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incorrect, for the integral and Zp cohomology rings are in fact independent 
of the Zp action. The homotopy types can be distinguished only by getting 
chosen generators from the reduction of integral to mod p cohomology, or 
from the Hurewicz homomorphism. The most crucial mistake is in 14.8 on 
p. 311, where the author says that E°(B) = 0 if E is a connected spectrum 
when in fact one needs 7rq(E) = 0 for q>0 . This error is compounded in the 
following discussions of orientation. In particular, 14.9 is false except for 
ordinary cohomology and the proof of 14.18 is only valid then. The exercise 
on p. 312 suffers badly from misprints but seems to involve the same error, 
and if I correctly interpret it, it is false. 
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In this review we trace some of the major developments in the study of 
the qualitative behavior of solutions of ordinary differential equations and 
show how these books fit into this general theory. 

I. Origins of the qualitative theory. The qualitative theory of ordinary 
differential equations began nearly a century ago with the work of H. 
Poincaré in France and A. Lyapunov in Russia. Prior to this time the major 
emphasis in differential equations had been on the methods of "solving" 
various equations either in closed form by an explicit formulation, or in 
terms of series, cf. Ince [17, pp. 529-539] for example. This interest in 
solving equations was undoubtedly influenced by the strong interconnection 
between the study of differential equations and the problems of physics. To 
put it in modern language, the existence of a solution is clearly the first 
logical step in establishing the validity of a given mathematical model for a 
physical phenomenon. Naturally, the first attempts at finding solutions were 
in terms of explicit formulae. This line of research reached its dénouement 
during the period from 1875 to 1900 when the work of Lipshitz, Picard, 
Peano, and others established the so-called fundamental theory, i.e., the 
theory of the existence, uniqueness and continuity of solutions. While 
investigations into the fundamental theory continue even today, one finds 
that the major emphasis in the study of ordinary differential equations now 
seems to be in the qualitative behavior of solutions. 
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It is interesting to note that the origins of the qualitative theory, in the 
works of Poincaré and Lyapunov, are found at the same time (1875-1900) 
as the fundamental theory was reaching its zenith. Poincaré started a trend 
towards the use of topological techniques (the analysis situs) in the study of 
differential equations. The Poincaré-Bendixson theory of solutions of 
differential equations in the plane is a good illustration of the influence of 
Poincaré. Lyapunov introduced a new analytic technique, the theory of 
Lyapunov functions, into the study of stability. The qualitative theory 
begins, both logically and historically, where the fundamental theory ends. 
One assumes the existence and continuity of solutions, and one then uses 
the topological structure of the phase space or the analytic structure of the 
vector field to derive qualitative information (such as stability, periodicity, 
recurrence, etc.) about the behavior of solutions. 

Research into the theory of differential equations was not only stimulated 
by physics, but was also influenced by developments in other areas of 
mathematics. One finds a rather interesting trend beginning around the turn 
of the century, viz. an introduction of the techniques and theories of both 
topology and functional analysis into the study of differential equations. The 
influence of these disciplines has been a factor of continuing growing 
importance in the qualitative theory. Of special significance is the work of 
G. D. Birkhoff during the period 1912-1931. Birkhoff, whose research was 
strongly influenced by Poincaré, used topological techniques in his study of 
limit sets, recurrence and the structure of minimal sets, cf. [3]. On the other 
hand, Birkhoff's work on invariant measures and the ergodic theorem [4] 
illustrates the influence of Lebesgue, Hilbert, von Neumann, and other 
researchers in functional analysis, in the study of the qualitative behavior of 
solutions of differential equations. 

One of the consequences of the growing use of topological and functional 
analytic techniques in mathematics, in general, has been a tendency towards 
abstraction. In the qualitative theory this tendency has resulted in the notion 
of a flow or dynamical system. Birkhoff, in his writings, made numerous 
attempts at defining a flow, and in [5] one finds a distinction between a 
continuous flow (solutions of a differential equation) and a discrete flow 
(homeomorphisms on a manifold). However, this concept, as we understand 
it today, was formulated later and appears for the first time1 about thirty 
years ago, cf. Nemyckiï and Stepanov [24]. 

