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1. Introduction. For 0 <p <1, L? is the space of measurable f on the circle
group T with

171, = [(210" [ lf(x)l”dx]l/p<oo.

If 0 <p<1,LP is not a Banach space, but is a metric space with distance de-
fined by d(f, &) = Il f - &ll;-

A linear subspace of L? will be called a T-subspace if and only if it is
closed and translation invariant. If F is a function or a collection of functions in
LP, then LP(F) will denote the smallest T-subspace of LP containing F, the
T-subspace of LP generated by F. If F = {e'"': n € A}, is a collection of ex-
ponential functions, LP(F) will also be denoted by LP(A).

For p > 1, the classification of the T-subspaces of L? is straightforward
(see [3, Chapter 11]). The map
(1.1) A~~~ LP(A)
gives a 1-1 correspondence between the collection of all subsets of integers and
all T-subspaces of LP.

The purpose of this note is to point out that the case 0 <p < 1 is much
more intricate, to be specific, the map (1.1) is neither 1-1 nor onto. We shall
outline proofs of results which imply the following.

THEOREM 1. Let 0 <p < 1. Then
(i) LP has nontrivial T-subspaces containing no exponentials;
(i) There are distinct sets A and T of integers with LP(A) = LP(T").

Details will be published elsewhere. In what follows, ‘“Proof” should of
course be interpreted to mean “Outline of Proof”.

2. Spectral analysis in H? for 0 < p < 1; Cauchy integrals. Here we re-
strict to the T-subspace LP({e?*: n > 0}), which is denoted by HP. (For the
basic properties of H? which we use in what follows, see [2, Chapter 7], [4,
Chapter 3] or [1].) HP can also be characterized as follows: Let D be the
unit disk {z: |z] < 1}. We define HP(D) to consist of all functions F which are
analytic in D with [l Fll, = sup{l| F, |l ,: 0 <7 < 1} <o, where each F, is de-
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fined on T by F (e"’) F(re'9). The functions in H P(D) have boundary values
a.e. on T and the mapping F ~~~~—> F defined by F (e'e) = lim,, , F(re %
ae.e'® €T, is an isometry of H?(D) onto HP. -

We shall denote by L the T-subspace HP N HP = { f: f and f are in HP}.
Propositions 2.2 and 2.3 below show that L} is quite large if p < 1 even though
it consists only of constant functions if p > 1. We first indicate how L} is our
“universal counterexample” to spectral analysis.

PROPOSITION 2.1. L} contains no nonconstant exponential functions.

ProoF. We may assume p < 1. If HP N HP contained a nonconstant
exponential function, it would contain some e’** for n < 0. By Theorem 7.35 of
[5],H°P NL! = H'. Bute™ ¢H'.

The above proof of course yields a great ideal more than asserted by
Proposition 2.1, namely, that L§ N L consists only of constant functions.

If u is a finite Borel measure on T, we define F u by

2.1) F, ()= |z] # 1.

The restriction of F, to the unit disk D will be denoted by C,, . By Theorem 3.5
of [1], C,isin each HP(D) for p <1 and thus its boundary functlon C is in
each HP for p <1. We will call C the Cauchy transform of u.

PROPOSITION 2.2. Let 0 <p < 1. Then L contains the Cauchy transforms
of all singular measures on T.

PROOF. Let u be a singular measure on T. Define F, by (2.1) so C, =
F, onD. Then, forz =re”, |z| <1,F(z) - F(1/Z) = 22 f(n)r'™lein®,
which is the rth Abel mean of the Fourier series of u. Since  is singular, Theo-
rem 1.2 of [1] shows that the series converges a.e. in T to 0. Thus, the function
G defined in D by G(z) = F(1/z) has boundary values conjugate to EH a.e.on
T. It remains to show that G € HP(D) for each p < 1. Since G(2) =
— Zy_, (- n)z" in D, if the measure n is defined on T by n(E) =
— g wdu(—w), G = C, and thus G € HP(D) for each p <1 by Theorem 3.5 of [1].

We can assert a converse to Proposition 2.2. It is an easy consequence of (i)
of Theorem 2.4 below that if p < 1, and u is a measure on T, E“ € L} if and
only if u is a singular measure plus a constant multiple of Lebesgue measure.

A bounded analytic function ¢ defined in D is called inner if [¢(z)| < 1,
z€D,and | §(?) =1,ae.e” €T.

PROPOSITION 2.3. Let f € LB. If ¢ is inner with $(0) = 0, then fo ¢ € L.

PROOF. Let f € L§. Then there are G and K in H?(D) with G = fand

H=FinLP. That G° ¢ and K ° ¢ are in HP(D) follows from Theorem 1.7 of
[1]. Let X be the set of ! € T where lim,, H(reio) = lim,, G(re'). Since
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X has measure 2, ¢(e’0) must be in X for a.e. e eT. Thus (G ¢)~ =f° ?
and (Ho ¢)~ = fo 9= (fo ¢)‘ which shows that f o ¢€L”

One more deﬁmtlon before we state the main result of this section. If
F@z) = " is analytic in D, we define spec F to be {n: a, # 0}.

nOn

THEOREM 24. Let 0 <p < 1. Suppose that u is a finite Borel measure
on T.

() If u is absolutely continuous, then LP (Eu) = LP(spec C,).

(i) If p is singular, then LP(C,) contains no nonconstant exponential func-
tions.

PRrOOF. (The equality is clear if CelL'. Butwe only have that C er
for each r <1 ) C € LP(spec C,) since the Fourier series of C is Abel sum-
mable to C in|f - "p (see p. 284 of [5]). Thus, L”( W) C LP(spec C,). That
LP(spec C ) cLp (CM) follows by an appropriate adaptation of the discussion on
p. 263 of [5]. (ii) follows from Proposition 2.1 and 2.2.

To see that (i) of Theorem 1 is a consequence of Theorem 2.4, take L? (5“),
where u is any singular measure on T with [du = 0.

Theorem 2.4 lends weight to the following conjecture: If X is a measure on
T with absolutely continuous part u, then LP (5,\) and L? (EM) contain the same
exponentials if p < 1.

There are other natural topologies besides the norm topology for HP in the
case 0 < p < 1, in particular, the weak topology and the topology induced by the
containing space in the sense of [2]. Routine arguments show that in these
topologies the T-invariant subspaces of H? are in 1-1 correspondence with the sub-
sets of the nonnegative integers, as is the case when 1 < p < o and HP has the
norm topology.

3. Distinct sets of exponentials spanning the same subspace of L?. If u
is a finite Borel measure on T, its spectrum is {n: 4(n) # 0}. The following im-
plies (ii) of Theorem 1.

THEOREM 3.1. Let 0 <p < 1. Suppose that T is the spectrum of a sing-
ular measure on T and that A is obtained from T" by deleting a finite number of
elements. Then LP(I") = LP(A).

PROOF. For 0 <7< 1, define F, on T by F,(e%) = £+, fi(n)r'™lein?.
Since F, is the rth Abel mean of the Fourier series of u and u is singular, Theo-
rem 1.2 of [1] shows that lim,,; F,(e?) = 0,2.e.e® €T. {F,: 0 <r<1}is
bounded in L' and thus lim,_,,|| F,ll , = 0. Let A= {n:n €T, n ¢A} and de-
fine the trigonometric polynomial P on T by

P =~ 3 imye™?,

neA
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SO

lim Z ﬁ(n)rl" lein- — P p = 0.
r=>1 1l nea

Thus P € LP(A), and as a consequence each ¢’ with m € A is in LP(A), so
LP() = LP(A).
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