BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 6, November 1974

HOMOTOPY TREES FOR PERIODIC GROUPS

BY M. N. DYER

Communicated by Samuel Eilenberg, April 30, 1974

Let π be a finite periodic group of order n whose cohomology has minimal period k. We say that π has free period h if π admits a periodic free resolution of the trivial π -module \mathbf{Z} of length h:

$$0 \to \mathbf{Z} \to \mathbf{Z}\pi \to C_{h-2} \to C_{h-3} \to \cdots \to C_1 \to \mathbf{Z}\pi \xrightarrow{\epsilon} \mathbf{Z} \to 0$$

where each C_i is a finitely-generated free π -module. According to [7], every finite periodic group of minimal period k has a minimal free period h = pk for some integer p > 0. A convenient listing of all finite periodic groups is given in [9].

DEFINITION. A (π, m) -complex is a finite, connected m-dimensional CW complex X with fundamental group π whose universal cover \widetilde{X} is (m-1)-connected.

Let $HT(\pi, m)$ denote the set of homotopy types of (π, m) -complexes. This set may be described as a *directed tree* with one vertex for each homotopy class [X] of (π, m) -complexes having the homotopy type of X; the vertex [X] is connected by an edge to vertex [Y] provided Y has the homotopy type of the sum $X \vee S^m$ of X with the m-sphere S^m . $HT(\pi, m)$ is connected by [11, Theorem 14] and clearly contains no circuits.

The purpose of this note is to announce a complete description of the homotopy tree $HT(\pi, m)$ for certain periodic π and for m = ik, ik - 1 (i > 0). Full details and a description for any periodic π will appear elsewhere.

Before stating the theorem, we need two more pieces of notation. Let \mathbf{Z}_n^* be the units of the ring \mathbf{Z}_n of integers modulo n. Then $\mathrm{Aut}_k \pi = \{p \in \mathbf{Z}_n^* | \exists \alpha \in \mathrm{Aut} \ \pi \ni \alpha_k^*(1) = p \ \text{where} \ \alpha_k^* \colon H^k(\pi, \mathbf{Z}) \longrightarrow H^k(\pi, \mathbf{Z})\}$. Let $\widetilde{K}_0 \mathbf{Z} \pi$ be the reduced projective class group of the integral group ring $\mathbf{Z} \pi$ of π . Define a homomorphism $\nu \colon \mathbf{Z}_n^* \longrightarrow \widetilde{K}_0 \mathbf{Z} \pi$ by $\nu(p) = \mathrm{class}$ of the projective left ideal (p', N) of $\mathbf{Z} \pi$ generated by any integer $p' \in p$ and $N = \Sigma_{x \in \pi} x$. ν is well defined by [7, Lemma 6.1].

AMS (MOS) subject classifications (1970). Primary 55D15.

Theorem 1. Let π be a finite periodic group of order n and minimal free period k. Furthermore, suppose that π is either abelian or that 8 does not divide the order of π . Let R_m be a (π, m) -complex of minimal absolute Euler characteristic.

- (a) Let m = ik (i > 0) and X be any (π, ik) -complex. Then X has the homotopy type of the sum $R_{ik} \vee \alpha S^{ik}$ of R_{ik} with $\alpha = (\chi(X) 1)$ copies of the ik-sphere S^{ik} .
- (b) Let m = ik 1 (i > 0) and Y be any $(\pi, ik 1)$ -complex whose Euler characteristic $\chi(Y) < 0$. Then Y has the homotopy type of $R_{ik-1} \lor \beta S^{ik-1}$ with $\beta = -\chi(Y)$.
- (c) The set of homotopy classes $HT(\pi, ik 1)_0$ of $(\pi, ik 1)$ -complexes with Euler characteristic zero is isomorphic to the group

$$HT(\pi, ik - 1)_0 \cong \ker \{\nu \colon \mathbf{Z}_n^* \longrightarrow \widetilde{K}_0 \mathbf{Z}_n\} / \pm (\operatorname{Aut}_k \pi)^i.$$

Thus the tree of homotopy types $HT(\pi, m)$ has the appearance of Figure 1:

FIGURE 1

For example, if n is odd, the dihedral groups D_{2n} of order 2n satisfy the hypotheses of Theorem 1. For $\pi = \mathbf{Z}_n$, Theorem 1 gives a complete classification of the homotopy trees $HT(\mathbf{Z}_n, i)$ $(i \ge 2)$. The roots of $HT(\mathbf{Z}_n, \mathrm{odd})$ are the homotopy classes of the standard lens spaces, and 1(c) suitably translated gives the classical homotopy classification of lens spaces [2, p. 96]. $HT(\mathbf{Z}_n, 2)$ was previously known (see [1] for n prime, [4] for arbitrary n).

