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1. Introduction. For 0 < p < 1, LP is the space of measurable ƒ on the circle 

group T with 

far1 f^\m\pdx]lj 
wfwp= K27T)-1 i r i / w i ^ ^ i 1 / p < o o . 

If 0 <p < 1, Lp is not a Banach space, but is a metric space with distance de­

fined by d(f, g) = II ƒ - gll£. 
A linear subspace of Lp will be called a T-subspace if and only if it is 

closed and translation invariant. If F is a function or a collection of functions in 
Lp, then LP(F) will denote the smallest T-subspace of Lp containing F, the 
T-subspace of Lp generated by F. If F = {eln' : n G A}, is a collection of ex­
ponential functions, LP(F) will also be denoted by LP(A). 

For p > 1, the classification of the T-subspaces of Lp is straightforward 

(see [3, Chapter 11]). The map 

(1.1) A ™ - + L P ( A ) 

gives a 1-1 correspondence between the collection of all subsets of integers and 
all T-subspaces of Lp. 

The purpose of this note is to point out that the case 0 < p < 1 is much 
more intricate, to be specific, the map (1.1) is neither 1-1 nor onto. We shall 
outline proofs of results which imply the following. 

THEOREM 1. Let 0 <p <l. Then 

(i) Lp has nontrivial Tsubspaces containing no exponentials; 

(ii) There are distinct sets A and T of integers with LP(A) = LP(T). 

Details will be published elsewhere. In what follows, "Proof" should of 
course be interpreted to mean "Outline of Proof". 

2. Spectral analysis in Hp for 0 < p < 1; Cauchy integrals. Here we re­
strict to the T-subspace Lp({ein' : n > 0}), which is denoted by Hp. (For the 
basic properties of Hp which we use in what follows, see [2, Chapter 7 ] , [4, 
Chapter 3] or [1].) Hp can also be characterized as follows: Let D be the 
unit disk {z: \z\ < 1}. We define Hp(p) to consist of all functions F which are 
analytic in D with III F | | | p = sup{ || Fr \\p : 0 < r < 1} < <*>, where each Fr is de-
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fined on T by Fr(e
w) = F(rew). The functions in Hp(p) have boundary values 

a.e. on T and the mapping F ~ — + F defined by F(ew) = l i m ^ F(rei6\ 
a.e. eid G T, is an isometry of HP(D) onto Hp. 

We shall denote by Lp the T-subspace HP n Hp = { ƒ : ƒ and ƒ are in # p }. 
Propositions 2.2 and 2.3 below show that L$ is quite large if p < 1 even though 
it consists only of constant functions if p > 1. We first indicate how Xg is our 
"universal counterexample" to spectral analysis. 

PROPOSITION 2.1. L% contains no nonconstant exponential functions. 

PROOF. We may assume p < 1. If Hp n Hp contained a nonconstant 
exponential function, it would contain some ein' for n < 0. By Theorem 7.35 of 
[S]9H

p HL1 =HX. Bute'"' ÇH1. 
The above proof of course yields a great ideal more than asserted by 

Proposition 2.1, namely, that L% C) Ll consists only of constant functions. 
If JU is a finite Borel measure on T, we define FM by 

(2.1) F^z) = ƒ ^ - daiw), \z\ * 1. 

The restriction of F„ to the unit disk D will be denoted by Cu . By Theorem 3.5 
of [1], CM is in each Hp(D) for p < 1 and thus its boundary function CM is in 
each Hp foxp <1. We will call CM the Cauchy transform of /x. 

PROPOSITION 2.2. Let 0 < p < 1. 7%e« /,£ contains the Cauchy transforms 
of all singular measures on T. 

PROOF. Let M be a singular measure on T. Define FM by (2.1) so CM = 
FM on D. Then, for z = re1"0, \z\< 1, F(z) - F ( l / z ) = S ^ ju(«)rlw,e/n0, 
which is the rth Abel mean of the Fourier series of IJL. Snee M is singular, Theo­
rem 1.2 of [1] shows that the series converges a.e. in T to 0. Thus, the function 
G defined in D by G(z) = F(l/z") has boundary values conjugate to CM a.e. on 
T. It remains to show that G GHP(D) for each p < 1. Since G(z) = 
- E^=1 M ( - ri)zn in D, if the measure 17 is defined on T by r\(E) = 
- f E W^M(-W), G = Cn and thus G EHP(D) for eachp < 1 by Theorem 3.5 of [1]. 

