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Introduction. For a closed, densely defined linear operator T in a Hu­
bert space H, we define the essential spectrum ess sp T as the complement 
in C of the set of X for which T - X is a Fredholm operator (with pos­
sibly nonzero index). Recall (cf. Wolf [7] ) that X G ess sp T if and only if 
either T — X or 71* — X has a singular sequence, i.e. a sequence ukGH with 
\\uk\\ = 1 for all k, (T - X)uk —> 0 (or ( 7 * - \)uk —> 0) in H, but 
uk having no convergent subsequence in H. ess sp T is closed and invariant 
under compact perturbations of T9 and contains the accumulation points of 
the eigenvalue spectrum. 

Let £2 be an ^-dimensional compact C°° manifold with boundary V 

and interior £2 = Û\F. It is well known that when A is a properly elliptic 
operator on £2 of order r > 0, the L2-realization A# : u I—• Au with 
domain D(A g ) = {u G L2(Sl)\ Au G L2(Sl), Bu\T = 0}, defined by a bound­
ary operator B that covers A (i.e. {A, B} defines an elliptic boundary 
value problem), has ess sp A% = 0 . 

However, when A is a system of mixed order, elliptic in the sense of 
Douglis and Nirenberg (cf. [1]), ess sp A$ can be nonempty even when 
{A,B} is elliptic with smooth coefficients and £2 is compact. We study 
this phenomenon for a class of Douglis-Nirenberg systems of nonnegative order, 
determine the essential spectrum, and find the asymptotic behavior of the dis­
crete spectrum at + °° for the selfadjoint lower bounded realizations. 

Examples of the systems we consider are: The linearized Navier-Stokes 
operator and certain systems stemming from nuclear reactor analysis. A pre­
liminary, less advanced account of the theory was given in [5]. 

1. Preliminaries. 
1.1. For q integer > 1 there is given a set of integers mx > m2 > 
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• • • > mq> > mq'+i = ' • • = mq = 0; we assume 1 <q' <q and denote 

max ms = m. Let A = ( Ast)st==1 . . ,q be a q x qr-matrix of differential 

operators of orders ms 4- mt on 12. A is assumed elliptic (in the sense of 

[1]), i.e. the principal symbol a°(A) = (am + m (Ast)) has nonzero deter­

minants on r*(H)\0. It is useful to single out the zero order part of A by 

splitting the rows and columns into the first q' and the last q - q entries: 

eu) 

here P, Q and R are of positive order, and M is a multiplication operator. 
1.2. The notation for boundary conditions follows Grubb [4, Chapter 

3] : For u = {ul9 • • • , uq}, |30w denotes the Dirichlet data (the collection 
of the normal derivatives of each ut up to order mt — 1), and fixu denotes 
the remaining normal derivatives up to orders mt + m — 1, arranged as in [4] ; 
pu = {/3°n, p1!*} constitute the "Cauchy data". We consider boundary con­
ditions of the form 

(1.2) B00p°u = 0, B10(5°u + Blxa0l$xu = 0, 

where Q01 is a certain fixed surjective differential operator entering in 

Green's formula, and the B' ' are systems of differential operators of suitable 

orders (cf. [4] , selfadjoint or semibounded realizations necessarily stem from 

boundary conditions of this form, and it can be shown that boundary problems 

in general reduce to at least inhomogeneous conditions on j3°w and 

d01p1u, the "reduced Cauchy data"). We assume thoughout that (1.2) covers 

A (satisfies the conditions in [1]). 

2. The case of a manifold without boundary. 
2.1. Assume first that H is compact with F = 0 , i.e. H = Ü. Then 

A has a parametrix A, which we split in the same blocks as (1.1): 

(2.1) 

here P, Q and R are pseudodifferential operators of negative (mixed) order, 
and S is a ps.d.o. of order zero. A has only one L2-realization, which we 
call A, 
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(2.2) D(A) = {uGL2(Slf\AuGL2(Slf}. 

One finds by use of A that D(A)cn%sll/
nt(Sï). 

THEOREM 2.1. ess sp A = {X + OlX-1 G ess sp S } = {X + OlX 

an eigenvalue for a°(5)(x, Ç) /or some (x, £) G r*(H)\0} = {XIA -
m^ elliptic}. 

SKETCH OF PROOF. The first identity follows from the fact that 

~ / 0 0 \ 
(2.3) A = I J + compact operator in L2(£l)q. 

