THE HOMEOMORPHISM GROUP OF A COMPACT O-MANIFOLD IS AN ANR

BY STEVE FERRY

Communicated by T. A. Chapman, June 1, 1976

In this paper we will let $Q=\prod_{i=1}^{\infty} [-1,1]$ denote the Hilbert cube, $l_2=\{(x_i)|\Sigma|x_i|^2<\infty\}$ denote separable Hilbert space, C(X,X) denote the continuous functions from X to X with the sup norm topology with respect to a suitable metric on X, $H(X)\subset C(X,X)$ denote the self-homeomorphisms of X, and $\overline{H}(X)$ denote the closure of H(X) in C(X,X). By a manifold, we will mean a separable metric space modelled on \mathbb{R}^n , Q, or l_2 . The following question is of interest to both infinite dimensional and finite dimensional topologists. Compare $[\mathbf{A}-\mathbf{B}, \mathbf{p}, 792]$.

- Q1. If M is a manifold modelled on \mathbb{R}^n or Q, is H(M) an l_2 -manifold? General results which are known include:
- (1) Geoghegan [G] has shown that $H_A(M) \times l_2 \stackrel{\text{homeo}}{\approx} H_A(M)$. Here, $H_A(M)$ is the space of homeomorphisms of M which fix a proper closed subset A of M.
- (2) Toruncyzk [T] has shown that the product of l_2 with a complete separable metric ANR is an l_2 -manifold.

These results reduce Q1 to the question:

- Q1'. If M is a compact manifold, is H(M) an ANR?
- (3) Mason and Luke and Mason [M], [L-M] have answered Q1' affirmatively when M is a two-dimensional manifold.

Using completely different techniques, we have proven the analogous result for Q-manifolds. Recall that a closed set $A \subset M$ is called a Z-set if there are maps of M into M-A which are arbitrarily close to the identity.

THEOREM 1. If M is a compact Q-manifold and $A \subset M$ is a Z-set, then $H_A(M)$ is an ANR.

We require more notation in order to state our next result. Let X and Y be metric spaces, and let β be an open cover of Y. A homotopy $H: X \times I \longrightarrow Y$ is called a β -homotopy if for each $X \in X$ there is an element $U_X \in \beta$ such that

AMS (MOS) subject classifications (1970). Primary 54C55, 57A20, 57C10, 58D05; Secondary 57A60, 57E05.

Key words and phrases. Simple homotopy, Q-manifold, l_2 -manifold, CE approximation, homeomorphism group.

 $H(\lbrace x\rbrace \times I) \subset U_x$. A map $f\colon X \longrightarrow Y$ will be called a β -equivalence if there is a map $g\colon Y \longrightarrow X$ such that $f\circ g$ is β -homotopic to the identity and $g\circ f$ is $f^{-1}(\beta)$ -homotopic to the identity. f is called a *fine homotopy equivalence* if f is a β -equivalence for each open cover β of Y.

Basic work on fine homotopy equivalences has been done by Lacher, Price, Kozlowski, and Haver, among others.

If $f, g: X \longrightarrow Y$ are maps and β is an open cover of Y, f and g are said to be β -close if for each $x \in X$ there is an open $U_x \in \beta$ such that $f(x), g(x) \in U_x$. A map $f: X \longrightarrow Y$ is called a *near-homeomorphism* if for each open cover β of Y there is a homeomorphism $h: X \longrightarrow Y$ which is β -close to f. If M is compact, then $f: M \longrightarrow M$ is in $\overline{H(M)}$ if and only if f is a near-homeomorphism.

Armentrout [A], Siebenmann [S], and Chapman [Ch₁] have proven (roughly) that the near-homeomorphisms are the fine homotopy equivalences between n-manifolds of dimensions $n \le 3$, $n \ge 5$, and for Q-manifolds, respectively. For exact statements of the theorems, consult the references cited above.

Our main tool in the proof of Theorem 1 is a parametrized estimated version of Chapman's theorem. We state the corresponding unparametrized result as Theorem 2. Recall that a map $f: X \to Y$ is proper if $f^{-1}(K)$ is compact for each compact $K \subset Y$. A β -equivalence f is proper if f, g and the homotopies are proper.

THEOREM 2. If M is a Q-manifold and α is an open cover of M, then there is an open cover β of M such that if N is a Q-manifold and $f: N \longrightarrow M$ is a proper β -equivalence then f is α -close to a homeomorphism.

Note that β depends on M and α but not on N. As an immediate corollary, we obtain

THEOREM 2'. If K is a countable locally finite polyhedron, then there is an open cover β of K such that if $f: L \longrightarrow K$ is a proper β -equivalence then f is a simple homotopy equivalence.

This is a considerable generalization of the theorem that *CE* maps between locally finite polyhedra are simple homotopy equivalences [Ch₂].

The techniques of our proof yield an even stronger result for l_2 -manifolds.

THEOREM 3. If M and N are l_2 -manifolds, α is an open cover of M, and $f: N \longrightarrow M$ is an α -equivalence, then f is $St\alpha$ -close to a homeomorphism.

Thus, in the category of l_2 -manifolds, the near-homeomorphisms are precisely the fine homotopy equivalences.

REFERENCES

[A-B] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 37 #5847.

- [A] S. Armentrout, Concerning cellular decompositions of 3-manifolds that yield 3-manifolds, Trans. Amer. Math. Soc. 133 (1968), 307-332. MR 37 #5859.
- [Ch₁] T. A. Chapman, Cell-like mappings of Hilbert cube manifolds: Solution of a handle problem, General Topology and Appl. 5 (1975), 123-145.
- [Ch₂] ———, Cell-like mappings of Hilbert cube manifolds: applications to simple homotopy theory, Bull. Amer. Math. Soc. 79 (1973), 1286–1291. MR 48 #5083.
- [G] R. Geoghegan, On spaces of homeomorphisms, embeddings and functions. I, Topology 11 (1972), 159-177. MR 45 #4349.
- [L-M] R. Luke and W. K. Mason, The space of homeomorphisms on a compact twomanifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 275— 285. MR 46 #849.
- [M] W. K. Mason, The space of all self-homeomorphisms of a two-cell which fix the cell's boundary is an absolute retract, Trans. Amer. Math. Soc. 161 (1971), 185-205. MR 44 #3283.
- [S] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271-294. MR 45 #4431.
- [T] H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53-67. MR 51 #1723.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506