The proof uses the theory of algebraic m-types [1], [6], [11], the mod-

ule cancellation theory of H. Jacobinski [5], [8, p. 178], [3], the periodic resolution theory of R. Swan [7], and the following new application of the Wall obstruction.

DEFINITION. Let X be a connected CW complex of finite type (each skeleton $X^{(i)}$ is a finite complex, $i \ge 0$). If $H_m(\widetilde{X}, \widetilde{X}^{(m-1)})$ is a projective $\pi_1(X)$ -module, then the Swan-Wall class $SW_m[X]$ is the class of $H_m(\widetilde{X}, \widetilde{X}^{(m-1)})$ in $\widetilde{K}_0 Z\pi_1(X)$ [10].

A connected CW complex X has the same topological m-type [11] as a connected complex Y if and only if there are maps

$$f: X^{(m+1)} \rightleftharpoons Y^{(m+1)}: g$$

such that

$$g\circ f|_{X(m)}\cong (X^{(m)}\hookrightarrow X^{(m+1)})$$
 and $f\circ g|_{Y(m)}\cong (Y^{(m)}\hookrightarrow Y^{(m+1)}).$

The maps f and g are called m-homotopy equivalences. We say that $SW_m[X] \in \widetilde{K}_0 \mathbf{Z}\pi_1(X)$ is an *invariant of the topological m-type of X* if, for any complex Y and m-equivalence $f : X^{(m+1)} \longrightarrow Y^{(m+1)}$, the homomorphism $\widetilde{K}_0 f_{1_*} : \widetilde{K}_0 \mathbf{Z}\pi_1(X) \longrightarrow \widetilde{K}_0 \mathbf{Z}\pi_1(Y)$ induced by $f_{1_*} : \pi_1(X) \longrightarrow \pi_1(Y)$ carries $SW_m[X] \longrightarrow SW_m[Y]$.

Theorem 2. If $\pi_1(X)$ is a finite group, then, if defined, the Swan-Wall class $SW_m[X]$ $(m \ge 2)$ is an invariant of the topological m-type of X.

To each connected CW complex X having $\widetilde{X}(m-1)$ -connected and $\pi_1(X)=\pi$, we associate its algebraic m-type $(\pi,\pi_m(X),k(X))$, where the cohomology class $k(X)\in H^{m+1}(\pi,\pi_m(X))$ is the obstruction invariant of [6]. An abstract algebraic m-type is a triple $\mathbf{T}=(\pi,\pi_m,k)$, where π is a multiplicative group, π_m a π -module, and k a class in $H^{m+1}(\pi,\pi_m)$. Two algebraic m-types $\mathbf{T}=(\pi,\pi_m,k)$ and $\mathbf{T}'=(\pi',\pi'_m,k')$ are isomorphic $(\mathbf{T}\cong\mathbf{T}')$ if there are isomorphisms $f\colon \pi\to\pi',f'\colon \pi_m\to\pi'_m$, where f is a group homomorphism, f' is an f-homomorphism $(f'(x\cdot a)=f(x)\cdot f'(a)$ for $x\in\pi$, $a\in\pi_m$, and $f'_*(k)=f^*(k')$ in the diagram

$$H^{m+1}(\pi,\,\pi_m) \stackrel{f'_*}{\longrightarrow} H^{m+1}(\pi,\,(\pi'_m)_f) \stackrel{f^*}{\longleftarrow} H^{m+1}(\pi',\,\pi'_m).$$

Here $(\pi'_m)_f$ is the π -module with action given by

$$x * a' = f(x) \cdot a' (x \in \pi, a' \in \pi'_m).$$

It is known from [6] that two complexes X, Y whose universal covers are (m-1)-connected have the same m-type if and only if $T(X) \cong T(Y)$. Thus two (π, m) -complexes X, Y have the same homotopy type if and only if $T(X) \cong T(Y)$. It is also known from [6] that every abstract m-type $T = (\pi, \pi_m, k)$ can be realized by a connected (m + 1)-dimensional complex Y in the sense that $T(Y) \cong T$. Theorem 2 allows one to decide whether an algebraic m-type is realizable as a (π, m) -complex or not.

