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Essentials of Padé approximants, by George A. Baker, Jr., Academic Press, 
New York, 1975, xi+306 pp., $26.00. 

The area of rational approximation and interpolation of functions has 
been studied intensively since the advent of electronic computers. This has 
brought the Padé table to the foreground and the text under review is the 
first pulling together of a lot of information about these tables that has 
appeared in the last 20 years. The texts by Perron and Wall on continued 
fractions, each of which devotes a chapter to the Padé table, have been 
among the chief references so far. A rational function rm,n(z) = pm,n(z)/qm,n(z) 
is of type (m, n) if pm,n(z) is a polynomial of degree ^ m and qm,n{z) a 
polynomial of degree ^ n . rm,n(z) interpolates a given function f(z) at the 
distinct points Zi, • • • , Zk if rm,n(zi)=f(Zi), i = l, • • • , k. If some of the points 
Zi coincide, say zi = Z2=z3, then it is natural to require rm,n(zi)=/(zi), 
rm,n(zi) =/ ' (z i ) , and C,n(zi) = f"{zi) instead of rm,n(zi) = f(zi) for i = 1, 2, 3. 
The case zx = z2 = • • • = zk, i.e. r%n(zi) = /( l )(zi), for i = 0, 1, . . . , k -1 requires 
that rm,n(z) has a high order of contact with f(z) at Zi. There are two 
classical and equivalent definitions of the (m, n) Padé approximant Rm,n to 
f(z) at z = 0: 

1. find the unique rational function Rm,„ in lowest terms such that 
f(z)-Rm,n(z) = 0(zk), k=maximum, and 

2. find polynomials Pm,n and Qm,n such that Qm,n(z)f(z)-Pm,n(z)= 
0(zm + n + 1) , and let Rm,n be Pm,n/Qm,n in lowest terms. 

In definition 1, Rm,n depends on m + n + 1 parameters and one would 
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expect max k ^ m + n + 1 . That this need not be the case is seen by the 
example /(z) = l+z 2 , m = n = l, Ri , i= l . In definition 2, Pm,n and Qm n may 
not be unique but the ratio Pm,nlQm,n is. In either case Rm,n exists and is 
unique. 0(zk) means a power series starting with a term of degree ^k , 
0(zk) = dkZk+dk+i zk+1+- • • . It is customary to think of f(z) as a power series: 
f(z)=Yo cnz

n with Co^O, and to normalize Rm,n so that its denominator 
equals 1 at z = 0. The Padé table of £o cnzn consists of all Rm,n normalized as 
above. There is considerable variation in notation among writers on the 
Padé table as defined above. Rm,n may signify a function whose numerator is 
of degree ^ m or ^ n , it may or may not be in lowest terms, and the table may 
have columns labelled by m or by n, etc. The present text adopts a different 
definition and notation—referred to in this book as the modern definition. 
"We define the L, M Padé approximant to A(x) by 

[L/M] = PL(x)/QM(x), 

where PL(X) is a polynomial of degree at most L and QM(X) is a polynomial 
of degree at most M. The formal power series A(x)=JJ=o ÜJX} determines 
the coefficients of PL(X) and QM(x) by the equation 

A(x)-PL(x)/QM(x) = 0(xL + M + 1) . 

Since we can obviously multiply the numerator and denominator by a 
constant and leave [L/M] unchanged, we impose the normalization condi­
tion QM(0)=1.0. Finally we require that PL and QM have no common 
factor." 

In a later chapter the existence of PL/QM is discussed since [L/M] may not 
exist for certain values of L and M. The equation A ( X ) - P L ( X ) / Q M ( X ) = 

0(xL + M + 1) leads to a set of linear equations with the a^s as coefficients 
and with the coefficients of PL and QM as unknowns. These equations 
are referred to throughout the book as the Padé equations. In turn, these 
equations lead to consideration of the persymmetric determinants 

c(r/s) = det | ar-i-s+i+j | y-i, • • •, s> 

which are fundamental to the whole theory of Padé approximants. 
The book is divided into four parts: 
Part 1 on algebraic properties gives in its nine chapters (of 120 pp.) a 

large number of theorems on such topics as recurrence relations between 
Padé approximants; relation to continued fractions; matrix representation; 
identities for the determinants c(r/s); formal expansions of hypergeometric 
functions; relationship to the classical orthogonal polynomials, etc. 

Part 2 on convergence theory includes the classical results of de Montes-
sus de Ballore as well as a large number of recent results by the author and 
others. 

Part 3 on series of Stieltjes and Poly a includes 40 pp. on the standard 
material on Stieltjes series, convergence, moment problem, Padé table, 
integral representation, etc. These series are characterized by /(x)=£o ape', 
where aj = ( - l ) J Jo u] d<$>{u) and <f)(u) is a bounded nondecreasing function 
with infinitely many points of increase. This representation of the aj's 
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enables us to give rather precise information about the determinants c(r/s) 
and, therefore, about the Padé approximants, the associated continued 
fractions, upper and lower bounds and location of zeros and poles of the 
approximants. 

The Pólya series are defined by 

f(z) = aoe^Ud + a,z)/f[(l - ftz), 
1 / 1 

where a 0 >0, y^O, a , ^0 , ft^O, X00(aJ+pj)<oo. They are treated in 8 pp. 
giving the basic results for these series. 

