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In his survey paper [4], P. A. Griffiths conjectured (§9.2) the existence 
of a partial compactification for the arithmetic quotients of period 
matrix domains. In this paper we want to announce some results concern­
ing the topological aspects of this conjecture for the case of the periods of 
2-forms on a polarized Hodge manifold V. 

The period matrix domain D of all possible period matrices for the 
primitive harmonic 2-forms on V can be described as follows (cf. [3], 
[6]). Let h=h2,0, k=h1,1, where hp,q denotes the dimension of the space of 
primitive harmonic forms of bidegree (p,q). Let H be a complex vector 
space of dimension m=2h+k, HR^H a real form, and HZ^HR SL 
lattice. We also fix a rationally defined, nondegenerate, bilinear symmetric 
form Q on H, We denote by X the set of all W e Gr (h, H) satisfying 

(i) Q(W9 W) = 0. 

The algebraic group Gc=orthogonal group of g, acts transitively on X, 
and therefore X is a projective manifold (in fact X is a Kâhler C-space, 
cf. [5]). The period matrix domain D is the open subset of X consisting 
of all those points which satisfy 

(ii) Q(W, W) > 0. 

(i) and (ii) are called the Riemann bilinear relations. 
The noncompact real form of Gc given by: G={Te G\THR^HR) 

acts transitively on D (cf. [3]). Thus D is an open, homogeneous, complex 
manifold of the form 

D = G\H = SO(2h, k)lU(h) x SO(k). 
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Let K^G be the unique (cf. [5]) maximal compact subgroup of G 
containing H. Then 

R = GIK= SO(2h9 k)lSO(h) X SOQc) 

is a Riemannian symmetric space of the noncompact type, dual to the 
real Grassmannian manifold SO(m)ISO(2h)xSO(k) (cf. [7]). Moreover 
R can be given explicitly as 

R = {Ue Gr(2/*, HR) \ Q(U, U) > 0}. 

The natural projection TT.D^R given by the inclusion H^K can be 
described as: TT(W)= U if and only if W®W= U+iU; WeD,UeR. 

Let D (resp. R) denote the topological closure of D (resp. R) in X 
(resp. Gr(2A, HR)). Let dD = D-D, dR=R-R. 

If WQ^H is a totally isotropic subspace (i.e. Q(W0, W0)=0; 
Q(WQ9 ÏV0)=0)9 then we denote F(W0) by 

F(W0) = {WedD\ W=W0® Wi;Q(Wl9 WX) > 0}. 

If UQ^HR is an even dimensional, totally isotropic subspace, then we 
denote FD(U0) by |J F(W0), where the union runs through all totally 
isotropic subspaces W0^H such that WQ®ffî0=U0+iU0. We call 
FD(U0) the preboundary component of D associated to U0. We will also 
denote ^R(U0) by 

^R(U0) = {UeR\U=U0(BU1; Q(UU Ux) > 0}. 

^R(U0) is called the boundary component of R associated to UQ. We 
define an equivalence relation in FD(U0) by: W^W' if and only if 

W+U0 + iU0 =W+U0 + iU0; W9 W' eFD(U0). 

<&r
D(U0)=FD(U0)l<~^> is called the boundary component of D associated 

to U0. 
Finally we will denote 

N&niUo)) = {TE G \ T(^D(U0)) = &D{UQ)}9 

Z(^D(U0)) = {TeG\ T[W] = [W], V[W]e&D(UJ}9 

G(^D(U0)) = N(^D(U0))IZ(^D(U0)). 

THEOREM 1. Let U0 be a 2v-dimensional totally isotropic subspace 
ofHR. Let ^=^r

D(U0), then: 
(i) N(^) is a parabolic subgroup of G acting transitively on J*\ 

(ii) G(eF)^SO(2(h—v), k—2v) and therefore is a real semisimple 
Lie group. 

(iii) &r=G(&r)lH(&') where H{^) is a compact subgroup of G{^) 
isomorphic to U(h—v)xSO(k—2v). 
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DEFINITION. Let T<^G be the arithmetic subgroup of G defined 
by T = {TEG\THZ^HZ}. We say that a boundary component ^D(U0) 
or ^R(U0) is T-rational if the subspace U0^HR is rational. We will 
denote by Z>* (resp. R*) the union of D (resp. R) and all its T-rational 
boundary components. One can prove (cf. [1], [2]) that if ^D(U0) is a 
T-rational boundary component then 

r(^(£/0)) = rnN(^D(U0W nZ(^D(U0)) 
is an arithmetic subgroup of G(^D(U0)). 

Generalizing similar results known for symmetric spaces (cf. [1], [8]) 
we can prove the following: 

THEOREM 2. There exists an open T-fundamental domain £}<=/) such 
that: 

(i) Ù intersects only rational preboundary components of D and just 
a finite number of them. 

(ii) If FD(U0) is a T-rational preboundary component of D such that 
&nFD(Uo)?£0, then Q(&-D(U0))=ÙnFD(U0)l~ is a V(^D{U-)\ 
fundamental domain in ^D(U0). 

Using Theorem 2 we can then define a Satake topology on T\D* as 
in [1] and [8], and we can prove the following: 

THEOREM 3. The quotient T\D* endowed with the Satake topology 
has the following properties : 

(i) r \£)* is locally compact and Hausdorff. 
(ii) r \ D c : T\D* is an open, everywhere dense subset. 

(iii) T\Z>* is the finite union of subspaces of the form T ( J r ^ ) \ ^ where 
the IF Is run through a set of representatives of Y-equivalence classes of 
T-rational boundary components of D. 

(iv) The map TT.D^R extends to a continuous map 77*:T/Z>*—>T\jR* 
where Y\R* is endowed with the Satake topology. 

Details and proofs will appear in a later publication. 
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