COHOMOLOGY AND WEIGHT SYSTEMS FOR NILPOTENT LIE ALGEBRAS

BY G. LEGER AND E. LUKS

Communicated by Dock Rim, July 17, 1973

1. This paper announces results concerning the cohomology groups $H^*(N, N)^T$ where N is in a certain class of finite-dimensional nilpotent Lie algebras over a field k and T is an abelian Lie algebra faithfully represented as a maximal diagonalizable algebra of derivations of N; we shall refer to such an N as a T-algebra. The additional hypotheses to be placed on the pair N, T are inspired by the case when T is a Cartan subalgebra and T+N=B is a Borel subalgebra of a complex semisimple Lie algebra. In that case Kostant has shown [2] that $H^i(N, N)^T=0$ for $i \ge 2$ and the authors applied this result in [3] to conclude that $H^*(B, B)=0$. (A similar argument shows $H^*(P, P)=0$ for P parabolic.) Here we are concerned with the relations between the vanishing of $H^i(N, N)^T$, especially for i=2, and the structure of the algebras N.

Let W denote the set of weights of T in N. If $\dim(T) = \dim(N/N^2) = m$ then the subset of W arising from the induced representation of T on N/N^2 has precisely m elements, say $\{\alpha_1, \dots, \alpha_m\}$. Every $\alpha \in W$ then has a unique representation $\alpha = \sum c_i \alpha_i$ with each c_i a nonnegative integer and $c_i < p$ if the characteristic of k is p > 0. For such an α we call the sum (in Z) $\sum c_i$ the height of α and denote it by $|\alpha|$. For α in W, denote by N_α the weight space for α in N.

DEFINITION. A T-algebra is called positive if

- (i) $\dim(T) = \dim(N/N^2)$,
- (ii) N is graded by the heights of the weights, i.e., if $N(j) = \bigoplus_{|\alpha|=j} N_{\alpha}$ then $[N(j), N(k)] \subset N(j+k)$.

REMARK. Condition (ii) is superfluous in characteristic 0. However, in characteristic p>0 it has such consequences as $N^r=0$ for $r>(p-1)\cdot \dim(T)$.

2. When T is a Cartan subalgebra of a complex semisimple Lie algebra G, T+N a Borel subalgebra of G and W the weights of T in N, it is well known that N is the unique positive T-algebra with corresponding weight system W. This fact is a special case of the following theorem.

AMS (MOS) subject classifications (1970). Primary 18H25, 17B30; Secondary 05C99.

Key words and phrases. Lie algebra cohomology, weight systems, deformations of Lie algebras.

THEOREM 1. Let N be a positive T-algebra and suppose that $H^2(N/N^r, N/N^r)^T = 0$ for $r \ge 4$. If N' is any other positive T-algebra inducing the same weight system W with the same height function and $\dim(N'_\alpha) \ge \dim(N_\alpha)$ for each $\alpha \in W$, then N' is necessarily T-isomorphic to N.

Although the task of verifying the H^2 hypothesis in Theorem 1 appears to be quite formidable, we are in fact able to check this condition for a large class of algebras by means of simple observations about W. For example, the collection of algebras described in [3, §5], which include the maximal nilpotent ideals of Borel subalgebras, satisfies the assumption. Also, we can show that the collection includes all the positive T-algebras N in characteristic $\neq 2$ which satisfy the following:

If $\alpha_1, \dots, \alpha_m$ are the elements in W of height 1, then

- (i) Every element in W is of the form $\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_s}$
- (*) with $1 \le i_1 < i_2 < \cdots < i_s \le m$.
 - (ii) If γ , $\gamma \alpha_i$, $\gamma \alpha_j \in W$ with $i \neq j$, $|\gamma| \ge 3$ then $\gamma \alpha_i \alpha_j \in W$ and $\alpha_i + \alpha_j \notin W$.
- 3. The appearance of $H^2(N/N^r, N/N^r)^T$ in Theorem 1 is suggestive of the role that $H^2(N, N)^T$ plays in a rigidity theorem for algebras acted upon by T. The set of T multiplications in a vector space N on which T operates clearly form an algebraic subvariety of the affine space $N^* \wedge N^* \otimes N$. Thus we are led to a restricted deformation theory for such algebras. If T operates diagonally on N then $H^*(N, N)^T$ plays the role in this theory that $H^*(L, L)$ plays in the deformation theory of ordinary Lie algebras (cf. [4]). For example, we have the concept of T-rigidity and the theorem: If μ is a T-multiplication on N and if $H^2((N, \mu), (N, \mu))^T = 0$ then (N, μ) is T-rigid. Also, $H^3((N, \mu), (N, \mu))^T$ arises as obstructions to integrability of 2-cocycles.