II. Almost periodicity. The techniques of topology and functional analysis 
have, of course, been used on other areas of mathematics besides differential 
equations. One such area, the theory of almost periodic functions, is of 
especial interest here because of the important role this theory has played in 

1 It is very difficult to be precise about the historical questions concerning the evolution of the 
concept of a flow. The notion of a flow has its origins in the theory of transformation groups, 
which goes back to Lie, but it is the connection with the qualitative theory of differential 
equations which interests us here. This connection, which evolved through the research of 
Poincaré and Birkhoff, came of age about a generation ago. 
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the study of the qualitative behavior of solutions. The theory of almost 
periodicity began with the pioneering papers of Bohr [9] in 1924-1926, and 
many significant contributions to the subject were made in the decade 
immediately following Bohr's work, cf. Bochner [7], von Neumann [25], and 
van Kampen [19], for example. 

During the 1920's research into almost periodicity was directed towards 
the development of a theory of Fourier series for almost periodic functions. 
The papers of Bohr and Bochner cited above were fundamental contribu­
tions to this theory. Then starting2 in the 1930's, the theory of almost 
periodic functions on the real line JR was extended to a theory of almost 
periodic functions on a group G. This later trend grew out of an interest in 
the mathematical community to study groups of linear operators, in particu­
lar, and topological groups, in general. .One of the interesting consequences 
of this newer trend was a tendency to divide the study of almost periodic 
functions into two almost nonoverlapping disciplines. The original emphasis 
on the Fourier series of almost periodic functions has grown into an 
important area of study in "hard" analysis. Most of the research into 
ordinary differential equations with almost periodic coefficients would fit 
into this discipline. The second area, which started with the study of 
functions on groups, has grown into the theory of abstract harmonic 
analysis, cf. Hewitt and Ross [16] for example. 

The theory of almost periodic functions is, of course, an extension of the 
theory of periodic functions, and certainly one of the important successes of 
this newer theory was the development of a rather complete theory of 
Fourier series for almost periodic functions. One of the reasons researchers 
in differential equations have been interested in almost periodic solutions is 
because of this theory of Fourier series. Another reason for this interest is 
related to the successful investigations of Floquet in 1883 into the theory of 
linear differential equations with periodic coefficients. The general desire to 
"extend" the Floquet theory to equations with almost periodic coefficients 
has motivated countless papers during the last fifty years. A third reason, 
and perhaps the most important reason, for the interest in almost periodic 
phenomena is that some differential equations, especially equations arising 
from physics, simply have almost periodic solutions. 

During the past fifty years many books have been written which treat the 
theory of almost periodic phenomena in ordinary differential equations. Out 
of all of these books it seems that two of them are particularly noteworthy. 
One is the book by Favard [13], which appeared in 1933 and is the first 
book written on this subject. The other is Almost periodic differential 
equations, by A. M. Fink which was published in 1974. 

In Favard's book one finds a treatment of the general theory of almost 
periodic functions, with applications of this theory to the study of linear 

2 It is a bit difficult to pinpoint a unique paper which inaugurated this trend. Basic papers of 
Haar and von Neumann appeared in 1933; however, one could argue that the Peter and Weyl 
paper in 1927 anticipated this trend. For a detailed historical discussion see Maak [21, pp. 
222-235]. 
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differential equations x' = A(t)x+/(t) , where the coefficients A(t) and f(t) 
are almost periodic. The main problem studied in this book may be described 
as the problem of determining sufficient conditions in order that the above 
equation admits an almost periodic solution. 

During the four decades between the appearance of these two books, 
many important advances have been made in the study of almost periodic 
phenomena for differential equations. First, by using various notions of 
separatedness and stability many authors have been able to extend Favard's 
theory from linear to nonlinear equations. Secondly, the method of averag­
ing due to Krylov and Bogoliubov has been shown to be an important tool 
in the study of various perturbation phenomena arising in the theory of 
almost periodic differential equations. Thirdly, a very important develop­
ment occurred in 1962 when Bochner [8] showed that the concept of almost 
periodicity could be reformulated in terms of an iterated limit. (There have 
been, of course, other major developments in the study of almost periodic 
phenomena for differential equations, and we will have more to say about 
this shortly.) 