\0 SI 

In the second identity, the inclusion C is immediate; on the other hand, when 
JU is an eigenvalue for o°(S)(x0, £0) with eigenvector 0, S - IJL has the 
singular sequence (in a local coordinate system where x0 = 0) 

(2.4) wk(x) = k"l2v(kx)exp(i(x, k2%0>)0, fc —> °°, 

where uGCJ(R") with u(0) = 1 and llull0 = 1. Finally, the last identity 
follows from the equation, valid for X G C, 

(2.5) det a°(A - X) = det o°(I - XS)det a°(A). 

REMARK, ess sp 4̂ is bounded if and only if P (cf. (1.1)) is elliptic. 
2.2. Furthermore, assume now that A is strongly elliptic (i.e., a°(A) + 

a°(A)* is positive definite on T*(Û)\Q) and formally selfadjoint. Then, in 
particular, P is strongly elliptic, so ess sp A is bounded. Since A is un­
bounded (and selfadjoint, lower bounded), it has a sequence of eigenvalues 
\*(A) converging to + °° for ƒ —* °°. For large X, the eigenvalue problem 

(P - X)u + Qw = 0, Q*v + (M - X)w = 0 

is equivalent with the nonlinear problem 

(2.6) (P - Q(M - X)- 1ö*)w - Xu = 0. 

Here P - Ö(M - X ) " ^ * approaches P as X becomes large, so (2.6) 
approaches an eigenvalue problem for P in some sense. Indeed, we can show 
(see [5]): 
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THEOREM 2.2. Let A be strongly elliptic and formally selfadjoint. The 

spectrum of A on ] \\M\\, + °°[ is a sequence of eigenvalues X* (A) < 
Xj (A) < • • • (repeated according to multiplicities) converging to + °° as 

follows: \f(A) ~ \f(P) ~ c/2m<?' n for j —-> <», vvftere c w a constant de­

termined from o°(P)9and üj~bj for ƒ —>°° raeaws a^bf—* 1 /or ƒ—*°°. 

3. The case of a manifold with boundary. 
3.1. Consider now the case where T ¥=0. We may assume that £2 is 

smoothly imbedded in an «-dimensional C°° manifold 2 without boundary, 
A extended to an elliptic operator, also called A, on S. Let A be a para-
metrix of A on 2 (a properly supported q x ^-matrix pseudodifferential 
operator satisfying a (A A) = a(A A) = / ) . 

Let AB be the I2-realization of A in SI determined by (1.2): 

(3.1) D(AB) = {u eL2(tl)q\Au GL2(£l)q, (1.2) holds}. 

It is well known that AB - X is Fredholm as an operator from 

n ? = 1 / / m + m ' ( f t ) to n ? = 1 # m ~ m ' ( f t ) (bounded operator!) if and only if 

(1.2) covers A — X. For unbounded realizations, one may have the Fredholm 
property without covering (we have examples where the unbounded realiza­
tion m n^ = 1 / / f(£l) falls into the uniformly nonelliptic class of Vaînberg 
and GruSin [6]). However, we have found for the L2-realization: 

THEOREM 3.1. Let co = {XIA - X is not elliptic on £2}, coB = 
{ XIX é co but (1.2) does not cover A - X}. Then 

ess sp AB = co U OÙB . 

As the proof is technically much more involved than that of Theorem 
2.1, only some ingredients will be mentioned: We use the theory of Boutet 
de Monvel [3] to construct a parametrix for AB. It makes sense on L2(£l) 

thanks to the essential observation that Ö 0 A is a trace operator of class 

0 (in the sense of [3] ), so acts on L2(SI), in contrast to ^ A . Another 
important point is that coB is contained in the point spectrum of the symbol 
of a certain singular Green operator of order 0, associated with AB— exam­
ples in [5] show that, in general, GJB =£ 0 . 

3.2. For the case where A is strongly elliptic and formally selfadjoint, 
we find for the selfadjoint, lower bounded realizations (which may be character-
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ized by use of [4] ) the analogous results to those in §2.2: ess sp AB is bounded, 
and the sequence of eigenvalues going to °° behaves approximately like the se­
quence of eigenvalues for a corresponding selfadjoint realization of P. 

REMARK. By similar techniques one may study the spectral theory for the 

"boundary value problems with potentials" considered in Baouendi-Geymonat 

[2], and for certain boundary problems for pseudodifferential operators. 
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