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This note announces three density theorems involving representations 
of Lie algebras and associative algebras. The first theorem describes the 
irreducible (possibly infinite dimensional) representations p of a Lie 
algebra g with an ideal ï such that the restriction of p to ï has some 
absolutely irreducible quotient representation. The second result is an 
embedding theorem for the irreducible representations of the Weyl 
algebras AniC over C (An>c^C[tl9 • • • , tn, d/d^, • • • , 9/9^J, the associ­
ative algebra of partial differential operators on n variables with coefficients 
in the polynomial ring C[tl9 • • • , tn]). Our result is a sort of algebraic 
analogue of the uniqueness of the Heisenberg commutation relations, and 
has an application to irreducible representations of nilpotent Lie algebras 
via Dixmier's theory [5]. The third theorem describes the differentiably 
simple algebras having a maximal ideal. This result unifies the author's 
theorem [3] on differentiably simple rings with a minimal ideal, and 
Guillemin's theorem [7], [2] on the structure of a nonabelian minimal 
closed ideal of a linearly compact Lie algebra. 

1. In what follows, all algebras, tensor products etc., will be over an 
arbitrary given field O, unless otherwise stated. If the characteristic is 
prime, the Lie algebras considered will always be assumed restricted 
(=Lie />-algebra), and the same for their homomorphisms, ideals, etc. 
Also U will denote the universal enveloping algebra functor at charac­
teristic 0, and the restricted universal enveloping algebra functor at prime 
characteristic. We shall take g to be a given Lie algebra, and ï an ideal of 

Recall that if F is a ï-module with corresponding representation a9 

then the stabilizer St(T, g) of Kin g is defined [1], [6] by 

St(F,g) = { x e g | 3 ^ e H o m ( F , V)3o[x,y] = [^, oy]\/y e ï}. 

This is a subalgebra of g containing ï, and gives the analogue of the concept 
of stabilizer for group representations. 
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At characteristic 0, Blattner [1] has shown that if F is a ï-module which 
is absolutely irreducible (i.e. V is irreducible and has centralizer O), 
if ï) = St(F, g), and if W is an irreducible t)-module which as ï-module 
is a direct sum of copies of V, then the induced g module ( / g ^ W is 
irreducible ; Dixmier [6] has used this result to show that every irreducible 
g-module containing an absolutely irreducible ï-submodule is isomorphic 
to such an induced module. It can be shown that the Blattner-Dixmier 
theorem remains valid in the (restricted) prime characteristic case. 

We now turn to the more complicated situation of coinduced modules 
and irreducible g-modules with a maximal !-submodule. In topological 
considerations g will have the discrete topology unless otherwise stated. 
If I) is a subalgebra of g and W is an rj-module then, regarding t/g as a 
(71), C/g-bimodule, we get the coinduced t/g-module H o m ^ t / g , W). 
(This gives the right adjoint to the forgetful functor from t/g-modules 
to £/ï)-modules; the left adjoint is given by the induced t/g-module 
Ug ®c/i) W.) If Wis a topological t/rj-module we give H o m ^ t / g , W) the 
finite-open topology. 

LEMMA 1. Let V be an absolutely irreducible ï-module, f) a subalgebra 
of g containing St(K, g), and W a topological ^-module with a family 
{7rt}iei oft-maps 77̂ : W->V such that the topology on W is that induced by 
{""ihei (i'e- *he weakest topology making all 7ri continuous) where V is 
discrete. Then the coinduced U$-module, H o m ^ t / g , W), is topologically 
irreducible if (and only if) W is. 

Blattner [1], [2] has proved a related result for the case in which V 
is linearly compact and topologically absolutely irreducible and W (as 
ï-module) is a product of copies of V. 

Note that H o m ^ t / g , W) above has a maximal ï-submodule. The 
following seems to be the first result in the converse direction, i.e. de­
scribing the irreducible g-modules having a maximal ï-submodule. 

