SPECTRAL THEORY FOR BOUNDARY VALUE PROBLEMS FOR ELLIPTIC SYSTEMS OF MIXED ORDER

BY GIUSEPPE GEYMONAT AND GERD GRUBB

Communicated by Robert Seeley, May 28, 1974

Introduction. For a closed, densely defined linear operator T in a Hilbert space H, we define the essential spectrum ess sp T as the complement in C of the set of λ for which $T-\lambda$ is a Fredholm operator (with possibly nonzero index). Recall (cf. Wolf [7]) that $\lambda \in \operatorname{ess}$ sp T if and only if either $T-\lambda$ or $T^*-\overline{\lambda}$ has a singular sequence, i.e. a sequence $u_k \in H$ with $\|u_k\|=1$ for all k, $(T-\lambda)u_k \longrightarrow 0$ (or $(T^*-\overline{\lambda})u_k \longrightarrow 0$) in H, but u_k having no convergent subsequence in H. ess sp T is closed and invariant under compact perturbations of T, and contains the accumulation points of the eigenvalue spectrum.

Let $\overline{\Omega}$ be an *n*-dimensional compact C^{∞} manifold with boundary Γ and interior $\Omega = \overline{\Omega} \backslash \Gamma$. It is well known that when A is a properly elliptic operator on $\overline{\Omega}$ of order r > 0, the L^2 -realization $A_{\mathcal{B}} : u \longmapsto Au$ with domain $D(A_{\mathcal{B}}) = \{u \in L^2(\Omega) | Au \in L^2(\Omega), \mathcal{B}u|_{\Gamma} = 0\}$, defined by a boundary operator \mathcal{B} that covers A (i.e. $\{A, \mathcal{B}\}$ defines an elliptic boundary value problem), has ess sp $A_{\mathcal{B}} = \emptyset$.

However, when A is a system of mixed order, elliptic in the sense of Douglis and Nirenberg (cf. [1]), ess sp A_B can be nonempty even when $\{A, B\}$ is elliptic with smooth coefficients and $\overline{\Omega}$ is compact. We study this phenomenon for a class of Douglis-Nirenberg systems of nonnegative order, determine the essential spectrum, and find the asymptotic behavior of the discrete spectrum at $+\infty$ for the selfadjoint lower bounded realizations.

Examples of the systems we consider are: The linearized Navier-Stokes operator and certain systems stemming from nuclear reactor analysis. A preliminary, less advanced account of the theory was given in [5].

1. Preliminaries.

1.1. For q integer > 1 there is given a set of integers $m_1 \ge m_2 \ge$

AMS (MOS) subject classifications (1970). Primary 35J45, 47B30, 35P20.

 $\cdots \geqslant m_{q'} > m_{q'+1} = \cdots = m_q = 0$; we assume $1 \leqslant q' \leqslant q$ and denote max $m_s = m$. Let $A = (A_{st})_{s,t=1,\cdots,q}$ be a $q \times q$ -matrix of differential operators of orders $m_s + m_t$ on $\overline{\Omega}$. A is assumed *elliptic* (in the sense of [1]), i.e. the principal symbol $\sigma^0(A) = (\sigma_{m_s + m_t}(A_{st}))$ has nonzero determinants on $T^*(\overline{\Omega}) \setminus 0$. It is useful to single out the zero order part of A by splitting the rows and columns into the first q' and the last q - q' entries:

(1.1)
$$A = \begin{pmatrix} P & Q \\ R & M \end{pmatrix};$$

here P, Q and R are of positive order, and M is a multiplication operator.

1.2. The notation for boundary conditions follows Grubb [4, Chapter 3]: For $u=\{u_1,\cdots,u_q\}$, β^0u denotes the Dirichlet data (the collection of the normal derivatives of each u_t up to order m_t-1), and β^1u denotes the remaining normal derivatives up to orders m_t+m-1 , arranged as in [4]; $\beta u=\{\beta^0u,\beta^1u\}$ constitute the "Cauchy data". We consider boundary conditions of the form

$$(1.2) B^{00}\beta^0 u = 0, B^{10}\beta^0 u + B^{11}\widetilde{\mathfrak{A}}^{01}\beta^1 u = 0,$$

where $\widetilde{\mathfrak{C}}^{01}$ is a certain fixed surjective differential operator entering in Green's formula, and the B are systems of differential operators of suitable orders (cf. [4], selfadjoint or semibounded realizations necessarily stem from boundary conditions of this form, and it can be shown that boundary problems in general reduce to at least *inhomogeneous* conditions on $\beta^0 u$ and $\widetilde{\mathfrak{C}}^{01}\beta^1 u$, the "reduced Cauchy data"). We assume thoughout that (1.2) covers A (satisfies the conditions in [1]).

