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Hanner, and Karhunen had shown that, (in Cramer's terminology) if £ is a 
(scalar) stationary process which is purely nondeterministic then it has 
multiplicity M = 1 and spectral type ([m]), where m is Lebesgue measure. 
This contrasts with the results for nonstationary processes where, even in the 
purely nondeterministic case any value of M can occur. 

In the book under review Rozanov surveys the indicated problem area, 
including the situation where £, may be vector space valued. Rozanov himself 
has made many contributions toward the solutions of these problems. It 
seems remarkable that he manages to give complete proofs and numerous 
examples in this book of 133 short pages. The translation from the Russian, 
edited by A. V. Balakrishnan, reads very well. The book should be welcome 
by both novice and experts in the field. 
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Just what is an equation of mixed type? Equation here means partial 
differential equation, and if some of these are of mixed type, there must be 
others not of mixed type. What are they? To answer these questions we must 
know the labels which are attached to various classes of partial differential 
equations. As one would expect, the labeling process has evolved over the 
years in a disorderly way; by now however the terminology has stabilized for 
many (but far from all) classes of equations. As is the case for the problem of 
taxonomy in the biological sciences, the subdivision of partial differential 
equations into clearly defined classes has not been systematic. New terms 
continue to develop as the need arises. For example, the term strongly elliptic 
was invented to identify a special subclass of the class of elliptic equations. 
Classes overlap: hypoelliptic equations contain some elliptic equations and 
some which are not elliptic; both the class of linear equations and the class of 
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nonlinear equations contain elliptic and nonelliptic subclasses. Someday it 
may be worthwhile to try to systematize completely the taxonomy of partial 
differential equations. Meanwhile, in order to identify the niche occupied by 
equations of mixed type, we give here a brief account of where we now are in 
the classification process. 

Let D be a region in Rn, n > 2, and u a smooth function from D into Rl. 
We denote by x = (JC,, JC2, . . . , xj an element of Rn. With al9 a29..., ak 

positive integers and D^u a partial derivative of u of order a, with respect to 
any combination of the xi9 a partial differential equation is an equation of the 
form 

F(JC, ii, Da>u,..., Da*u) = 0. (1) 

The order of such an equation is the largest of the integers al9... 9 ak. 
One of the most important problems of partial differential equations, 

designated the Basic Problem, is easily stated: suppose that some information 
about u (e.g. the value either of w, or some of its derivatives, or other 
quantities involving u and the derivatives of u) is known on all or part of the 
boundary of D. When does there exist a unique solution u of (1) in D which 
satisfies the conditions prescribed on 3D and which varies smoothly with 
these conditions? Since the answer may depend on the particular geometry of 
D as well as on the information given on 3D, an additional facet of the Basic 
Problem is the determination of those regions D and those conditions on 3D 
for which a unique, smoothly varying solution exists. 

The assumptions on the function F are crucial for solvability. The simpler 
the form of F, the easier it is to attack the Basic Problem. As a result, the 
study of partial differential equations has been fractured into large numbers 
of classes, each consisting of a collection of functions F with the property that 
progress on the Basic Problem can be made for that particular set of 
functions. The order of the equation provides one easy decomposition into 
classes; in particular, equations of the second order, especially those related 
to problems in mathematical physics and engineering, have been studied most 
intensively and for the longest time. 

A partial differential equation is linear if F is a linear form in u and its 
partial derivatives. The division of equations into linear and nonlinear classes 
is a natural one since the methods for attacking the Basic Problem are quite 
different for these two classes. The classifications, certainly bewildering to the 
nonspecialist, continue. For example, nonlinear equations may be semilinear, 
or fully nonlinear with each of these subclasses decomposed further into 
equations having special properties. Linear equations may be homogeneous, 
nonhomogeneous, with constant coefficients, contain terms of only one order, 
and so forth. 

The Basic Problem has been solved for some small classes of equations. 
However, for most linear equations practically nothing is known about the 
solution of the Basic Problem. 

