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Let G be a connected, simply connected semisimple algebraic group over an 
algebraically closed field k of characteristic zero and let A(G) denote the algebra 
of regular functions on G. We let G act morphically on G by conjugation. This 
defines a representation of G on A(G). In analogy with the terminology for finite 
groups we call this the conjugating representation of G. Let C(G) be the algebra 
of all (regular) class functions on G; equivalently C(G) = A(G)G. Let A be a set 
of representatives for the equivalence classes of irreducible rational representations 
of G. If X: G —• GL(VX) is an element of A, let dx = dim Vx and let mx = 
dim V£, where T is a maximal torus of G. Let A(G)X denote the isotopic com­
ponent of A(G) of type X. Each A(G)X is a finitely generated C(G)-module 
and A(G) is the C(G)-module direct sum of the A(G)X, X G A. 

THEOREM A. Let X G A. Then there exists a G-stable vector subspace Hx 

ofA(G)x such that the k-linear map C(G) ®fc Hx —» A(G) defined by c®h-^> 
ch is an isomorphism of vector spaces. The rational G-module Hx is equivalent 
to the direct sum of mx copies of Vx. In particular, A(G)X is a free C(Gymod-
ule of rank dxmx and A{G) is a free C(G)-module. 

For the adjoint action of G on the Lie algebra g and the corresponding 
representation of G on the algebra A{$) of polynomial functions on g, a similar 
theorem was proved by Kostant [1]. In the Lie algebra case, the proof of fine­
ness is greatly simplified by the graded algebra structure of A(o). Our proof 
makes use of the results of Steinberg [4] (see also [3], [5] ) on conjugacy classes 
in G and on the fibres of the morphism n: G —>W',r = rank G, given by the 
fundamental characters. We use the methods of commutative algebra. In particu­
lar, we require two separate applications of the Serre conjecture on projective 
modules over polynomial rings, which has recently been proved by Quillen [2]. 

If the base field k is of prime characteristic, we have a different proof that 
A(G) is a free C(G)-module. In this case we have not been able to prove the 
existence of a G-stable vector subspace H of A(G) such that the product map 
C(G) ®fc H —» A(G) is a vector space isomorphism. 

In § 1 we outline the proof of Theorem A. A detailed proof will appear 
elsewhere. 
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1. Sketch of the proof of Theorem A. Roughly, there are three steps in 
the proof: (1) prove that A(G)X is a projective C(G)-module; (2) apply the 
Serre conjecture to prove that A(G)X is a free C(G )-module (Steinberg has shown 
that C(G) = k[Xl, . . . , Xr])\ (3) apply the Serre conjecture again to find a 
G-stable subspace Hx as in Theorem A. 

STEP (1). The projectivity of A(G)X follows from Steinberg's results and 
1.1 and 1.2 below. 

1.1. Let C be a Noetherian integral domain which is a Jacobson ring and 
let M be a finitely generated C-module. Assume that there exists an integer q 
such that, for every maximal ideal m of C, the dimension of the (C/m)-vector 
space M/mM is equal to q. Then M is a projective C-module of rank q. 

1.2. Let x be a regular element of G. Then, for every X E A, dim Vx = 
dim V*G(X\ 

STEP (2). The result below is due to Quillen [2]. The problem was posed 
almost twenty years ago by Serre and has become known as the Serre conjecture. 

2.1. Let L be a principal ideal domain and let M be a finitely generated 
projective module over the polynomial ring L [Xt, . . . , Xr]. Then M is a free 
module. 

Since C(G) is a polynomial ring over k and A(G)X is a projective C(G)-
module, it follows that A(G)X is free. 

STEP (3). Let (fx, . . . , fn) be a basis of the free C(G>module A(G)X, 
here n = dxmx. The vector subspace of A(G)X spanned by f19 . . . , fn is not 
necessarily G-stable. We wish to find a basis which spans a G-stable subspace. 
Let g G G. Then g • f- = S J L ^ / g ) ft, where each oc^g) is an element of 
C(G). This determines a homomorphism (of abstract groups) a: G —> 
GLW(C(G)), a(g) = (azy(^)). Identify C(G) with the algebra of polynomial func­
tions on kr and define r?: G x kr —> GLw(fc) by r\(g, y) = (a^g) (y)). With 
some work we can prove that 17 is a morphism of algebraic varieties. For each 
y €kr, define a rational representation r\y\ G —• GLn{k) by r\y{g) — r?(g, y). 
Then (1? ) e fcr is a parametrized family of equivalent representations of G on 

kn. Let R be the set of all rational representations of G on ft*1 which are equiva­
lent to 7?0. Then GLn(fc) acts transitively on R and the stabilizer, H, of T?0 is 
isomorphic to GLm (k). Thus 7? determines a map |8: kr —• GLn(k)/H and this 

A. 

map is a morphism. (The easiest way to see this is to consider the corresponding 
Lie algebra representations dt]y\ 9 —• ^(k).) Now GLn(k) —> GLn(k)/H is a 
locally trivial principal //-bundle and / / is isomorphic to GLm (k). Hence 0 de-
termines a vector bundle of rank mx on kr. Since vector bundles on kf corre­
spond to projective C(G)-modules, the Serre conjecture implies that this vector 
bundle is trivial. The triviality of this vector bundle allows us to find a new 
basis of the C(g)-module A(G)X such that the vector subspace Hx spanned by 
this basis is G-stable. This completes the outline of the proof. 
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