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Continued fractions of the form
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called T-fractions, were introduced by one of the authors in 1948 [7]. He show-
ed that corresponding to a given formal power series (fps)
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at z = 0, there exists a unique T-fraction (1) with the property that the Taylor
expansion about z = 0 of the nth approximant of (1) agrees with (2) up through
the term c,,z". He further showed that every T-fraction corresponds to some fps
(2) in the above sense. However, it is known that if all d,, # 0, then the approx-
imants of the T-fraction expansion of L are not in the Padé table of L.

Perron [5, p. 179] was the first to observe that every T-fraction (1), with
all d,, # 0 for n > 0, corresponds to some formal Laurent series (fLs)
et
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at z = oo in the sense that the Laurent expansion of the nth approximant of (1)
agrees with (3) up through the term ¢X*_,/z" ! (see also [4], [8]). Attempts to
relate the continued fraction expansion (1) at o to that at O have been unsuccess-
ful until now.

The concept of the Padé table [3] has recently been generalized to give
rational approximants for formal Newton series called Newton-Padé approximants
(see, for example, [2]) and for approximation alternately at 0 and oo called two-
point Padé approximants (see, for example, [1], [6]). In this paper we show that
the approximants of the T-fractions with all d, # 0 for n 3 0 are the (n + 1, n)
entries in the two-point Padé table of the series (2) and (3) to which the T-frac-
tion corresponds. In addition we are able to give an explicit formula for the d,
in terms of the ¢, and ¢}, (see Equation (6)) and also an explicit formula for the
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relation between the ¢, and ¢} (see Equation (5)). Our principal result is given
by the following:

THEOREM. (A) Suppose that a T-fraction (1) with d, # 0 for alln >0
corresponds (in the sense described above) to formal series L at z = 0 and L* at

z = o of the forms (2) and (3), respectively. Then the following conditions must
hold:
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(B) Suppose for given {c,} and {c}} that (4) and (5) are satisfied. Then
the T-fraction (1) with d,, defined by (6) satisfies d,, # O for n > 0 and corre-
sponds both to L and to L*. The nth numerator A, (z) and denominator B, (z)
of (1) have degrees exactly equal to n + 1 and n, respectively; hence the nth
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approximant A, (2)/B,,(2) of the T-fraction is the (n + 1, n) entry in the two-
point Padé table of L and L*.

Finally, we note that a full two-point Padé table of the type described
above always exists. If R,,, , =P, ,/0,, , is the (m, n) entry of the table, with
P, nand @, , relatively prime polynomials of degrees at most m and n, respec-
tively, then

[’";"], if[m;n]>n+ 1,
(%) if m>n, degreeP, , <

n+1, if[m;n]<n+l,

m-1,
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Here [r] denotes the largest integer less than or equal to r. A proof of these
statements and of the theorem will be included in a subsequent paper.
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