Part 4 on generalizations and applications contains a series of short 
chapters concerning various open problems, generalizations to several di­
mensions, matrix series, and applications to important problems in physics. 

Some comments on the presentation and style of writing are in order. The 
style is pleasantly casual but in places so much so that misunderstandings 
may arise. We give a number of examples that struck this reviewer. 
Nowhere is the symbol 0(xk) defined, indicating a reasonably sophisticated 
reader, yet on p. 116 a literature reference is given for tan(0-i//) = 
(tan 0 - tan i/0/(l + t a n 0 t a n */0- The reader is expected to know basic complex 
variables, yet on p. 169 is given an (incomplete) proof of the Bolzano-
Weierstrass theorem. On p. 202 we find "(J n = l tin stand for union, i.e., 
every point in any E n " . On p. 194 the phrase "finite set" means a bounded, 
possibly infinite, set in the plane. On p. 128, /(x) = (l+x)~1/2 seems to 
designate an analytic function, x = complex, and also seems to refer to only 
one branch (f(0) = + l) since " • • • f(x) is not singlevalued and so may not be 
equal to its analytic continuation". P. 268, condition (c) of Theorem 20.1 
reads "(c) G(pi)^G(p2) , p i ^ p 2 " and means "if p i^p 2 then G(pi)^G(p2)" 
rather than "if G(pi)^G(p2) then p i^p 2 . " On pp. 195-196 in Lemma 14.2 
and its proof, f(z) refers to the function at hand, f(t) refers to a different 
function (of equation (11.106)) and |/(f)| is a fixed constant. 

Some terminology, although imprecise, is very descriptive: P. 75, "The 
idea is to generate successively Padé approximants with successively higher 
denominators". P. 80 and elsewhere, "roots of a polynomial c(z)" instead of 
roots of an equation. Occasionally we find "zeros of polynomials". P. 91, "If 
we let Equation (7.20) keep track of the coefficients of • • •". P. 115, 
"Reflection points (z, z")" with respect to a circle. P. 176, "Hence it is 
necessary that L + M + l , the order of the first nonexact derivative, tends to 
infinity with fc". P. 179, "Define [t(x)]n to be only those terms in x of 
degree higher than n." means [t(x)]n is the sum of those terms. P. 186, "The 
behavior of vertical or horizontal sequences of Padé approximants is quite 
well characterized, or characterizable, by rigorous theorems for functions 
whose closest nonpolar singularity is "smooth"." 

While there seem to be few mistakes, we noted the following: P. 29, 
formulas (3.14) and (3.15) should be constants rather than proportional to x. 
On p. 137 in the proof of Lemma 11.2 we find "First observe that 

(ii.9) <-i)"*=[s !>(?)>'" 
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is the binomial expansion of the function (in powers of z l) 

It seems the numerator should be AjkZk and that the proof must therefore 
be altered. The proof of the parabola theorem on p. 51 is not correct. 

The book reflects the author's love and enthusiasm for the subject. It 
surely will be an important reference text in the field for years to come for 
physicists, engineers, chemists and mathematicians, pure and applied. 
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Distributive lattices, by Raymond Balbes and Philip Dwinger, University of 
Missouri Press, Columbia, Missouri, 1975, xiii + 294 pp., $25.00. 

Lattice theory, as an independent branch of mathematics, has had a 
somewhat stormy existence during its hundred-odd years of being. Its 
origins are to be found in Boole's mid-nineteenth century work in classical 
logic; and the success of what we now call Boolean algebra in this field led 
to the late nineteenth century attempts at the formalization of all of 
mathematical reasoning, and eventually to mathematical logic. 

Schroder and Peirce introduced the concept of an abstract lattice as a 
generalization of Boolean algebras, while Dedekind's work on algebraic 
numbers led him to the introduction of lattices outside of logic and to the 
concept of modular lattices. These late-nineteenth century investigations did 
not lead to widespread interest in lattice theory—it was not until the thirties 
that lattice theory truly became an object for independent and systematic 
study by mathematicians. 

Stone's representation theory for Boolean algebras and distributive lat­
tices, Menger's work on the subspace structure of geometries, von 
Neumann's coordinatization of continuous geometry and Birkhoff's recogni­
tion of the lattice as a basic tool in algebra were among the forces which 
combined in the late thirties to enable Birkhoff successfully to promote the 
idea that lattice theory is a branch of mathematics worthy of the attention of 
the community. 

The very simplicity of the basic concepts in lattice theory and the degree 
of abstraction in its relationship to other branches of mathematics have 
proved to be at once both its strongest and weakest points. 

Lattices are ubiquitous in mathematics. The beauty and simplicity of the 
abstraction and the ability to tie together seemingly unrelated pieces of 
mathematics are certainly appealing to the mathematician-as-artist. The 
introduction of new and nontrivial techniques for the solution of outstanding 
problems, for example in universal algebra, is mathematically rewarding; 
and the discovery of new questions which become natural to ask in the 
context of lattice theory is undoubtedly intriguing. 

Through the vehicle of lattice theory one can hope to contribute to 