We can assert a converse to Proposition 2.2. It is an easy consequence of (i) 
of Theorem 2.4 below that if p < 1, and AX is a measure on T, CM G L% if and 
only if jut is a singular measure plus a constant multiple of Lebesgue measure. 

A bounded analytic function 0 defined in D is called inner if i0(z)| < 1, 
z G D, and \l>(ei6)\ = 1, a.e. eiQ G T. 

PROPOSITION 2.3. Let f^Lp. If<j> is inner with 0(0) = 0, then foQEL^* 

PROOF. Let ƒ G Lp. Then there are G and K in HP(D) with G = ƒ and 
5 = ƒ in Lp. That G ° 0 and A' ° 0 are in #P(D) follows from Theorem 1.7 of 
[1]. Let X be the set of ew G T where l i m ^ H(rew) = lim,^ G(rew). Since 
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X has measure 2ir, %{eie) must be in X for a.e. eiQ G T. Jhus (G ° 0)~ 
and (Ho 0)~ = / o ^ = (ƒ o 0)~, which shows that ƒ o 0 G I J . 

One more definition before we state the main result of this section. 
F(z) = 2~=o anz

n is analytic in D, we define spec F to be {n: an ^ 0}. 

THEOREM 2.4. Le£ 0 <p < 1. Suppose that ju M A /ZrnYe /tore/ measure 
on T. 

(i) /ƒ /x w absolutely continuous, then LP(C^) = Xp(spec CM). 
(ii) /ƒ jit zs singular, then LP(C^) contains no nonconstant exponential func­

tions. 

PROOF. (The equality is clear if C E L1. But we only have that C G U 
for each r < 1.) CM G Lp(spec CM) since the Fourier series of CM is Abel sum-
mable to CM in || • \\p (see p. 284 of [5]). Thus, £P(CM) C Z,p(spec CM). That 
£p(spec CM) C Lp(C^) follows by an appropriate adaptation of the discussion on 
p. 263 of [5]. (ii) follows from Proposition 2.1 and 2.2. 

To see that (i) of Theorem 1 is a consequence of Theorem 2.4, take LP(CM), 
where /i is any singular measure on T with ƒ dix = 0. 

Theorem 2.4 lends weight to the following conjecture: If X is a measure on 
T with absolutely continuous part M> then LP(CX) and LP(CM) contain the same 
exponentials if p < 1. 

There are other natural topologies besides the norm topology for Hp in the 
case 0 < p < 1, in particular, the weak topology and the topology induced by the 
containing space in the sense of [2]. Routine arguments show that in these 
topologies the T-invariant subspaces of Hp are in 1-1 correspondence with the sub­
sets of the nonnegative integers, as is the case when 1 < p < °° and Hp has the 
norm topology. 

3. Distinct sets of exponentials spanning the same subspace of Lp. If \x 
is a finite Borel measure on T, its spectrum is {n: p,(ri) ¥= 0}. The following im­
plies (ii) of Theorem 1. 

THEOREM 3.1. Let 0 < p < 1. Suppose that T is the spectrum of a sing­
ular measure on T and that A is obtained from T by deleting a finite number of 
elements. Then LP(T) = LP(A). 

PROOF. For 0 < r < 1, define Fr on T by Fr(e
ie) = 2+" kn)r^eine. 

Since Fr is the rth Abel mean of the Fourier series of JU and ju is singular, Theo­
rem 1.2 of [1] shows that l i m ^ Fr(e

w) = 0, a.e. ew G T. {Fr : 0 < r < 1} is 
bounded in L1 and thus l i m ^ J Fr\\ = 0. Let A = {n: n G T, n £A} and de­
fine the trigonometric polynomial P on T by 

P(eie) = - £ fi(n)eM, 
B6A 

113 

If 



114 KAREL de LEEUW 

SO 

lim £ ü(n)rlnlein' - Pttp = 0. 
«GA II 

Thus P E LP(A), and as a consequence eache /m' with m € A is in LP(A), so 
LP(T) = Lp(A). 
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