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British mathematical books have wretched indices. This one maintains the 
tradition. 
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In recent years the techniques and theorems of Brownian motion have been 
used to prove theorems about harmonic and analytic functions. It is always 
pleasant when two branches of mathematics which ostensibly have little to do 
with one another can help each other out. There are two main links which 
allow Brownian motion (roughly representing the paths of an idealized 
random traveller) to be connected to the theory of harmonic and analytic 
functions. Kakutani [4] showed that Brownian motion can be used to solve 
the Dirichlet problem. Dispensing with the technicalities of continuity, 
smoothness, and measurability, here is what Kakutani's theorem says: Let 5 
be an open set in Rn and let « be a real-valued function defined on 35. Let 
z E 5 and consider a typical Brownian path yz starting at z. Let s(y2) denote 
the point of 35 at which y2 first hits 35. Define u(z) to be the average value of 
u(s(yz))> where the average is taken over all Brownian paths y2. Then û is a 
harmonic function on 5 with boundary values u. 

A theorem of Levy [5] links Brownian motion to analytic functions defined 
in the plane. This thoerem states that a nonconstant analytic function 
composed with Brownian motion is also Brownian motion, although the time 
scale must be changed on each Brownian path. The inituition behind Levy's 
result is that an analytic function preserves angles, so that the randomness of 
direction is preserved. Since an analytic function need not preserve lengths, 
an adjustment of the time scale is necessary. 

For 0 < p < oo and u a function defined on the open unit disk D of the 
complex plane, define 
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r<\ I/O 

The Hardy space Hp is the set of analytic f unctions ƒ satisfying \]f\]p < oo. 
The set of real-valued harmonic functions u satisfying \\u\\p < oo is denoted 
by hp. If u is a real-valued harmonic function, then the harmonic conjugate of 
u is the unique real-valued function ü such that u + iü is analytic and 
5(0) - 0. 

The major part of the book under review is devoted to answering the 
following question: Given a harmonic function w, how can one determine, 
without computing w, whether u + iü G Hptl For 1 < p < oo the answer has 
been known for a long time; M. Riesz [6\ showed (1 < p < oo) that u + iü G 
Hp if and only if « G hp. 

Fix a number a G (0, 1). For each e* G 3D, let Qa(0) denote the interior of 
the convex hull of ew and the disk of radius a centered at the origin. The 
non tangential maximal function Nau is defined by Nau(ew) = sup{|w(z)|: 
z G 0.(0)}. 

Hardy and Littlewood [3] showed that if 0 < p < oo and u + /« G üP, 
then JV̂w G 1/(92), dO). Most of Petersen's book is devoted to proving 
Burkholder, Gundy and Silberstein's [1] converse to this theorem; so for 
0 < p < oo, u + iü G Hp if and only if Nau G 1/(92), rf0). 

The statement of the above theorem contains no mention of Brownian 
motion; however, the proof depends heavily on it. For each Brownian path y 
beginning at the origin let w*(y) = sup{|t/(y(0)|* t G [0, Ty]}, where Ty is the 
first time t that y(t) hits 3D. A connection between the nontangential 
maximal function Nau and the Brownian maximal function u* is made by 
proving that N0u G Lp(dD, dB) if and only if u* G LP(B), where B is the set 
of all Brownian paths with the usual Wiener measure. The harmonic conjuga­
tion operator is brought in by proving that u* G LP(B) if and only if 
(«)* G LP(B). Putting these two theorems together shows that 

Neu G Lp(dD,d0)=>uG Lp(B)=*{ü)* G Lp(B)=>Naû ELp(dD9d0). 

Since Ncü G Lp(dD, dB) trivially implies that ü G hp
9 the Burkholder, 

Gundy, Silverstein result (Nau G Lp(dD, dO)=*ü G hp) follows immediately. 
In the final chapter Petersen discusses Hp martingales, gives a Brownian 

motion characterization of BMO (the space of functions of bounded mean 
oscillation), and gives a probabilistic proof of Fefferman and Stein's [2] 
theorem that the dual of Hl is BMO. 

It is difficult to write a book cutting across two fields and thus appealing to 
two different audiences. Petersen should be commended for making this 
important and interesting material accessible to both potential audiences. For 
probabilitists who might not have a background in function theory, he has 
included a chapter on Hardy spaces. For analysts who might not have a 
background in probability, he has included a chapter on Brownian motion. 
Both of these background chapters contain only statements of results without 
proofs. A reader approaching this material for the first time might want to 
supplement one of these chapters (depending on the reader's field) with more 
detailed sources. 
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Orderable groups, by Roberta Botto Mura and Akbar Rhemtulla, Lecture 
Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York 
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The study of ordered groups began at the end of the last century. One of 
the first important results was obtained by Holder in 1901 in a paper that 
investigated the measurement of physical data. He used the cuts introduced 
by Dedekind to show that an archimedean ordered group is isomorphic to the 
additive group R of the real numbers. Thus the real number system is the 
maximal archimedean ordered group. In 1907 Hahn proved that an ordered 
abelian group can be embedded into a lexicographic product of copies of R. 
His proof necessarily starts from scratch, is about 40 pages long and is one of 
the more difficult proofs in mathematics. In the 50's and 60's several new 
proofs were derived and the theorem was extended to partially ordered 
abelian groups and even to partially ordered sets. 

Hahn realized that his lexicographic products were ordered fields provided 
that the index set is an ordered group. In fact, most of the early papers on 
ordered groups are related to the theory of ordered fields. This led to the 
beautiful Artin-Schreier theory of real closed fields (1926) and to the solution 
of Hilbert's 17th problem. Later Mal'cev (1948) recognized the connection 
between ordered groups and the embedding of integral domains into division 
rings and cancellative semigroups into groups, Neumann and others con­
structed ordered division rings by extending Hahn's ideas to nonabelian 
groups. In particular Mal'cev (1948) and Neumann (1949) showed that the 
group ring of an ordered group over an ordered division ring can be 
embedded in an ordered division ring, Hilbert in his Grundlagen der Geome­
trie showed that each ordered group can be embedded in an ordered division 
ring. 

In the 30's and 40's the theory of ordered abelian groups branched out into 
two areas: (I) partially ordered abelian groups and rings, and (II) ordered 
nonabelian groups, which is the subject of these notes. In 1935 Kantorovich 
started his investigation of partially ordered linear spaces, which was 
continued through the war years by Kantorovich and his pupils. Also during 


