As we noted in the introduction, Klein's variety 
defined by z% + z\ + z\ = 0 in C3 is the quotient space of C2 by the action of 
the binary icosahedral group G. The corresponding 3-manifold K whose orbit 
invariants were obtained in §7 is the homogeneous space SU(2)/G. The 
natural question arises, which singularities are obtained as quotients by a 
group action. For finite subgroups of SU(2) the answer was given by Klein 
and the corresponding singularities have turned up in a variety of different 
contexts. For the general case see Milnor [52] and Raymond and Vasquez 
[79]. The next construction is also a generalization of classical results. 

Suppose G c GL(2; Q is acting properly discontinuously in some domain 
of holomorphy D c_C2. Let G c PSL(2; Q be its image acting on CP1 = S2. 
If G is finite, then G is properly discontinuous on all of CP1. Otherwise G is 
properly discontinuous on the euclidean plane PE « C or the hyperbolic 
plane PH = {z G C||z| < 1}. In the latter cases the domain D is a trivial C* 
bundle over PE or PH and it is not hard to compute the action of G with 
respect to a trivialization. 

More generally if F is a complex variety and G a group of its automor­
phisms, we call a line bundle/?: L -> V with G-action an automorphic factor 
with respect to G if 

(ï)P(gx) = g(p(x)) for all x G L, g G G, 
(ii) g: L -» L by x -+ gx restricted to p " l(z) 

defines a linear map/?~\z) -*p~\gz) for all z G F, g G G. 
In our case L = F X C, with V — PE or PH corresponding to the insertion 

of a zero section to the bundle V X C*. Here the structure of the automor­
phic factor on L is determined by a function h: G X K-> C*, holomorphic in 
z and subject to the condition 

h(gg\ z) - h(g, g'z)h(g'9 z) for all g, g' eG,z G V. 

The action on L is given by g(z9 a) = (gz, h(g, z)a). If L and V are 
automorphic factors for G, then L® L' is a line bundle with G-action 
g(l ® 1') = g(l) ® g(l') for all z G F, 1 G L2, Y G L'z. Let £®m - L 
® • • • ® L (m times) and Lm = V X C with g(z, a) = (gz, a). Similarly we 
can define dual automorphic factors. 
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In the case of finite groups G the algebra of G-invariant homogeneous 
polynomials is finitely generated and there is a natural isomorphism between 
the variety defined by it and C2/G. If G is infinite, then the only G-invariant 
polynomials are constants. The replacement is a G-automorphic form on V 
relative to the automorphic factor L: a holomorphic function/: L -»C such 
that 

(0 Agx) - ƒ(*) for all x G L, g G G, 
(ii) the restriction of ƒ to each fiber Lz is a homogeneous linear form. 
The G-automorphic forms on V relative to L form a C-vector space A(G; 

L), and if ƒ G A(G; L\f' G A(G\ L') then ƒ • ƒ' G ^(G; L ® L'). Thus 

^ ( G ) = © A(G;L®m) 
m = 0 

is a graded subalgebra of the algebra of holomorphic functions on L consist­
ing of G-invariant functions on L whose restrictions are polynomials in each 
fiber, called the algebra of G-automorphic forms on V relative to L. The 
elements of AL(G)m = A(G; L®m) are called automorphic forms of weight m. 

This algebra is a classical object, see Fricke and Klein [28]. Its connection 
with our present subject, the isolated singularities of quasihomogeneous 
polynomials, was known to F. Klein and H. Poincaré. The recent advances 
are due to Conner and Raymond [16], Raymond and Vasquez [79], Milnor 
[52], Dolgachev [19], [20], Neumann [55], Wagreich [89], [90] Gorbatsevich 
[33]. 

The triple ( V, G, L) is called admissible if 
(i) there is a normal subgroup G ' c G which acts freely and discretely on 

V, 
(ii) the factor space V/G is a compact analytic space, 
(iii) for some G ' c C satisfying (i), the quotient L/G' determines a positive 

line bundle over the manifold V/G'. 
As usual given a ring A the space Spec(^4) is its spectrum of maximal ideals. 
The following result of Dolgachev was announced in [19] and proved in [20]. 

THEOREM. Let (V, G, L) be an admissible triple. Then the affine algebraic 
variety Spec A(L) is a quasihomogeneous surface with isolated singularity at x0 

defined by the maximal ideal A(L)+ = © i>0A{L)t. Conversely, each quasiho­
mogeneous surface with good C*-action and isolated singularity is isomorphic to 
the variety Spec A(L) for some admissible triple (V, G, L). Moreover, we may 
assume that G acts freely outside the zero section of L. 

The question of which singularity is obtained for a given G c GL(2; C) is 
currently investigated by Orlik and Wagreich [64]. 