A classification of equations has developed which is related to the geometry 
of the region D and the kinds of conditions prescribed on the boundary of D. 
By this means an equation is identified according to its type. In describing the 
type of an equation we shall limit ourselves to linear equations of the second 
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order, although similar definitions can be made for equations of any order, 
both linear and nonlinear. In fact, systems of partial differential equations 
(i.e., equations such as (1) in which both u and F are vector-valued) have also 
been classified in various ways, but the classifications of systems are much 
less comprehensive than those of a single equation. We put aside entirely the 
discussion of the decomposition into classes of systems of partial differential 
equations. 

The general second order linear partial differential equation 

2 ai/(*)"à7â7 + 2 bi(x)jr + C W " = /(*)> ay(x) = ty(*) (2) 

is of elliptic type at a point x if the quadratic form 
n 

is never zero for all £ = (£„ £2> • • • > £,) m Rn except £ = 0. That is, an 
equation is elliptic if the signature of the quadratic form consists of n plus 
signs (or n minus signs). The equation is elliptic in a region D if it is elliptic at 
every point of D. If at a point x the signature of the quadratic form consists 
of n - 1 plus signs and one minus sign, the equation is of hyperbolic type at x. 
If the rank of the form is n — 1 and the signature has n — 1 plus signs and if 
the £,(*), i = 1 , . . . , n, are restricted properly, then the equation is of 
parabolic type at x. In general the type at a point x of an equation (2) is 
described by the rank and signature of the quadratic form, although in some 
cases properties of the first order terms in (2) are needed. 

Most of the results on the Basic Problem in partial differential equations 
have been obtained for those equations which are elliptic or parabolic or 
hyperbolic throughout a region. Although other types of equations have been 
identified, we know very little about them. For example, equations of 
ultrahyperbolic type are those for which the signature of the quadratic form 
consists of k plus signs and n — k minus signs with n > 4 and 1 < k < n — 
1. In contrast with the rich theory which has developed for elliptic, hyperbol­
ic, and parabolic equations, not a single solution to the Basic Problem has 
been obtained for an ultrahyperbolic equation in any region D for any given 
set of conditions on all or part of 3D, despite the fact that ultrahyperbolic 
equations have been studied for some time. Moreover, if the signature of the 
quadratic form has plus and minus signs and is anything other than those 
described above, not only is very little known about the solution to the Basic 
Problem but there is not even a generally accepted nomenclature which 
identifies equations according to their type. 

The type of an equation may change from point to point. For example, if 
the form 2 ^ = ^ (.*)£,£, is nonnegative for all values of £ ^ 0 and all x in Z>, 
then (2) may be elliptic at some points, parabolic at others, and have rank less 
than n — 1 (even zero) at still other points. The term equations with nonnega­
tive characteristic form is used to identify this class. More generally, we say 
that equation (2) is of variable type in a region D if (2) is not of one type 
throughout D. Sometimes hyphenated terms such as elliptic-parabolic, ellip-
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tic-hyperbolic and hyperbolic-parabolic are used to specify more precisely the 
mixture of types. Equations of nonnegative characteristic form contain as a 
subclass those of elliptic-parabolic type. The term equations of mixed type 
has developed a special meaning among equations of variable type. Suppose 
that D consists of two subregions Dx and D2 with a common boundary T. If 
an equation is elliptic in Dx, hyperbolic in D2 the equation is said to be of 
mixed type in D. This definition is by no means universal with the word 
mixed used in many contexts. For example, some authors use the term mixed 
hyperbolic-parabolic type and others use the word mixed for any equation of 
variable type. 

Some progress has been made on the Basic Problem for certain classes of 
equations of mixed type, with most of the work being done for linear second 
order equations in R2. For equations in i?2, the classification problem is 
simplified a great deal with (2) taking the form 

an(x)— + 2 « I 2 ( * ) - ^ + « 2 2 ( * ) — 

+ *.(*) | r +h(x) | | +c(x)u = ƒ(*). 

