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SOBOLEV INEQUALITIES FOR RIEMANNIAN BUNDLES 

BY M. CANTOR 

Communicated by Murray Protter, August 30, 1973 

1. Introduction. Sobolev inequalities play a major role in the study 
of differential operators and nonlinear functional analysis. The inequal­
ities are the primary tools in the study of the properties of spaces of func­
tions with Sobolev topologies; for example, the Schauder ring theorem. 
There are theorems involving continuity and closure of composition 
in such spaces [3, Chapter 2]. The latter theorems involve application 
of the inequalities to vector fields. It is this case and its generalization 
which this paper studies, where Rn is replaced by an arbitrary Riemannian 
manifold satisfying certain geometric conditions. 

While the Sobolev inequalities over Rn have been known for some time, 
the usual proofs use transform methods and are therefore hard to genera­
lize. In 1959 Nirenberg [4] presented particularly elegant proofs, due to 
himself and other authors, which could be generalized. These proofs are 
the basis for the results of this paper. 

Throughout, M denotes a complete Riemannian «-dimensional manifold 
without boundary. The canonical volume form on M is denoted dV. 
Let 7T:E->M be a vector bundle with a specified smooth metric ( , ). 
V is a connection on E satisfying d(V, W)xm=(VXmV9 W)+(V, VXmW), 
where V and W are sections of E and xm e TmM. Vn is the iterated co-
variant derivative. In most applications E is a tensor bundle over M. 
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C™(E) is the space of C00 sections of E with compact support. For x e M, 
Ve C0°°(£), the quantity |V*K(JC)| is the norm of V*F(X) in the canonical 
normofL*(rM:£) . 

A more detailed account of the proofs can be found in [3] and shall 
be published elsewhere. The author wishes to thank Jerrold Marsden for 
his help and encouragement and E. Calabi for his assistance. 

2. Statement of results. 

DEFINITION 1. Let F G C*(E). Then define 
(i) (C*norm) | | K L = 2 * s u p | W ( * ) l ; 

(ii) (LI Sobolev norm) WU=2k ( J M |V'K(*)I' dvy»; 
(iii) (Holder norm) for 0 < 6 < 1, 

rr/1 ^ ir(C)VV(x) - v'rooi 
[^kfc = 2 , SUP SUP J, 7e > 

V x.yeM CeO(x.v) d(X, yf 

where G(x,y)={length-minimizing geodesies joining x and y), r(C) is 
parallel translation along C from ir^iy) to 7r"1(x)9 and d(x, y) is the dis­
tance from x to y. 

Each of the functions defined in Definition 1 is a norm on the vector 
space C0(E). 

Also, denote || | |0=|| ||, | |3)>0=| \„, and [ ] M = [ ]0. 
DEFINITION 2. (i) Ck(E) (resp. LUE), Ck+e(E)) is the completion of 

C?(E) with respect to || ||fc (resp. | \Ptk, [ ]$tk). 
We note that if O < 0 < 1 , then Ck+1(E)<=-Ck+e(E)<=-Ck(E) and the 

inclusion is continuous. 
We state the following hypotheses: 
(CI) The injective radius of M is bounded away from zero. 
(C2) There is a ô such that for each x e M and V, W e TXM, the 

sectional curvature \KX(V, W)\<d. 

THEOREM 1. Let M satisfy CI and C2. Then if p>\ and s>n/p+k, 
there is a constant C such that, for all feL^{E), we have \\f\\k^C\f\PtS, 
where C is independent off 

THEOREM 2. Let M satisfy CI and C2 and assume r>n. Then there is 
a constant C such that, for each fe Lr

s(E), we have [f]i-n/r,s~C\f\r,s+i> 
where C is independent off 

THEOREM 3. Let M satisfy CI and C2, 0^j<m, and q,r^l. Then 
ifmlp=jjr+(m—j)jq, there is a constant C such that, for each f e Um(E)C\ 
U(E), we have |Vy | p <;C | / | ^£ | / l i " i / w , where C is independent off 

In the next theorem, we adopt the following notation, due to Nirenberg 
[4]. 
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Notation. For/?>(), the definition of | \P remains as in Definition 1. 
For/?<0 a n d / e C?(E)9 let h=[-n/p], -u.=h+njp and 

i ƒ i, = ra«> « > o. 
THEOREM 4. Let M satisfy CI and C2, a«J /étf O^y^m. 7%éw /ƒ 

m—j—njr is not a nonnegative integer and l//?=l/r+(y—#*)/«, there is a 
constant C such that, for fe Lr

m(E), it follows that |Vy | p ^C|Vy| f t t î l ^ 
where C is independent off. 

