STABLE FACES OF A POLYTOPE

BY GOTTFRIED T. RÜTTIMANN¹

Communicated by Robert Bartle, December 1, 1975

The purpose of this announcement is to provide several new concepts for the study of the face-lattice of a polytope. The proofs of the results stated herein will appear elsewhere.

1. Preliminaries. Let P be a polytope with dim $P \ge 0$ [4].

DEFINITION 1. A hyperplane S in aff P is said to be a support if P is entirely contained in one of the closed halfspaces determined by S. $\{F(P), \leq\}$ denotes the poset of faces of P which is indeed a lattice (\land : infimum, \lor : supremum; 1: greatest element; 0: least element). $A \subseteq F(P)$ is called an order ideal if $a \leq b$ and $b \in A$ implies $a \in A$. The ideal [0, a] (= $\{b \in F(P) | 0 \leq b \leq a\}$) is called a *principal order ideal (generated by a)*. A proper face a is called split [1] if $\{b | b \land a = 0\}$ is a principal order ideal and P is the direct convex sum of a and the generator of the primcipal order ideal. The faces 0 and 1 are called split.

A face of P is split if and only if it is a central element of the face-lattice.

DEFINITION 2. A pair of faces $a, b \in F(P) - \{1\}$ is said to be orthogonal, in symbols $a \perp b$, provided there exist two supports S_1 , S_2 such that $a \subseteq S_1$, $b \subseteq S_2$ and $S_1 \cap S_2 = \emptyset$. We put: $a \perp 1$ $(1 \perp a)$ if and only if a = 0. If $A \subseteq F(P)$, define $A^{\perp} = \{b \in F(P) \mid b \perp a \text{ for all } a \in A\}$. If $\{a\}^{\perp}$ is a principal order ideal, then a^{\perp} denotes its generator.

We have immediately: (i) $a \perp b \Rightarrow b \perp a$, (ii) $0 \perp a$ for all $a \in F(P)$, (iii) $a \perp a \iff a = 0$, (iv) $a \perp b \Rightarrow a \land b = 0$, (v) $a \leqslant b$ and $b \perp c \Rightarrow a \perp c$.

2. Mutually stabilizing pairs of faces.

DEFINITION 3. A face $a \in F(P)$ is said to be *stable* provided there exists a face b such that a is a maximal element in the subposet $\{\{b\}^{\perp}, \leq\}$. S(P)denotes the set of stable faces of P. A pair a, $b \in F(P)$ is called *mutually stabilizing* in symbols $a \perp b$, if a is a maximal element in $\{\{b\}^{\perp}, \leq\}$ and b is a maximal element in $\{\{a\}^{\perp}, \leq\}$.

Note that facets and split faces are stable. One easily gets: (i) $a \perp b \Rightarrow$

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 52A25, 06A10; Secondary 81A12. Key words and phrases. Stable face, split face, strong polytope, simplex, orthomodular poset, Boolean lattice, pure state, dispersion-free state, superposition of states.

¹Research supported by the Swiss National Science Foundation

 $b \perp a$, (ii) $a \perp b \Rightarrow a \perp b$, (iii) $a \perp b \Rightarrow a, b \in S(P)$, (iv) $0 \perp a \iff a = 1, 1 \perp a \iff a = 0$.

THEOREM 1. For every stable face a of a polytope there exists at least one face b such that the pair a, b is mutually stabilizing.

THEOREM 2. If $a \perp b$ (a, $b \neq 1$) then there exists exactly one pair of supports S_1 , S_2 such that $a \subseteq S_1$, $b \subseteq S_2$ and $S_1 \cap S_2 = \emptyset$.

THEOREM 3. $a \perp b$ if and only if $a \perp b$ and $\dim(a \cup b) = \dim P$.

COROLLARY 4. $a \in F(P)$ is a stable face if and only if there exists a face b such that $a \perp b$ and dim $(a \cup b) = \dim P$.

3. Strong polytopes.

DEFINITION 4. A polytope P is said to be strong provided (i) if $a \in S(P)$ then $\{a\}^{\perp}$ is a principal order ideal in F(P), (ii) if $a \perp b$, $a \pm b$ where $a, b \in S(P)$ then $\{a, b\}^{\perp \perp}$ is a principal order ideal in $F(P) - \{1\}$.