2. The case of a manifold without boundary.

2.1. Assume first that $\overline{\Omega}$ is compact with $\Gamma = \emptyset$, i.e. $\overline{\Omega} = \Omega$. Then A has a parametrix \widetilde{A} , which we split in the same blocks as (1.1):

(2.1)
$$\widetilde{A} = \begin{pmatrix} \widetilde{P} & \widetilde{Q} \\ \widetilde{R} & \widetilde{S} \end{pmatrix};$$

here \widetilde{P} , \widetilde{Q} and \widetilde{R} are pseudodifferential operators of negative (mixed) order, and \widetilde{S} is a ps.d.o. of order zero. A has only one L^2 -realization, which we call A,

(2.2)
$$D(A) = \{ u \in L^{2}(\Omega)^{q} \mid Au \in L^{2}(\Omega)^{q} \}.$$

One finds by use of \widetilde{A} that $D(A) \subset \prod_{t=1}^q H^{m_t}(\Omega)$.

THEOREM 2.1. ess sp $A = \{\lambda \neq 0 | \lambda^{-1} \in \text{ess sp } \widetilde{S} \} = \{\lambda \neq 0 | \lambda^{-1} \text{ is an eigenvalue for } \sigma^0(\widetilde{S})(x, \xi) \text{ for some } (x, \xi) \in T^*(\overline{\Omega}) \setminus 0\} = \{\lambda | A - \lambda \text{ is not elliptic} \}.$

Sketch of proof. The first identity follows from the fact that

(2.3)
$$\widetilde{A} = \begin{pmatrix} 0 & 0 \\ 0 & \widetilde{S} \end{pmatrix} + \text{compact operator in } L^2(\Omega)^q.$$

In the second identity, the inclusion \subset is immediate; on the other hand, when μ is an eigenvalue for $\sigma^0(\widetilde{S})(x_0, \xi_0)$ with eigenvector $\theta, \widetilde{S} - \mu$ has the singular sequence (in a local coordinate system where $x_0 = 0$)

(2.4)
$$w_k(x) = k^{n/2} v(kx) \exp(i\langle x, k^2 \xi_0 \rangle) \theta, \quad k \to \infty,$$

where $v \in C_0^{\infty}(\mathbb{R}^n)$ with v(0) = 1 and $\|v\|_0 = 1$. Finally, the last identity follows from the equation, valid for $\lambda \in \mathbb{C}$,

(2.5)
$$\det \sigma^{0}(A - \lambda) = \det \sigma^{0}(I - \lambda \widetilde{S}) \det \sigma^{0}(A).$$

REMARK. ess sp A is bounded if and only if P(cf. (1.1)) is elliptic.

2.2. Furthermore, assume now that A is strongly elliptic (i.e., $\sigma^0(A) + \sigma^0(A)^*$ is positive definite on $T^*(\overline{\Omega})\setminus 0$) and formally selfadjoint. Then, in particular, P is strongly elliptic, so ess sp A is bounded. Since A is unbounded (and selfadjoint, lower bounded), it has a sequence of eigenvalues $\lambda_j^+(A)$ converging to $+\infty$ for $j\to\infty$. For large λ , the eigenvalue problem

$$(P-\lambda)v+Qw=0, \qquad Q^*v+(M-\lambda)w=0$$

is equivalent with the nonlinear problem

(2.6)
$$(P - Q(M - \lambda)^{-1}Q^*)v - \lambda v = 0.$$

Here $P - Q(M - \lambda)^{-1}Q^*$ approaches P as λ becomes large, so (2.6) approaches an eigenvalue problem for P in some sense. Indeed, we can show (see [5]):

Theorem 2.2. Let A be strongly elliptic and formally selfadjoint. The spectrum of A on $] \| M \|, + \infty [$ is a sequence of eigenvalues $\lambda_1^+(A) \le \lambda_2^+(A) \le \cdots$ (repeated according to multiplicities) converging to $+ \infty$ as follows: $\lambda_j^+(A) \sim \lambda_j(P) \sim cj^{2mq'/n}$ for $j \to \infty$, where c is a constant determined from $\sigma^0(P)$, and $a_i \sim b_j$ for $j \to \infty$ means $a_j/b_j \to 1$ for $j \to \infty$.

