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The results of [4] proved that many exotic spheres do not admit smooth 
actions of relatively high-dimensional compact Lie groups (all group 
actions considered in this paper are assumed to be effective). It was 
clear that stronger results should hold in certain cases, and this was 
confirmed in [5]. A notable feature of [5] is the use of nonexistence theor­
ems for certain smooth circle actions to prove nonexistence theorems for 
large Lie group actions. These theorems for circle actions actually reflect 
much stronger nonexistence results for smooth Z^ actions, the proofs 
of which are outlined in this paper. 

Recently H. B. Lawson and S. T. Yau obtained other (frequently much 
stronger) nonexistence theorems for connected nonabelian actions on 
exotic spheres using differential-geometric methods and results of N. 
Hitchin. Since our methods and [2] readily yield nonexistence theorems 
for toral actions, in some sense the topological methods of this paper are 
complementary to these geometric methods. 

As an illustration of the sort of results obtainable by our methods, 
we give examples of exotic spheres with no effective smooth torus actions. 

1. Normal invariants of homology equivalences. A homotopy smoothing 
of a smooth manifold M is a pair (X, ƒ) such that f:X-+M is a homotopy 
equivalence; a fundamental construction assigns to each homotopy 
smoothing a normal invariant rj(X,f) e [M, F/O], In fact, normal in­
variants are definable for pairs (X,f) where ƒ is merely a homology equiva­
lence with respect to a subring of the rationals.3 All such subrings have the 
form Zj, the integers with inverses of all primes not in / adjoined, and the 
generalized normal invariant takes its values in [M, F/Oj]^[M, FjO]t 

(see [8, Chapter II] for the relevant localization theory). Many formal 
properties of ordinary normal invariants which are useful in calculation 

AMS (MOS) subject classifications (1970). Primary 57E15, 57E25. 
1 Summary of results. 
2 Partially supported by NSF Grants GP-36418X and GP-19530A1-2. 
3 Various generalizations of normal invariants to homology equivalences have been 

previously studied by L. Jones, S. Cappell and J. Shaneson, and W. Browder (and 
probably others). 
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generalize in an obvious way. We should note that the smooth category 
is replaceable by the PL and topological categories in this discussion. 

2. Internal normal invariants. Suppose we are given a smooth orien­
tation-preserving Zj, action on a homotopy sphere Sn+2fc; assume the 
fixed point set Kn has codimension at least 4, and let S be an invariant 
(2k— l)-sphere in 2 which links K once. Since A" is a Z^-homology sphere 
by a classical theorem of P. A. Smith, it follows that the induced inclusion 
5/Z^çS—KjZy is a Z^-homology equivalence and hence a homotopy 
equivalence of the localizations of these spaces at p. The inverse of this 
homotopy equivalence induces an equivariant fiber homotopy triviali-
zation of the equivariant fiberwise localization [8, Chapter IV] of the 
equivariant normal bundle of K. In homotopy-theoretic terms, this 
object corresponds to an element of the set of homotopy classes 

(2-1) [K, FZ(V\JCZ{V)\, 

where V is the Zp-vector space of normal vectors at a fixed point, Cz (V) 
is its orthogonal centralizer, and Fz (V) is the space of equivariant self-
maps of the unit sphere in V (compare [1]). Call this class the internal 
normal invariant of the action. 

Every element of (2.1) determines a Z(2))-homology equivalence from 
some S/Zp-bundle over Kn to Snx(S\Zv){v). The ideas discussed in §1 
yield a map <p from (2.1) to [SnL{p)vSn, FJOi3t)]9 where L=S/ZP. 

LEMMA 2.2. The space Fz (V){ip)jCz (V) is simple, and the map q> 
factors through [K, (Fz^jC^iV^J^iF^VyC^iV))^. 

This result allows us to ignore many of the topological differences be­
tween K and the ordinary sphere. 