This equation is elliptic, hyperbolic, or parabolic according as aua22 — ci2
2 is 

positive, negative, or zero. 
In 1923 Tricomi initiated the work on equations of mixed type when he 

solved the Basic Problem for the equation 

x^ d^u + d?u = o (3) 
dx2 dx2 

(now known as the Tricomi equation) for a special region D in which (3) is of 
mixed type. For about 20 years the work of Tricomi drew little attention and 
only a few papers appeared extending his results to somewhat more general 
equations and regions. The connection of the work of Tricomi to problems in 
transonic flow was recognized in the 1940s; since then there has been a steady 
stream of results of all kinds for equations of mixed type and related 
equations of variable type. 

The book of Smirnov under review is devoted primarily to a discussion of 
the Basic Problem for the equation 

K(x2) 0 + | | + «(*) - g - + b(x) - ^ + c(x)u - ƒ(x) (4) 

where K is a continuous strictly increasing function of x2 with #(0) = 0. (4) is 
elliptic, hyperbolic, or parabolic according as x2 is greater than, less than, or 
equal to zero. For a variety of special regions D in which (4) is of elliptic-
hyperbolic type, Smirnov presents detailed proofs of theorems of existence, 
uniqueness and smooth dependence on the boundary data for several kinds of 
conditions on part of the boundary of D. 

Smirnov's book was written about ten years ago; if viewed from the 
perspective of solving the Basic Problem for the entire class of equations of 
variable type, its results seem rather special, as indeed they are. Nevertheless 
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the book is a thorough compilation of what was known up to that time about 
the Basic Problem for (4). 

Since the book was written there has been considerable activity in 
equations of variable type, especially in the Soviet Union. As one might 
expect in a newly developing field, many of the results are fragmentary. For 
example, a spate of papers has dealt with equations with discontinuous 
coefficients. Other papers have developed properties of solutions of variable 
equations of order higher than two. Still a third group of results is based on 
the equations of gas dynamics which are of mixed type when the flow has 
both supersonic and subsonic regions. 

It seems likely that the bits and pieces of all these results will be put 
together eventually to form a single comprehensive theory for mixed type 
equations in R2 similar to the classical theory for the standard elliptic, 
hyperbolic and parabolic equations. At this time the task appears formidable; 
the development in three and more dimensions and for equations of order 
other than two is even more remote. 
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The Bochner integral, by Jan Mikusinski, Academic Press, New York, 1978, 
xii + 233 pp. 

In the 1930's a great effort was made to develop the basic theory of Banach 
space valued functions of a real variable. The pioneers in this study (Bochner, 
Dunford, Gelfand, Pettis, Phillips and Richart) developed a number of 
integrals of varying strengths for a multitude of purposes: oftentimes, the 
representation of operators on concrete spaces was the object; quite as often 
a desire just to understand the abstract process of integration was sufficient 
motivation. Of the integrals developed, one integral, the Bochner integral, 
emerged as the strongest and, to-date, it is the Bochner integral that has been 
the most useful. 

Curiously, the Bochner integral is the easiest of the vector integrals from 
yesteryear to develop and the one with the most transparent structure. 
Indeed, most of the usual results valid for the Lebesgue integral easily adapt 
to the Bochner setting. One notable exception: the fundamental theorem of 
calculus for absolutely continuous functions defined on [0, 1]. It is simply not 
the case that an absolutely continuous vector-valued function defined on 
[0, 1] need be the indefinite Bochner integral of its derivative-at least not 
unless the vector values are suitable chosen. This pathology is not all together 
a bad thing. The study of the class of Banach spaces for which the funda­
mental theorem remains valid has kept a number of mathematicians busy and 
off the streets for the past five years at least. This class of spaces (whose 
members answer to the name "Radon-Nikodym") has come to play an 
important role in modern Banach space theory especially as it interacts (and 
it does so quite nicely) with probability theory, harmonic analysis and the 
infinite dimensional topology. Any book purporting to be about the Bochner 


