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The purpose of this paper is to present a characterization of n-fold
loop spaces for 1 =n< co. The approach is in the same spirit as G. Segal’s
investigation of infinite loop spaces via “special I'-spaces” [4]. Category
theoretic terminology not explained here may be found in [1].

I. The P-construction on small pointed categories. Let P; be the
category with objects the finite ordered sets, n={0,- -, n}, and with
morphism sets Py(n, m)={f: n—>m|f(0)=0; SO S(G) if i<jand f(j)#0}.
Let #:P, X P,—P; be the bifunctor such that n#m={0, - - -, n+m} and
such that if f; € P,(n,;, m,) for i=1, 2,

[#L(D = A, 0=j=m;
=LG—nm)+m, nn<j=n+n andfz(j" ny) # 0;
=0, ny <j=ny+ nyand fo,(j — ny) = 0.

Then # is strictly associative and 0 is a two-sided unit for # and a unique
null-object for P;.

Let C be a small category with a unique null-object e. For each a € C,
we will denote by N, and O, the unique morphisms in C(a, ) and C(e, a)
respectively. We now construct a strictly monoidal category P(C), which
one might describe as a “wreath-product’ of P, with C.

The objects of P(C) are the finite sequences, (a;, " * -, a,), of nonnull
objects of C (including the empty sequence ( )). If a={(a;, -, a,)
and f=(b,, " -, b,), we set

P(C)(OC, ﬁ) = {(f, hl’ Tt hn) |f€ Pl(”5 k)! hz € C(ai’ bf(i))}'

(By convention, by=e.) Composition of morphisms is defined according
to the rule:

(f’; hlia T, h/::)(f’ hla T, hn) = (f’f9 hf’(l)hl’ Y h;(n)hn)'
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We define a bifunctor #:P(C)xP(C)—P(C) by:

<a1"",an>#<b1a”':bk>=<a1’.“’an9b1""abk>’
and

(f;hl"“:hfn)#(f’;hll"",hli:)=(f#f’:hls"'9hn9h{a”"hi¢)'

# is strictly associative and ( ) is a two-sided unit for # and a unique
null-object. There is a natural embedding of C as a full subcategory of
P(C) via the functor er( ); a—a), if ae C, aste; h—(; h)if his a
morphism in C.

If we let P, denote the full subcategory of P, containing just 0 and 1,
it is easy to check that P;~P(P,).

II. Homotopy-monoidal functors. Let 7 denote the category of pointed,
compactly generated topological spaces of the homotopy type of a CW-
complex and all continuous basepoint-preserving maps. Let [ [:7 X 7—7
denote the direct product bifunctor. If F is any functor from P(C) to 7,
there is a natural transformation

IF:F - #T1- (F x F):P(C) X P(C)—>r

where, for «, 8 € P(C), Liy.p: F(etf)—F(x) X F(B) is the unique map
whose projections onto F(«) and F(B) are F(I,#Ng) and F(N,#1) respec-
tively. Notice that for «, 8, y € P(C),

o o — o F
(Lia.p) X Ipt) * Liagpy = Upr X Ligy)* Lia,pans

and that therefore, L¥ extends naturally to products of more than two
elements. In particular, if a;,-- -, a, are in C and a=(a;, - -, a,), we
have a map: LY : F(0)—>T i, F(a,).

The functor F is said to be homotopy-monoidal if L* is a natural homo-
topy equivalence; or equivalently, if LY is a homotopy-equivalence for
all « in P(C). The category of all such homotopy-monoidal functors from
P(C) to 7 will be denoted by (P(C), 7),.

Let R* denote the topological monoid of nonnegative integers under
addition. We let .# 5. denote the category of topological monoids over
R*. To be precise, an object of A 5. is a pair (M, q,,), where M is a
monoid in 7, and ¢,, is a continuous homomorphism of monoids from M
to R*. A morphism from (M, g,) to (M’, q;;) is a continuous homomor-
phism g: M—M’ such that q,,g=¢g,,. The direct product in .# z. is the
pull-back over R*, and we will denote it by the symbol . If (C, e) is
as above, we will let (C, # z.), denote the category of functors from C to
M g+ such that F(e)=(R*, I:) and F(N,)=¢p, for all a e C.
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THEOREM 1. There is a functor, FisF:(C, M g.)e—(P(C), 7), such
that F|o=|F|, where | |: M p.— is the forgetful functor.

Proor. Let Fe (C, #g+), For a={ay, - *,a,) in P(C) we set
F(w)=H}-1 F(a;). For (f; hy,** , h,) € P(C)(a, B), define F((7; hy, - , h,))
to be the composition:

n HFR) E o, &
H Fe)— FErbu = H ( F Fts0) = Feb
i= = = = j=

where u;=F(0,) if [ (j)=3 ; =Ip, if f7(j) is singleton; and is the

multiplication in F(b,) otherwise. That £ is a functor is a straightforward

but tedious exercise which we omit. * is defined on natural transformations
in the obvious way and again we omit the details. It remains to verify that

F is homotopy-monoidal.

If a={ay,"**,a,)e€P(C), then L :F(«)->] ], F(a,) is in fact the
canonical inclusion H-; F(a;) <] ;=1 F(a,). Define a homotopy-inverse
to LY as follows: Let u; denote the multiplication in F(a,), and if x=
(P xn) € H:';l F(ai)a let mw=max{qF(a1)(xi)|1§i§n}~ Define G(x)=
(1> * ' » V), Where

Vi = lui(F(Oa,')(mm - qF(az)(xi))’ xi)'

Since gp,)(y)=m, for all i, (yy," ", y,) eHie1 F(a;). G is clearly a

left inverse for L and a right homotopy-inverse for LZ. Hence F is homo-

topy-monoidal, and the theorem is proved.