Under some circumstances, one can interpolate between these inequal­
ities. We do have the standard interpolation lemma: 

LEMMA. If — oo<A5^:gv<oo and A^O or v^O, then, for all ue 
D-i\E)r\L1i\E), u e L^iE), 

Ml/0 ^ C |tl|1/A |M|l/y 

In the classical case the assumption that X, \x, and v all have the same 
sign is unnecessary [4, p. 126], Under what conditions it is necessary 
is not known to the author. 

There are several applications of this lemma. For example, 

THEOREM 5. Let M satisfy CI and C2 and let 1 ^q, r^ oo andO^j^m* 
lfjln+llr—mln^.0 and,forj\m^a^\, 

1 j / l m\ 1 
- = ^ + a — - + ( l - a ) - , 
p n \r n / q 

then, for u e Lr
m(E)nLq(E), it follows that 

where C is independent ofu. 

3. Discussion of the proofs. The fundamental idea behind all of the 
theorems is the reduction of the argument to a local one. Using condition 
C2 and standard comparison results [1, pp. 250-257], one gets the 
necessary uniform bounds on the exp maps. Note that C2 implies an 
upper bound in the Ricci curvatures. Thus if 2R is the injective radius of 
M, for VETXM, \V\<R, it follows that the Jacobian Jexp,. V>A, 
where A is independent of x and V. 

PROOF OF THEOREM 1. All constants are denoted C throughout. 
We assume k=0; the general case follows by induction. Let xeM. 
With 2R the injective radius of M, let BX(R) be the ball of radius R in 
TXM. Let (r, d) be spherical coordinates on TXM. 
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Let g:R-+R be a C00 function such that g(t)l for t<R/2 and g(0=0, 
f2£3u/4, and \g^(t)\<A for i^s. Fix 0 and let r(0) be parallel trans­
lation along the geodesic r-^exp^r, 0). From 

«(*) = - T|-(T(0)g(r)Mexp,(r, 0))</r, 
Jo ar 

using integration by parts, we get 

_ (-1)8"1 r V (s — 1)! Jo 
|^(T(0)g(r))u(exp,(r,0)) dr. 

(s - 1)! 

From the standard formula relating T to the covariant derivative, 

|M(X)| ^ c fV^VM^CexpCr , 0))| dr. 

Integrate with respect to r"-1 dS on the unit sphere in TXM. Thus 

|u(x)| ^ C f f V " 1 |V8g(r)u(exp,(r, 0))| rn"V dS. 
Js$ JO 

Now dV,=rn~1drdS is the volume in T^M. Apply Holder's inequality 
and conclude 

r(s-n)v/(v-l)r(n-l) dr dS\ 

X ( f |Vsg(r)W(exp(r, 0))|*dK'ï 
\jBm(R) I 

Vv 

Since s>njp, the first integral is finite and its value is independent of x. 
Now apply the product rule for covariant derivatives and Minkowski's 
inequality to the second integral to conclude 

\u(x)\p<: c[ \Vsu\pdV'. 
JBm(R) 

Now if dV is the volume element on M then on exp^i^i*)), we have 
dF(exp(r, 0))=Jexp(r, 0) dV'. Thus, by the remark preceding the proof 

\u{x)\* Sc[ \Vsu\p dV <:[ \Vsu\* dV. 
Jexv(Bm(R)) JM 

Since this holds for each x e M, the theorem follows. Q.E.D. 
Theorem 2 is proven similarly to Theorem 1. 
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Theorems 3 and 4 depend on the existence of a smooth triangulation 
with known limits on the mesh subordinate to a cover by normal neigh­
borhood. Conditions CI and C2 guarantee such a triangulation [2]. This 
is used to construct a Ck uniform collection of partition functions. Using 
these one can reduce the theorems to the case where the sections have 
compact support in some normal neighborhood in M. In each theorem 
this case is handled by a suitable generalization of the arguments in [4]. 
However, since the derivatives of the partition functions cannot be ig­
nored, the right side of the inequality contains entire LI norms rather 
than the LP norms of the fcth derivative, as in the classical case. 

The induction argument used in each of the theorems goes through 
almost exactly as in the classical case, simply noting that if ƒ is a smooth 
section of E, then V/is a smooth section of the bundle L(TM, E) which 
has a canonical metric and connection. 
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