THEOREM 1. Let M be an irreducible Q-module having a (maximal) 
l-submodule N such that the quotient V=MjN is absolutely irreducible 
(as a t-module); give V the discrete topology, and let î) = St(F, g). Then 
there is a topological ^-module W which as a ï-module is a dense topological 
submodule of a product of copies of V such that M is isomorphic to a dense 
submodule of the coinduced module H o m ^ t / g , W). 

Here W can be taken to be the quotient of M modulo the largest 
l)-submodule contained in N. It follows from the theorem that the anni­
hilator (in C/g) of M equals the largest (two-sided) ideal of t/g contained 
in P(t/g) where P is the annihilator (in Ul)) of W. By Quillen's lemma 
[8], the hypothesis that the irreducible module F be absolutely irreducible 
can be deleted if ï is finite dimensional and <E> is algebraically closed. 
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For brevity, the results above have been stated in less than their full 
generality. We remark in particular that they have a very useful extension 
to analogous results where one is given an associative algebra B (with 1) 
in place of ï, and an action of g on B by derivations (i.e. a homomorphism 
£ of g to Der B). Then one can form the smash (or semidirect) product 
B#U§ (see [9]). Analogues of Lemma 1 and Theorem 1 (with V a B-
module, W a. i?#£/f)-module, and M a 2?#£/g-module) can be shown for 
the coinduced i?#£/g-module YiomB#u^(B#U^9 W) which in fact is 
t/g-module isomorphic (and homeomorphic) to H o m ^ t / g , W). Simi­
larly we can extend the Blattner-Dixmier theorem to a result on the in­
duced i?#£/g-module B#U§ ®B#UÏ> W (which is C/g-module isomorphic 
to UQ 0^^ W). These results on i?#£/g-modules can be applied in the 
study of differentiably irreducible modules [4] and are used in the proofs 
of Theorems 2 and 3 below. 

2. The Weyl algebra An (n^.0) over O is the associative algebra with 
unit with generators xl9 • • • , xn9 yl9 • • • , yn subject to the relations 

[xi9 Xj] = [yi9yj] = 0, [xi9y3] = ÔH (i,j = 1, • • • , n). 

A faithful representation p of An in Q>[[tl9 • • • , tn]] (formal power series 
in n indeterminates) is given via p(x^) = djdti9 piyu^pitd* where //(^) 
denotes the multiplication by t{. Then <$>[tl9 • • • , tn] is an irreducible 
ylw-submodule. 

In order to state our result on the irreducible representations of An9 

we define a special automorphism 0 of An to be an automorphism such 
that for / = 1 , • • • , n and some scalars al5 • • • , an, either dx—Xt and 
Oy—yi — oLil or 6xi=—yi and dyi=xi — 0Li\. Given such a 6, pd is a rep­
resentation of An in Q>[[tl9 • • • , tn]]9 i.e. we get an ^„-module, 
^ [ I A J ' ' ' 9 *J]Ö? where for each i either x{ acts by 9/9^ and yi by /^(^) — 
a,l, or ^ acts by —3/3^ and ^ by ^(^) — a j . 

THEOREM 2. Le? O èe AW algebraically closed nondenumerable field 
of 'characteristic 0, ^4n *Ae Weyl algebra over Q> (with generators xl9 - - - 9 xn9 

7i> * * * 5 yn
 as above), and M an irreducible An-module. Then M is iso­

morphic to a submodule ofQ>[[tl9 • • • , tn]]d for some special automorphism 
0. 

Every nonzero submodule of O [[tl9 • • • , *J]0 is dense in $[[*!, • • • , tn]]. 
The polynomials form an irreducible submodule of Q>[[tl9 • • •, tn]]d9 

but an abundance of others ( |0 | nonisomorphic ones) can be exhibited. 
Combining Theorem 2 with a theorem of Dixmier [5] (whose work 

on the irreducible representations of nilpotent finite-dimensional Lie 
algebras in a sense reduces their classification to that of the irreducible 
representations of An)9 we get the following. 
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COROLLARY 1. With <D as in Theorem 2, let r be an irreducible represen­
tation ofa finite-dimensional nilpotent Lie algebra g. Then f or some n^.0, 
T is equivalent to a subrepresentation of a representation ip of g acting in 
®[[h> ' ' ' > tn]] such that the sets {f(x)\x e g} and {d/dtt9 [x(t^\i—\9 ••• ,«} 
generate the same subalgebra of endomorphisms of<S>[[tl9 • • • , tn]]. 

