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The concept of spectral capacity introduced by C. Apostol in [1] and 
its relationship to decomposable operators [3] established by a theorem 
of C. Foia§ [4] are used for an investigation in the unbounded case. 

Let S(X) denote the family of subspaces (closed linear manifolds) of 
a Banach space X, and let % and R represent the collection of closed and 
compact subsets of the complex plane 7r, respectively. The superscript c 
stands for the complement. 

1. DEFINITION [1]. A spectral capacity in X is an application (£:<$->• 
<5(X) which satisfies the following conditions: 

(i) ( £ ( 0 ) = { o}, (Ê( 7 r )= j r ; 
(ii) nZl^(Fn) = (è(C]n=lFn)AFn}^d; 

(iii) for every finite open cover {G,}^,^mof F e g,<^/9 = 2£i^(Fn(7<). 
In order to confine the present investigation to densely defined operators 

on X, the following additional constraint on the spectral capacity is 
needed : 

2. DEFINITION. A spectral capacity (£ will be referred to as regular if 
the linear manifold 

X0 = {xe®(K):KeR} 
is dense in X. 

3. DEFINITION. A linear operator T\D(T) (^X)->Xis said to possess 
a regular spectral capacity © (abbrev. Te %((£)) if it is closed, has a 
nonvoid resolvent set and satisfies the following conditions : 

(iv) <£(*)£ D ( D for all K e ft; 
(v) T((£(F)nX)(T))^(è(F) for all F e g ; 

(vi) the restriction TF=T\(£(F)n'D(T) has the spectrum a(TF)çF, 
FG%. 

4. THEOREM. Given Te %((£). For every KeR, the restriction TK= 
T\(&(K) is a (bounded) decomposable operator on <&(K) possessing the 
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spectral capacity (&K defined by 

(1) (£K(F) = <£(K n F) for all F e g . 

In the proof it is shown that TK is bounded by the closed graph theorem 
and &K, as defined by (1), is a spectral capacity for TK. 

A property which is instrumental for the subsequent study of operators 
in g((£) is expressed by the following 

5. THEOREM. Let TeX(<£) and KG St. The following statements are 
equivalent: 

(i) x e <£(£); 
(ii) there exists an X-valued function x analytic on Kc satisfying the 

equation 
(A - T)x(À) = x for all X G KC. 

The implication (i)=>(ii) of the proof is based on the single-valued ex­
tension property of a decomposable operator. (ii)=>(i) is proved first for 
a n x G J 0 with the help of a result by C. Foia§ [4] : 

{y G Œ(L) : aT£(y) <= K} = (£(K) where L(z> K) e R. 

Next, for x $ X0, the density of X0 in X and the closeness of (£(X) com­
plete the proof. 

6. THEOREM. Every T G X(<&) has a unique regular spectral capacity. 

In the first stage of the proof, the application of Theorem 5 shows that 
any two regular spectral capacities (E and Ĝ  of T agree on 51. Next the 
property expressed by Definition 2 implies that (£(F) = (£1(F) for all 

7. THEOREM. For every KG51, &(K) is a spectral maximal space of 
TGX(<&). 

The proof is performed with the help of Theorems 4 and 5. 

8. THEOREM. Given T e %((£). For every x G X there exists a nonvoid 
open set U^TT and a sequence {xn} of X-valued functions analytic on U9 

with 
lim (À - T)xn{K) = x for all X GU. 

Again, the proof is obtained by an application of Theorem 5. 
We redefine E. Bishop's concept of weak spectral manifold 5R(F, T) 

[2, Definition 2] without the restriction of T being bounded as follows: 
Given T: X)(T) ( c xy+X and f e g , 5R(F, T) is the set of all x G X which 
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have the property that for each e > 0 there exists an X-valued function 
jc analytic on Fc such that \\x—(A—T)x(X)\\ <s, for all X e Fc. 

A straightforward consequence of Theorem 8 is the following 

9. COROLLARY. Given T e £((£). For every F e g> 

<&(F) = K(F, T). 
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