UNBOUNDED OPERATORS WITH SPECTRAL CAPACITIES

BY I. ERDELYI

Communicated by Robert Bartle, January 15, 1974

The concept of spectral capacity introduced by C. Apostol in [1] and its relationship to decomposable operators [3] established by a theorem of C. Foiaş [4] are used for an investigation in the unbounded case.

Let $\mathfrak{S}(X)$ denote the family of subspaces (closed linear manifolds) of a Banach space X, and let \mathfrak{F} and \mathfrak{R} represent the collection of closed and compact subsets of the complex plane π , respectively. The superscript c stands for the complement.

- 1. DEFINITION [1]. A spectral capacity in X is an application $\mathfrak{E}:\mathfrak{F}\to\mathfrak{S}(X)$ which satisfies the following conditions:
 - (i) $\mathfrak{E}(\varnothing) = \{0\}, \mathfrak{E}(\pi) = X;$
 - (ii) $\bigcap_{n=1}^{\infty} \mathfrak{E}(F_n) = \mathfrak{E}(\bigcap_{n=1}^{\infty} F_n), \{F_n\} \subset \mathfrak{F};$
 - (iii) for every finite open cover $\{G_i\}_{1 \le i \le m}$ of $F \in \mathfrak{F}$, $\mathfrak{E}(F) = \sum_{i=1}^m \mathfrak{E}(F \cap \bar{G}_i)$.

In order to confine the present investigation to densely defined operators on X, the following additional constraint on the spectral capacity is needed:

2. Definition. A spectral capacity & will be referred to as regular if the linear manifold

$$X_0 = \{x \in \mathfrak{E}(K) : K \in \mathfrak{R}\}\$$

is dense in X.

- 3. DEFINITION. A linear operator T:D(T) ($\subseteq X$) $\rightarrow X$ is said to possess a regular spectral capacity \mathfrak{E} (abbrev. $T \in \mathfrak{T}(\mathfrak{E})$) if it is closed, has a nonvoid resolvent set and satisfies the following conditions:
 - (iv) $\mathfrak{E}(K) \subseteq \mathfrak{D}(T)$ for all $K \in \mathfrak{R}$;
 - (v) $T(\mathfrak{C}(F) \cap \mathfrak{D}(T)) \subseteq \mathfrak{C}(F)$ for all $F \in \mathfrak{F}$;
- (vi) the restriction $T_F = T | \mathfrak{C}(F) \cap \mathfrak{D}(T)$ has the spectrum $\sigma(T_F) \subseteq F$, $F \in \mathfrak{F}$.
- 4. THEOREM. Given $T \in \mathfrak{T}(\mathfrak{E})$. For every $K \in \mathfrak{R}$, the restriction $T_K = T | \mathfrak{E}(K)$ is a (bounded) decomposable operator on $\mathfrak{E}(K)$ possessing the

AMS (MOS) subject classifications (1970). Primary 47B99; Secondary 47A15,

Key words and phrases. Unbounded operators, spectral capacity, decomposable operators, spectral maximal spaces, weak spectral manifolds.

spectral capacity \mathfrak{E}_K defined by

(1)
$$\mathfrak{E}_K(F) = \mathfrak{E}(K \cap F) \text{ for all } F \in \mathfrak{F}.$$

In the proof it is shown that T_K is bounded by the closed graph theorem and \mathfrak{E}_K , as defined by (1), is a spectral capacity for T_K .

A property which is instrumental for the subsequent study of operators in $\mathfrak{F}(\mathfrak{E})$ is expressed by the following

- 5. THEOREM. Let $T \in \mathfrak{T}(\mathfrak{E})$ and $K \in \mathfrak{R}$. The following statements are equivalent:
 - (i) $x \in \mathfrak{E}(K)$;
- (ii) there exists an X-valued function \tilde{x} analytic on K^c satisfying the equation

$$(\lambda - T)\tilde{x}(\lambda) = x$$
 for all $\lambda \in K^{c}$.

The implication (i) \Rightarrow (ii) of the proof is based on the single-valued extension property of a decomposable operator. (ii) \Rightarrow (i) is proved first for an $x \in X_0$ with the help of a result by C. Foiaş [4]:

$$\{y \in \mathfrak{C}(L) : \sigma_{T_n}(y) \subseteq K\} = \mathfrak{C}(K) \text{ where } L(\supset K) \in \mathfrak{R}.$$

Next, for $x \notin X_0$, the density of X_0 in X and the closeness of $\mathfrak{E}(K)$ complete the proof.

6. Theorem. Every $T \in \mathfrak{T}(\mathfrak{E})$ has a unique regular spectral capacity.

In the first stage of the proof, the application of Theorem 5 shows that any two regular spectral capacities \mathfrak{E} and \mathfrak{E}_1 of T agree on \mathfrak{R} . Next the property expressed by Definition 2 implies that $\mathfrak{E}(F) = \mathfrak{E}_1(F)$ for all $F \in \mathfrak{F}$.

7. Theorem. For every $K \in \Re$, $\mathfrak{C}(K)$ is a spectral maximal space of $T \in \mathfrak{T}(\mathfrak{C})$.

The proof is performed with the help of Theorems 4 and 5.

8. THEOREM. Given $T \in \mathfrak{T}(\mathfrak{E})$. For every $x \in X$ there exists a nonvoid open set $U \subseteq \pi$ and a sequence $\{\tilde{x}_n\}$ of X-valued functions analytic on U, with

$$\lim_{n \to \infty} (\lambda - T)\tilde{x}_n(\lambda) = x \quad \text{for all } \lambda \in U.$$

Again, the proof is obtained by an application of Theorem 5.

We redefine E. Bishop's concept of weak spectral manifold $\mathfrak{N}(F, T)$ [2, Definition 2] without the restriction of T being bounded as follows: Given $T:\mathfrak{D}(T)$ ($\subseteq X$) $\to X$ and $F \in \mathfrak{F}$, $\mathfrak{N}(F, T)$ is the set of all $x \in X$ which

1110 I. ERDELYI

have the property that for each $\varepsilon > 0$ there exists an X-valued function \tilde{x} analytic on F^c such that $||x - (\lambda - T)\tilde{x}(\lambda)|| < \varepsilon$, for all $\lambda \in F^c$.

A straightforward consequence of Theorem 8 is the following

9. COROLLARY. Given $T \in \mathfrak{T}(\mathfrak{E})$. For every $F \in \mathfrak{F}$,

$$\mathfrak{E}(F) = \mathfrak{N}(F, T).$$

REFERENCES

- 1. C. Apostol, Spectral decompositions and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 1481–1528. MR 40 #3333.
- 2. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379-397. MR 22 #8339.
- 3. C. Foiaș, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. 14 (1963), 341-349. MR 27 #2865.
- 4. ——, Spectral capacities and decomposable operators, Rev. Roumaine Math. Pures Appl. 13 (1968), 1539–1545. MR 40 #3334.

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122.