3. The next theorem determines the structure of certain algebras with 
no proper ideal invariant under a given family of derivations. Before 
stating it we need some preliminary notions. Suppose S is a (not necessarily 
associative) simple algebra. The centroid (or multiplication centralizer) 
r of S is the subalgebra of elements of Hom0(S, S) which commute with 
all the left and right multiplications of S. Since S is simple, T is a field, 
and S is also an algebra over T. The scalar extension of the given 
Lie algebra g to V will be denoted by g r . Since C/gr is a coalgebra, 
Hom r(C/g r, S) is an algebra under the convolution multiplication, and 
Hom r ( t /g r , S) satisfies any multilinear identities that S does. If I) is a 
subalgebra of g r and ï) acts on S (as an algebra over T) by derivations, 
then it may easily be shown that Homut)(Ugr, S) is a subalgebra of 
Hom r(C/g r , S). By a topological g-algebra we shall mean a topological 
algebra on which g acts by continuous derivations. If S is a topological 
algebra then Hom r(C/g r, S) is a topological g-algebra. A topological 
g-algebra will be called topologically g-simple if it has no proper closed 
ideal invariant under g. 

THEOREM 3. Let R be a topological ^-algebra (possibly nonassociative 
or discrete) which is topologically ^-simple. Suppose R has a closed maximal 
ideal N, write Tfor the centroid of the (simple) algebra S=R/N, and assume 
that each y in V is continuous (on S) and that T is separable algebraic over 
0 . Then there is a subalgebra Ï) of g r and a continuous isomorphism (of 
Q-algebras) ofR onto a dense ^-subalgebra of Hom^Ê/gr , S). 

It can easily be seen that H o m ^ t / g r , S) is isomorphic as a topological 
algebra to ^[[Z,] ]^ / , the formal power series in the indeterminates 
{Xj}jej with coefficients in S, where the indeterminates are /7-truncated 
(Xf=0 for ally) in case the characteristic is a prime/?. Here the cardinality 
of J equals the codimension of I) in g r . 

We mention two important special cases as applications of Theorem 3. 
First, suppose that R is a discrete (not necessarily associative) algebra. 
Recall that i* is called differentiably simple if R2 7*0 and if there is a set D 
of derivations of R (one might as well take Z>=Der R) such that R has 
no proper Z>-ideal, i.e. ideal invariant under D. For example, a nonabelian 
minimal ideal of a Lie algebra is differentiably simple. The main result of 
[3] says that if R is differentiably simple and has a minimal (two-sided) 
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ideal then R has a (unique) maximal ideal N and either R is simple (i.e. 
R=R/N) or O has prime characteristic/? and R is isomorphic to the algebra 
ofp-truncated polynomials in some finite set of indeterminates with coef­
ficients in the simple algebra R/N. The special case when R is finite 
dimensional and O is perfect is thus generalized by Theorem 3 (with 
g = Deri?). 

The second application concerns topological Lie algebras which are 
linearly compact. Guillemin [7] has proved that if R is a nonabelian 
minimal closed ideal of such a Lie algebra then R has a (unique) closed 
maximal ideal N, the centroid V of the simple Lie algebra R/N is a finite-
dimensional extension of ®, and if, in addition, O has characteristic 0, 
then R is isomorphic to the algebra (R/N^X^^j of formal power 
series for some finite set J. In our case we can obtain Guillemin's theorem 
(and a little more) as a corollary of Theorem 3 ; moreover the result remains 
valid at prime characteristic (with the A^/j-truncated). 

Blattner [2] has given another proof of Guillemin's theorem when O 
is algebraically closed (actually when T = 0 ) at characteristic 0. Our proof 
to an extent resembles Blattner's. 
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