If P is a strong polytope then $a \perp b \iff a^{\perp} = b$ $(a \in S(P), b \in F(P))$, and therefore S(P) is closed under the mapping $a \rightarrow a^{\perp}$.

THEOREM 5. If P is a strong polytope then $\{S(P), \leq, {}^{\perp}\}$ is an orthomodular poset. Its center coincides with the set of split faces. $\{S(P), \leq, {}^{\perp}\}$ is an orthomodular lattice if and only if $\{a \lor b\}^{\perp}$ is a principle order ideal in F(P) for all $a, b \in S(P)$.

(For definitions and basic properties of orthomodular posets see [3].)

A simplex is a strong polytope and $S(P) = F(P) = \{\text{ split faces}\}$. The orthomodular poset $\{S(P), \leq, \downarrow\}$ is Boolean (i.e.: a Boolean lattice).

THEOREM 6. Let P be a strong polytope. If the orthomodular poset $\{S(P), \leq, ^{\perp}\}$ is Boolean then P is a simplex.

4. States. The issue of this section is to show that with each point of a strong polytope P we can associate in a unique manner a state (probability measure) [2] on the orthomodular poset of stable faces. The treatment is purely geometrical.

Let P be a polytope with dim $P \ge 1$, S_1 , S_2 supports such that $S_1 \cap S_2 = \emptyset$ and $\nu \in \text{aff } P$. Then there exist elements $\nu_1 \in S_1$, $\nu_2 \in S_2$ and a unique real number $\mu(\nu, S_1, S_2)$ such that

 $\nu = \mu(\nu, S_1, S_2)\nu_1 + (1 - \mu(\nu, S_1, S_2))\nu_2.$

Now let P be a strong polytope (dim $P \ge 0$). For all $\omega \in P$ and $a \in S(P)$ we define

$$\mu_{\omega}(a) = \begin{cases} 0 & \text{if } a = 0, \\ 1 & \text{if } a = 1, \\ \mu(\omega, S_1, S_2) & \text{if } a \neq 0, 1, \end{cases}$$

where S_1 , S_2 is the unique pair of supports such that $a \subseteq S_1$, $a^{\perp} \subseteq S_2$ and $S_1 \cap S_2 = \emptyset$ (see Theorem 2). Note that $0 \le \mu_{\omega}(a) \le 1$ for all $\omega \in P$ and $a \in S(P)$. Denote $\Delta = \{\mu_{\omega} | \omega \in P\}$.

THEOREM 7. For every $\omega \in P$ the mapping $a \in S(P) \rightarrow \mu_{\omega}(a) \in [0, 1]$ is a state on the orthomodular poset $\{S(P), \leq, ^{\perp}\}$. The mapping $\omega \in P \rightarrow \mu_{\omega}$ $\in \Delta$ is one-to-one.

THEOREM 8. Let P be a strong polytope. Then

(i) Δ is a strongly order determining set of states for the orthomodular poset of stable faces;

(ii) μ_{ω} is a pure state (with respect to Δ) if and only if $\omega \in \text{ext } P$;

(iii) μ_{ω} is a dispersion-free state if and only if, for all $a \in S(P)$, $\omega \notin a$ implies $\omega \in a^{\perp}$;

(iv) μ_{ω} is a superposition [5] of a family of states $\{\mu_{\omega_i} | i \in I\}$ if and only if ω belongs to the face generated by $\{\omega_i | i \in I\}$.

5. **Remark.** In a subsequent paper we will give a characterization of those orthomodular posets that are ortho-order isomorphic to the orthomodular poset of stable faces of some strong polytope. The key notion in that investigation is a generalized version of the Jordan-Hahn decomposition of signed measures.

REFERENCES

1. E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, Berlin and New York, 1971.

2. M. K. Bennett, States on orthomodular lattices, Natur. Sci. and Math. 8 (1968), 47-51. MR 38 #88.

3. D. J. Foulis, A note on orthomodular lattices, Portugal. Math. 21 (1962), 65-72. MR 26 #6088.

4. B. Grünbaum, *Convex polytopes*, Pure and Appl. Math., vol. 16, Interscience, New York, 1967. MR 37 #2085.

5. V. S. Varadarajan, Geometry of quantum theory, Van Nostrand, Princeton, N. J., 1968.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MASSACHUSETTS 01002