12. Complements of hyperplanes. Let V = Cl and let Av . . . , An be hyper-
planes through the origin. Let M = V — U ?=i^,- If qpi, . . . , <p„ are linear 
forms such that ker <p, = Ai9 then in general the polynomial ƒ = <px • • • <pn 

has a nonisolated singularity at 0. Note that M is the total space of the 
Milnor fibration. Computation of H*(M) first appeared in the work of 
Arnold [2] and Brieskorn [11] in connection with finite (real) reflection 
groups, where the At are the reflecting hyperplanes and M is the set of regular 
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vectors. Brieskorn [11] computed in principle H*(M) for arbitrary M. In a 
forthcoming paper Orlik and Solomon [60] give an algorithm for computing 
H*(M) as follows. Assume complex coefficients throughout. Introduce a 
partial order in the set L of all intersections of the At by reverse inclusion, i.e. 
X < X' if X D X'. Define the Möbius function of L inductively as follows: 
li(V) = 1 and for X Œ L, X =£ V: 2 v<x<x n(X') « 0. The partially ordered 
set L turns out to be a geometric lattice with minimal element V and maximal 
element n ? » i ^ . The rank function of L is given by r{X) = codin^A" and 
the atoms of L are the At. 

THEOREM. The Poincaré polynomial of M is given by 

P(M;0= 2 n(X)(-tY<x\ 
XE:L 

If G C GL(K) is a finite group which operates on the set of hyperplanes 
Av . . . ,An by permutation, then G has a representation on H*(M). The 
trace is obtained as follows. Let g EL G and let Lg = {X G L|gX < X). 
Then L* is a poset (but not necessarily a geometric lattice), with its Möbius 
function /Ag. 

THEOREM. The trace of g E G on H*(M) is given by 

2tr(g|/J*(M)),'= 2 MgPO(-,)'(*> 

wAere r(X) = codin^A" w /Ae rank function of L. 

If G is an irreducible finite real reflection group and At are its complexified 
reflecting hyperplanes, then Brieskorn [11] proved that P(M; t) = n'=i(l + 
mtt) where ml9..., ml are the exponents of G. 

THEOREM. If G is an irreducible finite unitary reflection group and 
Al9 . . . 9An are its reflecting hyperplanes, then 

i 

P(M; t) = II (1 + V) 
i * i 

where the nv . . . , nt are positive integers. If G is real, then nt = mt. 

Deligne [17] showed that M is a K(TT, 1) space if G is a real reflection 
group. It is not known whether the same holds for unitary reflection groups. 

13. Related topics. The subject of Singularities has grown tremendously in 
the last decade. There is no adequate survey of the subject as a whole. The 
material for this article was selected on the basis of its connection with 
Transformation Groups. For the convenience of the reader interested in other 
aspects we shall list references for some major areas of current activity. 

(i) Golubitsky and Guillemin's book [31] is an excellent introduction to the 
Thorn-Mather theory of the stability of mappings and the stability of unfold-
ings, the classification of singularities, the Thom-Boardman stratification and 
catastrophe theory. For other treatments see Wassermann [91] and Gibson, 
WirthmüUer, du Plessis and Looijenga [29]. Poènaru [70] has developed an 
equivariant theory. Two recent collection of papers [84], [86] deal with 
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structural stability and related questions, see also the Liverpool symposium 
volumes [71], [72]. A treatment of the elementary catastrophes appears in 
Woodcock and Poston [92] with appealing pictures. Many applications to 
physics, economics and biology are discussed in a collection of papers by 
Zeeman [93]. 

(ii) Arnold [4] gives a general survey of his classification of singularities 
with small Milnor number, the adjacency problem and applications to caust­
ics, wavefronts and oscillating integrals. Recent advances in the classification 
and adjacency are reported by Arnold [5] and by Siersma in [80]. 

(iii) Methods using stratifications, polar curves, Lefschetz pencils and 
Morse theory have been applied in various forms, see Hironaka's article in 
[80], A'Campo [1], Lê's papers in [73], [80], [83], Hamm and Lê [36] and 
Teissier's reports in [73], [83]. 

(iv) Many tools of algebraic geometry are used in singularities. Lipman 
gives an introduction to the resolution of singularities in [73]. The problems of 
equisingularity and deformations are treated by several authors in [73], [80], 
[83]. The enumerative theory is reviewed by Kleiman in [80]. Tessier treats the 
invariants of the discriminant in [80]. The fact that the Milnor fiber is a Stein 
manifold and therefore its cohomology with complex coefficients is isomor­
phic to the cohomology of its de Rham complex of holomorphic differential 
forms is used by Brieskorn [12] and Greuel [34] to develop a singular local 
Gauss-Manin connection, which gives an algebraic method of computing the 
monodromy. Steenbrink's article in [80] is a good introduction to mixed 
Hodge structures. 

(v) The actions of the complex torus are treated by Kempf, Knudsen, 
Mumford and Saint-Donat [44]. Connections between C*-actions and vector 
fields on compact Kaehler manifolds are discussed by Carrell and Lieberman 
[13] and by Carrell and Sommese [14]. 
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