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Let 7T be a finite periodic group of order n whose cohomology has 
minimal period k. We say that IT has free period h if TT admits a periodic 
free resolution of the trivial 7r-module Z of length h: 

0-+Z-+Z7T-+ Ch_2 —> Ch_3 —*•• •—^C^—»Z7r -^Z—>0 

where each Ct is a finitely-generated free 7r-module. Acccording to [7], 
every finite periodic group of minimal period k has a minimal free period 
h = pk for some integer p > 0. A convenient listing of all finite periodic 
groups is given in [9]. 

DEFINITION. A (TT, m)-complex is a finite, connected m-dimensional 
CW complex X with fundamental group TT whose universal cover X is 
(m - l)-connected. 

Let HT(TT, m) denote the set of homotopy types of (TT, ra)-complexes. 
This set may be described as a directed tree with one vertex for each homo­
topy class [X] of (TT, m)-complexes having the homotopy type of X\ the 
vertex [X] is connected by an edge to vertex [Y] provided Y has the ho­
motopy type of the sum X V Sm of X with the m-sphere Sm. HT(n, m) 

is connected by [11, Theorem 14] and clearly contains no circuits. 

The purpose of this note is to announce a complete description of the 
homotopy tree HT(rr, m) for certain periodic 7r and for m = ik9ik-\ (/ > 0). 
Full details and a description for any periodic n will appear elsewhere. 

Before stating the theorem, we need two more pieces of notation. Let 
Z* be the units of the ring Zn of integers modulo n. Then Autfc 7r = {p G 
Z*13a G Aut TT B0L*k(l) = p where a*: #*(ir, Z) - > Hk(ir, Z)}. Let K0Zn 

be the reduced projective class group of the integral group ring ZTT of TT. De-
fine a homomorphism v\ Zn —• K0ZTT by v(p) = class of the projective left 
ideal (p',N) of ZTT generated by any integer p ' G p and Af = XxEi1Tx. v 

is well defined by [7, Lemma 6.1]. 
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THEOREM 1. Let it be a finite periodic group of order n and mini­
mal free period k. Furthermore, suppose that n is either abelian or that 8 
does not divide the order of n. Let Rm be a (7r, m)-complex of minimal 
absolute Euler characteristic. 

(a) Let m = ik (i > 0) and X be any (n, ik)-complex. Then X has 

the homotopy type of the sum Rik V aSik of Rik with a = (xQO ~ 1) 
copies of the ik-sphere Sik. 

(b) Let m = ik - 1 (i > 0) and Y be any (IT, ik - l)-complex whose 

Euler characteristic x(Y) < 0. Then Y has the homotopy type of Rik^x V 
pSik~l with /? = - x (Y) . 

(c) The set of homotopy classes HT(ir, ik - 1)0 of (7T, ik - ^-com­

plexes with Euler characteristic zero is isomorphic to the group 

HT(ir, ik - 1)0 a ker {v\ Z* - > £ 0 ZTT}/ ^(Aut^Tr)1'. 

Thus the tree of homotopy types HT(7r, m) has the appearance of Fig­

ure 1: 

m = ik - 1 ZK m = ik 

A 

[Y V 3Sm] 3 

Ï [YV2Sm] 2 

[YV Sm) i 

[11 0 1 
FIGURE 1 

[Y V 3Sm] 4 

[7 V 25m ] 3 

[F V Sm] 2 

For example, if n is odd, the dihedral groups D2n of order 2n satis­
fy the hypotheses of Theorem 1. For IT = Zw, Theorem 1 gives a complete 
classification of the homotopy trees HT(Zn, i) (i > 2). The roots of 
HT(Zn, odd) are the homotopy classes of the standard lens spaces, and 1(c) 
suitably translated gives the classical homotopy classification of lens spaces 
[2, p. 96]. HT(Zn, 2) was previously known (see [1] for n prime, [4] for 
arbitrary n). 

The proof uses the theory of algebraic m-types [1], [6], [11], the mod-
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ule cancellation theory of H. Jacobinski [5], [8, p. 178], [3], the periodic re­
solution theory of R. Swan [7], and the following new application of the 
Wall obstruction. 

DEFINITION. Let X be a connected CW complex of finite type (each 
skeleton X^1^ is a finite complex, / > 0). If Hm{X, X<m_1)) is a projective 
^(Xj-module, then the Swan-Wall class SWm[X] is the class of 
HJx, *&»-") in K0Z*X(X) [10]. 

A connected CW complex X has the same topological m-type [11] 
as a connected complex Y if and only if there are maps 

ƒ: X^m + t^ «=̂  y(w + i). g 

such that 

g0^x(m)~ ( ^ m ) ^ * < m + 1 ) ) and f° g Yim)~ (Y<-m) ^ y < m + 1 ) ) . 