3. The case of a manifold with boundary.

3.1. Consider now the case where $\Gamma \neq \emptyset$. We may assume that $\overline{\Omega}$ is smoothly imbedded in an *n*-dimensional C^{∞} manifold Σ without boundary, A extended to an elliptic operator, also called A, on Σ . Let \widetilde{A} be a parametrix of A on Σ (a properly supported $q \times q$ -matrix pseudodifferential operator satisfying $\sigma(\widetilde{AA}) = \sigma(\widetilde{AA}) = I$).

Let A_B be the L^2 -realization of A in Ω determined by (1.2):

(3.1)
$$D(A_R) = \{ u \in L^2(\Omega)^q \mid Au \in L^2(\Omega)^q, (1.2) \text{ holds} \}.$$

It is well known that $A_B - \lambda$ is Fredholm as an operator from $\prod_{t=1}^q H^{m+m}{}^t(\Omega)$ to $\prod_{t=1}^q H^{m-m}{}^t(\Omega)$ (bounded operator!) if and only if (1.2) covers $A - \lambda$. For unbounded realizations, one may have the Fredholm property without covering (we have examples where the unbounded realization in $\prod_{t=1}^q H^{m-m}{}^t(\Omega)$ falls into the uniformly nonelliptic class of Vaı̆nberg and Grus̆in [6]). However, we have found for the L^2 -realization:

THEOREM 3.1. Let $\omega = \{\lambda | A - \lambda \text{ is not elliptic on } \overline{\Omega}\}, \omega_B = \{\lambda | \lambda \notin \omega \text{ but } (1.2) \text{ does not cover } A - \lambda\}.$ Then

ess sp
$$A_B = \omega \cup \omega_B$$
.

As the proof is technically much more involved than that of Theorem 2.1, only some ingredients will be mentioned: We use the theory of Boutet de Monvel [3] to construct a parametrix for A_B . It makes sense on $L^2(\Omega)$ thanks to the essential observation that $\widetilde{\mathfrak{A}}^{01}\beta^1\widetilde{A}$ is a trace operator of class 0 (in the sense of [3]), so acts on $L^2(\Omega)$, in contrast to $\beta^1\widetilde{A}$. Another important point is that ω_B is contained in the point spectrum of the symbol of a certain singular Green operator of order 0, associated with A_B —examples in [5] show that, in general, $\omega_B \neq \emptyset$.

3.2. For the case where A is strongly elliptic and formally selfadjoint, we find for the selfadjoint, lower bounded realizations (which may be character-

ized by use of [4]) the analogous results to those in §2.2: ess sp A_B is bounded, and the sequence of eigenvalues going to ∞ behaves approximately like the sequence of eigenvalues for a corresponding selfadjoint realization of P.

REMARK. By similar techniques one may study the spectral theory for the "boundary value problems with potentials" considered in Baouendi-Geymonat [2], and for certain boundary problems for pseudodifferential operators.

BIBLIOGRAPHY

- 1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92. MR 28 #5252.
- 2. M. S. Baouendi and G. Geymonat, Transposition des problèmes aux limites elliptiques, Symposia Math. 7 (1971), 421-441.
- 3. L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), 11-51.
- 4. G. Grubb, Weakly semibounded boundary problems and sesquilinear forms, Ann. Inst. Fourier (Grenoble) 23 (1973), 145-194.
- 5. _____, Essential spectra of elliptic systems on compact manifolds, Spectral Analysis (C. I. M. E., 1973), Edizioni Cremonese, Roma, 1974, pp. 141-170.
- 6. B. R. Vaïnberg and V. V. Grušin, *Uniformly nonelliptic problems*. II, Mat. Sb. 73 (115) (1967), 126-154 = Math. USSR Sb. 2 (1967), 111-134. MR 36 #552.
- 7. F. Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math. 12 (1959), 221-228. MR 21 #6472.

ISTITUTO MATEMATICO, POLITECNICO DI TORINO, TORINO, ITALY

MATEMATISK INSTITUT, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN, DENMARK