The book by Fink is up-to-date treatment of the theory of almost periodic 
functions and differential equations which treats the Bohr-Bochner-Favard 
theory together with the advances noted above. This book has many 
features which will be of value to both experts and students. First, it fully 
incorporates the recent Bochner characterization into the text. As a result, 
one finds in this book a more unified treatment of the subject of almost 
periodic functions as well as a very useful technique for applications to 
differential equations, especially differential equations with almost periodic 
coefficients. Secondly, most of the techniques and results in the theory of 
almost periodic phenomena for both linear and nonlinear differential equa­
tions have now been collected together in one source. This book is perhaps 
the most complete reference available on almost periodic phenomena in the 
study of differential equations. Thirdly, the text includes a good selection of 
historical notes, which is supplemented with an excellent bibliography of 
548 items. 

The book, however, does have some shortcomings. Major topics in the 
study of almost periodicity in differential equations have been omitted. 
Perhaps the most noticeable shortcoming is that there is no treatment of the 
theory of quasi-periodic solutions of Hamiltonian differential systems, cf. 
Birkhoff [6], Kolmogorov [18], Arnol'd [1], and Moser [23]. Unfortunately, 
the "small divisor problem", which is a central problem in the theory of 
quasi-periodic solutions, is not even mentioned. 

Another omission is that there is no discussion of the Cartwright Theorem 
which gives an upper bound for the dimension of the Fourier frequency 
module in the case of an almost periodic solution of a differential equation, 
cf. [10] and [11]. Actually, this is perhaps the one aspect of the study of 
almost periodic solutions of differential equations where the two branches of 
almost periodicity (i.e., the hard analysis branch and the topological group 
branch) could be united for a simple proof of this important theorem. The 
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proof would use the Pontryagin Duality Theorem together with the fact that 
the dimension of the Fourier frequency module is precisely the rank of the 
character group. The Cartwright Theorem would then follow as a consequ­
ence of the relationship between the topological dimension of a compact 
connected abelian group and the rank of the associated character group, cf. 
Pontryagin [26, pp. 148-149]. This result from the theory of differential 
equations should have been included. Furthermore, the primary audience 
for this book, viz. researchers in differential equations, would have found a 
proof along the above lines very instructive and valuable. 

The bibliography, as we have already noted, is one of the highlights of the 
books and most readers will find this to be very valuable. However, it is a bit 
unfortunate that some of the important historical papers, including the 
original papers of Bohr [9], as well as several of the papers cited here, have 
not been included. 

Our final objection to Fink's book concerns the author's decision to omit 
the aspect of the theory of almost periodicity that is related to dynamical 
systems or flows. This seems to have been an unfortunate decision for 
several reasons. Let us look at two. 

First, researchers in ordinary differential equations with almost periodic 
coefficients have known, since the time of Favard, that it is usually not 
adequate to consider a single differential equation for an analysis of certain 
qualitative behavior, but rather one must consider an entire class of equa­
tions from the "hull". The precise mathematical reason for the preference of 
the hull over a single equation has been shrouded in mystery for many years. 
However, recent investigations of almost periodic differential equations in 
terms of flows have begun to unravel this puzzle.3 By not incorporating the 
theory of flows into the book, the author has lost a chance to explain this 
interesting new development. 

Secondly, by using the notion of a flow one can give a characteriza­
tion of an almost periodic minimal set in terms of equicontinuity (cf. 
Franklin [14]), which in turn is simply a form of Lyapunov stability, cf. 
Nemyckiï and Stepanov [24], and Sell [28]. The author presents several 
theorems which establish the existence of an almost periodic solution as a 
consequence of a stability property. For the most part, these theorems are 
consequences of the existence of almost periodic minimal sets in a flow. This 
fact certainly would have introduced greater clarity into the relationship 
between almost periodic differential equations and various stability proper­
ties, cf. Sell [29]. 

In summary, the book by Fink is an excellent, well-written book and, 
within the limitations chosen by the author, it is complete. Even though it 
cannot be judged a definitive work, it is, nevertheless, the best book 
available on the subject. Since it appears now in a Lecture Notes series, we 

3 For a recent account of the preference of the hull over a single equation, including some 
references which have appeared after the publication of the book by Fink, see Miller and Sell 
[22]. 
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hope that an expanded version, which includes the fundamental topics 
mentioned above, will be forthcoming. 

