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Suppose G is a finitely generated fuchsian group of the first kind. Let A(k)
be the vector space of entire automorphic forms of weight k£ and
AG)= D A®)
k>0

the graded ring of automorphic forms. Now G acts on the upper half plane H, in
the usual way. This action has a ‘canonical’ extension to H, x C* via

gz, )= <g(z), %t)

ProPosITION 1. A(G) is a graded algebra of finite type. The algebraic set
V = Spec(A(G)) is a surface with C*-action. There is a Zariski open C*-invariant
subset of V which is isomorphic to (H, x C*)/G.

We thus can use the theory of surfaces with C*-action to study the structure
of the ring of automorphic forms. Now let us suppose that G is a fuchsian group
with signature {g; s; e(1), . . ., e(r)» and V = Spec(4(G)). By [7] the singularity
of V at (0) has a canonical equivariant resolution. The graph of the resolution is
star shaped, of the form

where b =2g—2 +r+s.

A first step in understanding the structure of these rings is to find the mini-
mal number of generators, n. In [9] we classified all groups with n <3. The tech-
niques there are all elementary. The results here are more general since we use
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the more powerful techniques from the theory of singularities of surfaces. The
groups with n < 3 and s = 0 were also classified by Dolgacev [4]. Ifg =0
and s > 0 then the singularity is a rational singularity and one can use the
theory of these singularities to compute n. First we let e = Z}_, e().

ProrosiTion2. (1) Ifs>1thenn=e—r+s—1,
) Ifs=1thenn=e-3.

If g = 0 and s = O then the singularity is minimal elliptic [6], hence it
follows directly that:

ProrosiTION 3. (1) if r > 3 then n = max(3, e — 8),
Q) Ifr=3and e(@@) > 2, for all i, then
n = max(3, e — 9).
) Ifr=3,e(1) =2, e(2), e(3) > 3 then
n = max(3, e — 10).

@) Ifr=3,e(1)=2,e(2) =3, e(3) > 6 then

n = max(3, e — 11).

To get more information about generators one can use the following de-
scription of A(k) as a vector space of functions on X.

ProrosITION 4 (8], [9]. Suppose that p(1), . .. ,p(r) € X are the ellip-
tic points and q(1), . . . , q(s) € X are the cusps. Then

AR) = LUK + K@) + -+ - +a6) + 3 k(1 — 1/e@)]pQ)

i=1

A major tool for stating and proving our results is the Poincaré power
series of the graded algebra A(G). Recall that if R is any graded algebra over a
field K and M is a finitely generated R-module, then the Poincaré power series
of M is defined to be

p(H) = f: d@¢
i=0

where d(7) = dimension of R(?) as a vector space over K. Moreover, if R is
finitely generated as an algebra over K then p(¢) is a rational function [2]. Now
let m be the maximal ideal of 4(G) defined by

m= @ Ak).

k>0
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Then any basis of m/m? as a vector space over C lifts to a minimal set of genera-
tors of the algebra A(G). Conversely, every minimal set of algebra generators
forms a basis for m/mz, Now m is a graded ideal, hence there is an induced
grading on m/m?. Let p(¢) be the Poincaré power series of m/m?. Of course this
is just a polynomial. The coefficient of #’ in this polynomial is just the number
of independent generators of weight i.

THEOREM. Ifn >3 then
r
PO =fO+ 3 (F+-+FD)
i=1

where f(t) is given in the table below.

SIGNATURE
f(@)

s=23o0org=0ands=2 (g+s—1)
s=2,g=2and 1(g(1) +q(2)) =1 (g + 1)t + ¢
s=2,g>1and 1(g(1) + q(2)) = 2 g+ 1)t +gt?
s=1,g = 3, X nonhyperelliptic gt+2t2+13
s=1,g21, X hyperelliptic gt+gtt+43
s=1,g=0,r=2 -2+ (-2)3
s =0, g = 3, X nonhyperelliptic gt
s=0,g> 2, X hyperelliptic,g +r=>3 gt + (g -2)f?
s=0,g=1andeithere=6o0rr=1,¢e(1)>4 t—1?
$§=0,g=0,r>4,e>11 =32 + (r-5)3
§=0,=0,r=3,¢(i) >3, for all i. =32 -263-¢*
$§=0,8=0,r=3,e(1)=2,e(2),e(3)=>4,¢>13 =312 =23 -4 -5
$§=0,g=0,r=3,e(1)=2,e(2) =3,e(3) =9 =32 =283 -4 151"

The finite number of signatures which do not appear above all have 4
generated by 2 or 3 elements. The generators and relations for these rings are
listed in [9].

COROLLARY. If we are as above, then n = e —r + f(1).

EMBEDDING DIMENSION 4

The following is a list of all groups whose algebra of automorphic formg
is generated by four elements. If the algebra is a complete intersection, that is
the ideal of relations is generated by two elements, then we give the degree of
the generating relations in the last column.
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SIGNATURE DEGREES OF GENERATORS RELATIONS
{4}, X nonhyperelliptic 1111 23
(3), X hyperelliptic 1112 24
(3;0;2), X nonhyperelliptic 1112 33
{2;0;2,2) 1122 34
(2;0;3) 1123 44
(2;2>q(1) + q(2) not linearly 1112 334
equivalent to K.
(2;3) 1111 233
(1;0;2,2,2,2) 1222 44
(1,0;2,2,3) 1223 45
(1;0;2,4) 1234 56
(1;0;3,3) 1233 46
(1;0;5) 1345 68
(1;1;2) 1223 456
(1;2;2) 1122 344
(1;3;2) 1112 333
(1;4) 1111 22

The groups with g = 0 are easily found using Propositions 1 and 2. There
are 25 signatures that occur in this case.
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