The maps ƒ and g are called m-homotopy equivalences. We say that 
SWm[X] G K0ZTÏX{X) is an invariant of the topological m-type of X if, for 
any complex Y and m-equivalence / : X^m + 1^ —* Y^m + 1\ the homomor-
phism K^IKQZIT^X) —• A^Z^CY) induced by fu: n^X) —> TT^Y) 
carries SWm*[X| - * SWm[Y]. 

THEOREM 2. /ƒ ^ ( Z ) W a finite group, then, if defined, the Swan-
Wall class SWm [X] (m > 2) is an invariant of the topological m-type of X. 

To each connected CW complex X having X(m - l)-connected and 
n^X) = 7T, we associate its algebraic m-type (IT, vrm(X), k(X)), where the 
cohomology class k(X) G H™*1^, rrm(X)) is the obstruction invariant of 
[6]. An abstract algebraic m-type is a triple T = (7r, nm, k)9 where n is a 
multiplicative group, 7rm a 7r-module, and k a class in Jflm + l(7r, nm). Two 
algebraic m-types T = (7r, irm, k) and T' = (ir\ 7t'm, k') are isomorphic 

(T = T') if there are isomorphisms ƒ: IT —> 7r', ƒ': 7rm —• n1^, where ƒ is a 
group homomorphism, ƒ ' is an /-homomorphism (f'(x • a) — f(x) • ƒ'(a) 
for x G ÏÏ, û G 7Tm), and /*(/:) = ƒ*(&') in the diagram 

tf^Or, TW) ^ tf"+10r, 0O/) ^ #"+V, <,)• 

Here (TT^V is the 7T-module with action given by 

X * a = / ( x ) • a' (x G 7T, à?' G 7T^). 
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It is known from [6] that two complexes X, Y whose universal covers 
are (m - l)-connected have the same m-type if and only if T(X) = T(Y). 
Thus two (7T, m)-complexes X, Y have the same homotopy type if and only 
if T(X) = T(y). It is also known from [6] that every abstract m-type T = 
(TT, irm, k) can be realized by a connected (m + l)-dimensional complex Y in 
the sense that T(Y) = T. Theorem 2 allows one to decide whether an alge­
braic m-type is realizable as a (TT, m)-complex or not. 

THEOREM 3. Let TT be a finite group. Let T = (TT, irm, k) be an ab­

stract m-type and suppose X is any (m + l)-dimensionai finite connected 

complex such that T(X) = T. Then there is a (TT, m)-complex Y such that 

T(Y) s T if and only if SWm[X] = 0, provided m > 2 [10, Theorem F ] . 

We can define a Swan-Wall class SWm\J] for an algebraic m-type, pro­
vided 3X having T(X) s T and SWm[X]eK0Zn. Consider the natural 
action of Aut7r on K0Zrr and let A0Zir be the group of orbits under this 
action. By Theorem 2, SWm[T] is a well-defined member of A0Zir. How­
ever, if TT is finite periodic, in many cases the Swan-Wall class contains only 
a single element. For example, [(p, N)] is fixed under the action of Aut TT. 

SKETCH OF A PROOF OF 1(b). Let F be a (TT, m)-complex such that 
~x(Y)>0. Because TT is finite, the ^-invariant k(Y) is a generator of 
Hm + 1(TT, TTm(Y)) = Zn, where n is the order of TT. We assign to the space 
R of maximal Euler characteristic the m-type T(R) = (TT, Z, 1 G Zn). By [11, 
Theorem 14] there is a ^-isomorphism Z © (ZTTJ —> nm(Y) © (ZTT)J ( />ƒ). 
If TT is abelian or 8 does not divide n, then TT satisfies the Eichler condition 
[8, p. 177], and hence there is an isomorphism Z © (ZTT)& = ^mOO (P = 

-X(Y)>0). Thus T(Y) <^(TT,Z® (Zir)* p) for some p G Z * . By Theo­
rem 2, the Swan-Wall class of Tp = (TT, Z, p) is well defined (up to action 
by Aut TT) as a member of K0ZTT and by [7], SWm[Tp] = SWm[T(Y)] = v(p). 

It follows from Theorem 3 that v(p) = 0. Then Lemma 6.1 of [7] provides 
an isomorphism 

T(R V j(3Sm) a (TT, Z © (ZTT/, 1) 

- ( T T , Z © ( Z T r ) ^ p ) - T ( y ) ; 

hence JR V 0Sm ~ 7. This completes the proof. 
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