III. Lyapunov theory. As is well known, the influence of Poincaré was felt 
immediately throughout the mathematical community. In the area of 
differential equations we have seen this influence in the work of Birkhoff. 
The contributions of Lyapunov, on the other hand, remained essentially 
unknown for nearly a half a century. During the period from 1930 to 1950 
one can find a gradual reawakening of interest in the theory of stability and 
Lyapunov functions. The work of Malkin, K. P. Persidskiï and Massera was 
especially important in this period. The renewal of interest in Lyapunov 
functions spawned a renewal of research in the qualitative theory of 
differential equations in general. During the last 25 years many of the 
modern techniques of mathematics have been used, sometimes with great 
success, to derive new insight into the structure of solutions of differential 
equations. Fixed point methods, topological degree, semigroup theory, 
homological theory, algebraic geometrical methods, and dynamical systems 
are just a few of these techniques. 

In 1954 Cesari [12] wrote an excellent summary of the qualitative theory 
of differential equations. There have been so many developments within the 
last twenty years that today it would be almost impossible to write a comprehen­
sive treatment of the subject. Since the appearance of Cesari's book one finds, 
for the most part, special purpose books which deal with selective topics in 
the qualitative theory. The recent book by R. Reissig, G. Sansone, and R. 
Conti on Nonlinear differential equations of higher order is such a book. 

This book presents the general theory of Lyapunov functions (as well as 
the related subject of comparison theorems) as applied in the study of 
stability, boundedness, and periodicity. The general discussion of nth order 
differential systems is a standard treatment which one would expect to see in a 
book on Lyapunov stability theory. The unique feature of this book is an 
extensive treatment of third and fourth order differential equations.4 For 
example, Chapter 4 is a 100 page treatment of the study of solutions of the 
third order equation 

x'" + ax" + <p(x,x') + /"(x) = p(t) 
where p(t) is periodic in t. 

Applied mathematicians, whose primary interest is in the analysis of the 
stability properties of rather specific models, may find this book to be quite 
valuable. As one surveys the literature one finds that the books on stability 
theory fall roughly into two broad classes. First, general books on the nth 
order systems, like Hahn [15], which are suitable for a overall introduction 
to stability. Such a book might be of interest to a beginner. The second class 
would consist of books like [27] and LaSalle and Lefschetz [20] which deal 

4 This book, which is an English translation of a German edition which first appeared in 
1969, should not be confused with an earlier book [27] by the same authors. The emphasis in 
this earlier book was on second order equations. 
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extensively with second order equations. These books generally use special 
topological properties of the plane (such as the Poincaré-Bendixson theory) 
to derive information above the qualitative behavior of solutions of second 
order differential equations. Researchers, who are studying equations of 
higher order (n^3) , may find the first type of book to be too general, and 
the second type of book to be too specific. Differential equations of higher 
order oftentimes require very special techniques and it is the hope of finding 
such techniques that would bring a reader to the Reissig-Sansone-Conti 
book. 

At this point, the subject of mathematics tends to be more of an art than a 
science. While it is true that the material covered is completely rigorous, it 
is not possible for a reviewer to predict that a given technique will solve a 
given problem. All we can say is that this book contains an essentially 
complete discussion of the status of our knowledge of the qualitative 
behavior of solutions of third and fourth order equations. It is a good 
account of the subject, but it is intended for specialists only. 

The final chapter of the book should be of interest to researchers in 
control theory. It consists of a rather complete discussion of the Lure 
problem together with the two techniques for solving this problem, viz. the 
technique of Lyapunov functions and a technique due to Popov which is based 
on Laplace transform methods. The book concludes with a brief discussion 
comparing these two techniques. 

IV. Equations with delays. The introduction of functional analytic 
techniques into the study of differential equations has paid other dividends. 
Because of this, it then became quite natural to study the theory of 
differential equations in infinite dimensional spaces. In fact, the mathemati­
cal theory of quantum mechanics and the theory of semigroups of unitary 
operators grew out of such investigations. Applications of semigroup theory 
to partial differential equations and stochastic differential equations are 
familiar to many persons. We will not go into these applications here. 
Instead, we shall look at a theory that is more reminiscent of the methods 
and results of ordinary differential equations in finite dimensional spaces. 
This is the theory of ordinary differential equations with time delays. 

A recent book by J. K. Hale, Functional differential equations, is of 
particular interest here because of the important contributions this book 
offers in the qualitative study of solutions of functional differential equa­
tions. The theory of functional differential equations, 01 more specifically, 
the theory of retarded functional differential equations, as presented in 
Hale's book, can be considered as a theory of a semi-flow on a Banach space 
C = C([-r, 0], Rn) where [-r, 0] denotes the basic delay interval. It is not 
quite accurate to consider this theory only as a theory of ordinary differential 
equations on the Banach space C. Retarded functional differential equa­
tions have more structure, and as a result, this theory is more closely related 
to the theory of ordinary differential equations in finite-dimensional spaces. 

