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In [1] Brown, Pearcy and Salinas give an affirmative answer to the 
following question : Given a compact operator T on a separable Hubert 
space H, is there an ideal A(T) containing T and different from the ideal 
K of all compact operators ? Their construction relies on some ideas of 
Von Neumann-Calkin [2] and is rather complicated. 

The purpose of this brief note is to show that the existence of such a 
A(T) follows from elementary properties of the .y-numbers of T Recall 
that the ^-numbers, (sn(T)), are the eigenvalues of (TT*)1/2 arranged in 
decreasing order and counting multiplicities. We list the three properties 
we need : 

(1) If S, TEK, then sn+m(S+T)^sn(S)+sm(T). 
(2) If R, S, TeL, then sn(RST)^\\R\\sn(S)\\T\\. Here L denotes the 

space of all bounded linear operators on H. 
(3) If Te K, then there are orthonormal sets (fn) and (yn) in H such 

t h a t r = 2 ^ i ^ m / n ^ n . 
We also use the following fact concerning real sequences : 
(4) If (/9n) is a nonnegative sequence of real numbers increasing to 

oo with l//?nec0\IJ3>>o ^> then there is a positive sequence (oLn)elx 

such that 2£U &nPn== + co a n ( i (/?n°0 *s decreasing. Also, there is a 
decreasing null sequence (yn) such that 2£U 7nan^w= + 00-

The construction of A(T). Let a„={TeK:2%-i snCO*< + <*>}- lt 

is well known and easy to prove that K\\JP>0 <TPT*0. (For a study of these 
important ideals see [3] and [4].) Thus we may suppose, for our purpose, 
that TeK\{Jv>QOv. Then pn=\jsn(T) increases to oo and l/fine 
c0\UP>0 lp. Let (ocw) be as in (4) and let 

A(T) = is e L: %sn(S)oinpn < + o o i 

It follows from (4) and the definition of (J3n) that TE A(T). 
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If the rank of S is finite, then sn(S)=0 for large enough n and so A(T) 
contains the finite rank operators (this fact also follows from deeper 
considerations). 

If R9 S e A(T) then by (1) and (4) 

and similarly for cK.2n_ip2n-i
s2n-i(R+^)' Thus A(T) is a linear space. 

Also, it follows from (2) that A(T) is closed under left and right composi­
tion by bounded linear operators. 

Let T0=^ynfn®yni where (yn) is as in (4) and (ƒ„) and (yn) are deter­
mined by (3). Then sn(T0)=yn+1 and so by (4) T0 e K\A(T). 

Using the recent results [5] and [6] it is easy to generalize the above 
construction to include many other classes of Banach spaces. 

Recall that the nth approximation numbers, an(ÜT), of Tare given by 

aw(T) = inf{||T - A\\ :rank A ^ n}. 

For Banach spaces E, F we say Te 1P(E9 F) if 2SLi *n(T)*< + oo. These 
generalized ideals have been studied by Pietsch and others. The only fact 
we need here is the following [5]: If K(E, F)=lP(E, F) for some p>0, 
then min(dim.E, d i m F ) < + oo. Here K(E, F) denotes the compact 
operators from E to F. We also recall the following definition [6] : Two 
Banach spaces E and F form a Bernstein pair if for any positive, decreasing 
null sequence (bn) there is a Te K(E, F) such that 

(5) 0 < inf ^ sup < + oo. 
n bn n bn 

Let «3T denote the ideal of all compact operators between arbitrary 
Banach spaces and let Te Ctf\ 

THEOREM. There exists a complete quasi-normed ideal A{T) such that 
A(T)(E, F)^K(E, F) whenever <£, F) forms a Bernstein pair. 

Indeed, by the result of Pietsch, we may assume that {vLn(T))e 
£o\U*»o 4- Let pn=ll<x.n(T) and let ocw, yn be as in (4) above. Let 

A(T) = is e JT: J ««(S)anj8n < + oo j . 

Since the approximation numbers have properties (l)-(3), A(T) is ideal. 
It is easy to show that under the quasi-norm 

00 

P(S) = 2 «»6S)aA. 
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A(T) is complete. If (E, F) is a Bernstein pair, then by (5) there is an 
S e K(E, F) such that infw(aw(S)/yn)>0 and thus, by (4), S $ A(T)(E, F). 

We remark that all classical Banach spaces form Bernstein pairs. In 
particular (LV(JA), La(y)) is a Bernstein pair for all l^p, ?^oo and 
measures ju9 y [6]. 
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