III. Special P -spaces and iterated loop spaces. Following the pattern
for P, and P, above, we define P,=P(P,_,) for n=2, and if m<n, we iden-
tify P,, with its image in P,. Notice that if m<n, P,, is a full subcategory
of P,,, but the monoid structure of P,, is not related to the monoid structure
of P,, and hence, if Fe (P,, 7),, F|p, is not necessarily in (P,,, 7). If
Fis a functor from P, to =, we say that F'is a special P ,-space if F|p_is in
(P> T)p for allm, 1 =m=n, and if F(0) is a point. We denote the category
of special P,-spaces by (P,, 7),. If X € 7, we say that X admits a special
P -structure if there is an F in (P,, 7), such that F(1)~X.

If Fe (P,, 7),, we say that F is well-pointed, if for every « € P,, F(O,):
F(0)—F(a) is a cofibration. (P,, 7),, Will denote the category of well-
pointed, special P,-spaces.

THEOREM 2. For every n=0, there is a functor W:(P,, T)sp=>(Ppi1s Tew
such that for every F € (P,, 7)y,, WF(1)~|QF(1)|, where Q is the Moore
loop space functor: —M p.

ProoF. Let Fe (P,, 1), Then QF € (P,, A p+), and, by Theorem 1,
we have (QF)" € (P,.1, 7). If a€ P, then F(O,): F(0)—F(a) is a co-
fibration, hence QF(0,): QF(0)=R+—QF(a) is a cofibration, and it
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follows easily that F(O,): R¥—(QF)" («) is a cofibration foralla € P, ;.
We now define WF(x)=(QF)"(«)/R*, where the quotient is as spaces
not as monoids. If heP, ;(«, B), then Ogh=0,, hence WF extends
naturally to morphisms. The quotient natural transformation from (QF)*
to WF is a natural homotopy equivalence since Rt is a cofibered contrac-
tible subset of F(«) for all « €P,,,. Therefore WF|p_ € (P,, 1), if
(QF)"|p,, is. By Theorem 1, (QF)" € (P,1, 7), and (QF)*|p, =|QF||p,
if m=n. But |Q| preserves homotopy equivalences and products up to
homotopy equivalence, and it follows easily that |QF|[p_ € (P, 7),,
for 1=m=n. The theorem now follows immediately.

COROLLARY 2.1. If X € 7 and X has a cofibered basepoint, then Q"(X)
admits a P ,-structure.

The proof is an easy induction using Theorem 2.

IV. Delooping. We utilize the delooping technique of Segal [4]
to prove that every connected space which admits a special P,-structure is
of the homotopy type of an n-fold loop space.

Recall that a semisimplicial object in 7 is a functor 4:A°*—r, where A is
the category whose objects are the finite ordered sets, [n]={0, -, n}
for n=0, and whose morphisms are all weakly increasing set functions.
For 1=<i=n, let A7:[1]—[n] be the map which sends 0 and 1 to i—1
and i respectively. If 4 is a semisimplicial object in 7, we say that 4 is a
special A-space if A([0]) is a point and the map A4([n])—(4([1]))" induced
by the maps A(4;"), for 1 Si=<n, is a homotopy equivalence for all n=1.
If A is a special A-space, we let BA denote the Milnor realization of 4 as a
semisimplicial space [2], [3], [4]. If A([1]) is connected, then BA is also
connected, and Segal has proved [4] that 4([1])~QBA.

THEOREM 3. There is a functor B:(P,, 7)~>(P,_y, 7),, for each n=1,
such that if F € (P, 7), and F(1) is connected, then BF(1) is connected and
F()~QBF().

Proor. Define a functor E:A°®—P, as follows: E([n])=n, and if
fe€A([n], [m]), then Ef € P,(m, n) is defined by:

Ef) =0, i> f(n)or i < £(0),
=j, fG—D<i=f(
If 7 € A([1], [n]) is as above, 1 =i=n, then EA{(j)=0,;,j € n. It follows
that if F is a special P;-space, then FE is a special A-space.
Now, let Fe (P,, 7),. We have a functor, F:P, ,—(P;, 7),, given by:
F(a)(m)=F(<aa T, a>) (m terms), FN(a)(f)=F((f, Ia’ T, Ia)), and
F(h)(m)=F((I,; h, - - - , b)), where a is an object in P,_;, m is an object
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in Py, fis a morphism in P, and 4 a morphism in P,_,. Using the functori-
ality of the realization functor B, we can define a functor BF:P,_,—r
by BF(a)=B(F(a)E). A tedious but straightforward argument, using the
fact that B preserves products (of semisimplicial spaces) and homotopy
equivalences, tells us that BF is a special P,_;-space. We omit the details
of this and of the equally straightforward account of the functoriality
of B.

Since F(1)=F(1)(1), it follows from the remarks just preceding the
statement of this theorem that BF(1) is connected and F(1)=~QBF(1),
if F(1) is connected.

COROLLARY 3.1.  Suppose X is in 7, is connected, and admits a special
P,-structure. Then there exists a Y in T such that X~~Q"(Y).

The proof is an easy induction using Theorem 3.

BIBLIOGRAPHY

1. S. Mac Lane, Categories for the working mathematician, Springer-Verlag, New
York, 1971.

2. J. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math.
(2) 65 (1957), 357-362. MR 18, 815.

3. G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci.
Publ. Math. No. 34 (1968), 105-112. MR 38 #718.

4. , Homotopy-everything H-spaces (preprint).

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NEW YORK
10458