Many of the qualitative properties of ordinary differential equations in 
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finite-dimensional spaces can be extended to the theory of retarded func­
tional differential equations. This extension, which is by no means as simple 
as it is stated, is one of the recurring themes in Hale's book. Perhaps the 
most interesting version of this extension is the saddle property. By assum­
ing that the spectrum misses the imaginary axis, the author shows that in the 
case of linear equations the phase space C([-r, 0], Rn) splits into the direct 
sum of a stable space S and a finite-dimensional unstable space U. Further­
more, this splitting, as in the ordinary differential equation case, is preserved 
by small nonlinear perturbations. 

Another major topic studied in Hale's book is the question of periodic 
solutions of some of the classical delay equations, including 

x'(0 = - a x ( t - l ) [ l + x(t)] 

as well as the delayed Lienard equation 

x"(t) + f(x(t))x'(t) + g(x(t-r)) = 0. 

This investigation is based on an abstract theorem describing eigenvectors 
for mappings on a cone. The reader will find this theory to be a beautiful 
application of functional analytic methods. Hale's book will make an excel­
lent companion volume to the earlier book by Bellman and Cooke [2]. 

Unlike the theory of almost periodicity and the theory of stability, which 
were the topics of the other two books reviewed here, the theory of 
functional differential equations is relatively new. One finds it now in a 
rapidly changing state. The subject is changing faster than one can write. It 
may take another five or ten years before one can hope to see a definitive 
book on the subject. In the meantime, the book by Hale, together with 
Bellman and Cook [2], will serve as a very good introduction to the study of 
functional differential equations. 

V. Epilogue. This rather brief account of the status of the qualitative 
theory of differential equations is by no means complete. Some selectivity 
was necessary because of the need to discuss the three books reviewed here. 
Many major topics in the qualitative theory have not even been mentioned, 
and others have been stressed beyond their relative importance. This 
undoubtedly reflects the personal biases of the reviewer, and for this I 
apologize. 

The three books we have reviewed here have been, within the limits 
described above, attempts to present a reasonably up-to-date account of the 
state of the art in each of these areas. They have, in my opinion, been 
successful in this endeavor and represent important contributions to the 
literature. 

There are other areas in the qualitative theory of differential equations 
which have gone through an important evolution during the past two 
decades. Perhaps it is time now to look for definitive books in the areas of 
Hamiltonian differential systems, differentiable dynamics, and the use of 
algebraical-topological techniques in the study of differential equations. I, 
for one, hope we see them soon. 
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Fourier analysis on local fields, by M. H. Taibleson, Mathematical Notes, 
Princeton University Press, Princeton, New Jersey, 1975, xii + 294 pp., 
$7.00. 

This book contains the lecture notes of a course given by the author at 
Washington University, Saint Louis during the Fall and Spring semester 
1972-1973. Many results have appeared earlier in a series of papers, some of 
them written in collaboration with P. Sally, R. A. Hunt and K. Phillips. We 
find in this book well-known concepts from classical analysis: the Fourier 
transform, the Hankel transform, Gamma, Beta and Bessel functions, the 
Poisson summation formula, Fourier series, Césaro sums, fractional integra­
tion and many others. But from the title of the book it is clear that these 
subjects are treated here for a situation different from the classical one. In 
the classical case these subjects are discussed in the context of analysis on a 
euclidean space. In this book, however, the theory is developed for local 
fields, with emphasis, almost exclusively, on totally disconnected fields and 
on the analogy between this case and the euclidean case. 

It is striking to observe the enormous evolution of the subject in two 
centuries, especially the revolution in the last fifty years. The great lines of 
this development are most interesting and they are an excellent illustration 
of the influence of algebra and topology on the form and contents of 
contemporary analysis. 

Fourier series were studied by D. Bernoulli, D'Alembert, Lagrange and 
Euler from about 1740 onwards. They were led by problems in mathemati­
cal physics to study the possibility of representing a more or less arbitrary 
function ƒ with period 2TT as the sum of a trigonometric series of the form 

"T+ Z (a« c o s nx + bn sin nx). 

Dirichlet (1829) and later Riemann (1854) started the study of these series 
in a more rigorous way. This was continued by Cantor—who showed that a 