If Wis another free Z^-module, then the diagram 

7rn(FZv(V)lCZp(V)\v)-+7Tn(FZp(V ® W)/CZp(V® W))i0) 

(2.3) j?o j?o 

[S«L V Sn, FlO]iP) J^ [SnL' v Sn, FjO]{v) 

(where Z/ = orbit space of the unit sphere 'm VÇ&W and i* is induced 
by the inclusion L<^L') commutes. Then we have the following result: 

LEMMA 2.4. Let Fz and Cz denote the limits of Fz (V®kW), 
Cz (V(BkW) over all k with respect to Whitney sum (compare [1]). Then 
(p0 depends only upon the image of an element in the stabilized group 

The internal normal invariant of a Zp action gives considerable infor­
mation about the differential structure on 2 . Let W in (2.3) be two 
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dimensional, and let a be the map in (2.3) defined by taking Whitney 
sums with W. Recall that L'\L has the homotopy type of the wedge 
S2kvS2k+1. 

THEOREM 2.5. Let co be the internal normal invariant of the Zv action 
on 2 . Then (p(co) is trivial, and hence (p(a(co)) lies in the image of 

[Sn(L/L), FjO\v)^ 7rn+2k+1(FlO)iv) 0 7Tn+2fc(F/0)(3)). 

This preimage can be chosen so that its rrn+21c component is the Pontrjagin-
Thom construction on — S. 

3. Applications to special cases. We first mention a result which follows 
from techniques developed by G. Bredon.4 

PROPOSITION 3.0. Let S w be a homotopy m-sphere admitting a smooth 
Zv action with an (m—2)-dimensional fixed point set. Then ^GpVm+ 

Because of this, we can concentrate on the case where the fixed point 
set has codimension ^ 4 . 

There is a familiar spectral sequence (see [3, Chapter 14]) with 
(3.1) EÎ,Q = H-»(L;ITQ(FIO)) 

which converges to [SP+QL', F/0], where L' is the orbit space in (2.3) 
and W is arbitrary. Using this spectral sequence and the results of §2 
we obtain a necessary condition for the existence of a smooth Zv action 
on Sn+2fc with a fixed point set of codimension 2k. 

PROPOSITION 3.2. If 2n+2fc admits a smooth Zp action with an n-dimen-
sional fixed point set, then its Pontrjagin-Thom construction in 7rn+2k(FlO){p) 

is a permanent cycle in the above spectral sequence (3.1). 

The stable homotopy properties of K(ZP, 1) together with Proposition 
3.2 yield nonexistence theorems such as the following: 

THEOREM 3.3. Let OL± G 7r2p„3 (the stable stem) generate the p-primary 
component, let f denote a Pontrjagin-Thom construction for S and assume 
£(*! ̂  Image J in the stable homotopy groups of spheres. Suppose Zv acts 
smoothly on S with a 2k-codimensional fixed point set. Then k is divisible 
by p. 

Note. Theorem 3.3 implies all the nonexistence theorems for group 
actions on homotopy spheres in [4] and [5]. 

We now specialize to I=j8 l 5 the Pontrjagin-Thom construction on 2^. 

4 See Bredon, Classification of regular actions of classical groups with three orbit 
types (preprint), §5, for the basic construction. I am grateful to Professor Bredon for 
outlining a proof of 3.0. 
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Since / J ^ ^ Image J by results of Toda, the only codimensions for 
a Zv action not ruled out by Theorem 3.3 are 2p, 4p9 • • • , 2(p—2)p. 
These restrictions are the best possible, for one can use Theorem 2.5 
and methods of [6], [7], and [9] to construct semifree circle actions on 
Sp with each of these numbers as the codimension of the fixed point set 
(this corrects an assertion at the end of [6] concerning such actions). 
In fact, if p ^ 5 , roughly half these actions extend to semifree *S3 actions. 

Refinement of the above approach yields similar results for Zvr actions 
(p prime); the analog of Proposition 3.2 involves the fixed point set of 
the Zp subgroup. This, some results of stable homotopy theory, and equi-
variant tangent bundle considerations yield further results such as the 
following: 

PROPOSITION 3.4. Given a smooth circle action on the exotic %-sphere, 
the fixed point sets ofZ2 andZ± have dimensions 4 and 0 or 4 respectively, 
conversely, the exotic S-sphere admits smooth circle actions of both types. 

An argument involving Z4 weight systems gives the following appli­
cation : 

COROLLARY 3.5. The exotic 8-sphere admits no smooth torus actions. 

Details of these and further results of a similar nature will be given in 
subsequent papers. 
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