THEOREM 3. Let π be a finite group. Let $\mathbf{T}=(\pi,\pi_m,k)$ be an abstract m-type and suppose X is any (m+1)-dimensional finite connected complex such that $\mathbf{T}(X)\cong \mathbf{T}$. Then there is a (π,m) -complex Y such that $\mathbf{T}(Y)\cong \mathbf{T}$ if and only if $SW_m[X]=0$, provided m>2 [10, Theorem F].

We can define a Swan-Wall class $SW_m[T]$ for an algebraic m-type, provided $\exists X$ having $\mathbf{T}(X) \cong \mathbf{T}$ and $SW_m[X] \in \widetilde{K}_0\mathbf{Z}\pi$. Consider the natural action of $\mathrm{Aut}\,\pi$ on $\widetilde{K}_0\mathbf{Z}\pi$ and let $A_0\mathbf{Z}\pi$ be the group of orbits under this action. By Theorem 2, $SW_m[T]$ is a well-defined member of $A_0\mathbf{Z}\pi$. However, if π is finite periodic, in many cases the Swan-Wall class contains only a single element. For example, [(p,N)] is fixed under the action of $\mathrm{Aut}\,\pi$.

SKETCH OF A PROOF OF 1(b). Let Y be a (π, m) -complex such that $-\chi(Y)>0$. Because π is finite, the k-invariant k(Y) is a generator of $H^{m+1}(\pi, \pi_m(Y))\cong \mathbf{Z}_n$, where n is the order of π . We assign to the space R of maximal Euler characteristic the m-type $\mathbf{T}(R)=(\pi,\mathbf{Z},1\in\mathbf{Z}_n)$. By [11, Theorem 14] there is a π -isomorphism $\mathbf{Z}\oplus (\mathbf{Z}\pi)^i\to \pi_m(Y)\oplus (\mathbf{Z}\pi)^j$ (i>j). If π is abelian or 8 does not divide n, then π satisfies the Eichler condition [8, p. 177], and hence there is an isomorphism $\mathbf{Z}\oplus (\mathbf{Z}\pi)^\beta\cong \pi_m(Y)$ $(\beta=-\chi(Y)>0)$. Thus $\mathbf{T}(Y)\cong (\pi,\mathbf{Z}\oplus (\mathbf{Z}\pi)^\beta,p)$ for some $p\in\mathbf{Z}_n^*$. By Theorem 2, the Swan-Wall class of $\mathbf{T}_p=(\pi,\mathbf{Z},p)$ is well defined (up to action by $\mathrm{Aut}\,\pi$) as a member of $\widetilde{K}_0\mathbf{Z}\pi$ and by [7], $\mathrm{SW}_m[\mathbf{T}_p]=\mathrm{SW}_m[\mathbf{T}(Y)]=\nu(p)$. It follows from Theorem 3 that $\nu(p)=0$. Then Lemma 6.1 of [7] provides an isomorphism

$$\mathbf{T}(R \lor \beta S^m) \cong (\pi, \mathbf{Z} \oplus (\mathbf{Z}\pi)^{\beta}, 1)$$

 $\cong (\pi, \mathbf{Z} \oplus (\mathbf{Z}\pi)^{\beta}, p) \cong \mathbf{T}(Y);$

hence $R \vee \beta S^m \simeq Y$. This completes the proof.

BIBLIOGRAPHY

1. W. Cockcroft and R. Swan, On the homotopy type of certain two-dimensional CW complexes, Proc. London Math. Soc. 11 (1969), 194-202.

- 2. M. Cohen, A course in simple-homotopy theory, Graduate Texts in Math., no. 10, Springer-Verlag, New York, 1973.
 - 3. M. Dyer, Module cancellation and homotopy type of 2-complexes (to appear).
- 4. M. Dyer and A. Sieradski, Trees of homotopy types of two-dimensional CW complexes, Comment. Math. Helv. 48 (1973), 31-44.
- 5. H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1-29. MR 40 #4294.
- 6. S. Mac Lane and J. H. C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 41-48. MR 11, 450.
- 7. R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267-291. MR 23 #A2205.
- 8. R. Swan and G. Evans, K-theory of finite groups and orders, Lecture Notes in Math., vol. 149, Springer-Verlag, Berlin, 1970.
- 9. C. E. Thomas and C. T. C. Wall, The topological spherical space form problem. I, Compositio Math. 23 (1971), 101-114.
- 10. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-59. MR 30 #1515.
- 11. J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1-57. MR 11, 735.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403