We remark that the hypothesis $H^2(N/N^r, N/N^r)^T = 0$, for $r \ge 4$, of Theorem 1 is strictly stronger for positive T-algebras than the vanishing of $H^2(N, N)^T$.

4. Suppose characteristic $(k) \neq 2$. A remarkable class of positive T-algebras over k is obtained by generalizing the Coxeter-Dynkin diagram for A_1 .

Let Γ be an undirected graph [5] with at most one edge connecting any two vertices and without loops (i.e., for any vertex v, (v, v) is not an edge). A section graph g of Γ is a subgraph such that any edge in Γ which connects two vertices of g is in g. By a subtree t of Γ we shall mean a connected section graph with no circuits.

DEFINITION. A collection S of subtrees of Γ will be called admissible if (i) whenever $t \in S$ and t' is a subtree of t then $t' \in S$.

(ii) $\Gamma = \bigcup_{t \in S} t$. (So each vertex and each edge in Γ is in some t of the collection.)

To each admissible collection S of subtrees of Γ we associate a Lie algebra N_S as follows:

Arbitrarily assign a direction $v_i \rightarrow v_j$ to each edge (v_i, v_j) in Γ . We define $\varepsilon: S \times S \rightarrow \{\pm 1, 0\}$ such that $\varepsilon_{t,t'} = 0$ if either $t \cap t' \neq \emptyset$ or $t \cup t' \notin S$, otherwise $\varepsilon_{t,t'} = 1$ if the unique edge connecting t to t' is directed $t \rightarrow t'$ and $\varepsilon_{t,t'} = -1$ if this edge is directed $t' \rightarrow t$. Now let N_S be the k-algebra with basis S such that $[t, t'] = \varepsilon_{t,t'} t \cup t'$.

The Jacobi identity is readily verified and so N_S is a nilpotent Lie algebra generated by the set of vertices. Next we point out that, for any vertex v of Γ , there is a unique derivation a_v of N_S such that $a_v(v) = v$ and $a_v(w) = 0$ for any vertex $w \neq v$. The set of derivations a_v span a maximal diagonizable algebra T_S of derivations of N_S . One sees that N_S is a positive T_S -algebra and it is easy to verify that it satisfies property (*). Thus, by Theorem 1, N_S is the unique T_S -algebra producing its system of weights. In particular, its isomorphism class is independent of the choice of directions in Γ .

The simplest of graphs consists of a single path and if, in this case, S is taken to be the collection of all subtrees, N_S is the nilpotent subalgebra corresponding to the positive weights in an algebra of type A_I .

Thus, it is not surprising that the algebras N_S have structural and cohomological properties like those of the maximal nilpotent subalgebras of Borel subalgebras. For example, using the classical spectral sequences of Hochschild-Serre [1] as well as combinatorial properties of graphs, we can show:

Theorem 2. Let characteristic (k)=0. Suppose Γ is a graph, S an admissible collection of subtrees. Then $H^i(N_S, N_S)^{T_S}=0$ for $i \ge 2$.

Then, following methods used in [3], we prove:

THEOREM 3. Let characteristic (k)=0. If B_S is the semidirect sum T_S+N_S then $H^*(B_S,B_S)=0$.

Finally, we announce a characterization of the graph algebras by property (*). First we assign to each positive T-algebra N a graph $\Gamma(N)$ as follows: Let $\alpha_1, \dots, \alpha_m$ be the elements in W of height 1, then $\Gamma(N)$ is the graph on m vertices v_1, \dots, v_m such that (v_i, v_j) is an edge if and only if $\alpha_i + \alpha_j$ is in W. Let S be any admissible collection of subtrees of $\Gamma(N)$. Then T acts on N_S via the isomorphism $T \rightarrow T_S$ given by $x \rightarrow \sum_i \alpha_i(x) a_{v_i}$.

THEOREM 4. Let N be a positive T-algebra satisfying property (*). For each $\alpha = \alpha_{i_1} + \cdots + \alpha_{i_s}$ in W, let g_{α} be the section graph of $\Gamma(N)$ with vertices v_{i_1}, \cdots, v_{i_s} . Then each such g_{α} is a subtree of $\Gamma(N)$; the set $S = \{g_{\alpha} | \alpha \in W\}$ is an admissible collection of subtrees of $\Gamma(N)$; and N is T-isomorphic to N_S .

REFERENCES

- 1. G. Hochschild and J.-P. Serre, *Cohomology of Lie algebras*, Ann. of Math. (2) 57 (1953), 591-603. MR 14, 943.
- 2. B. Kostant, Lie algebra cohomology and generalized Schubert cells, Ann. of Math. (2) 77 (1963), 72–144. MR 26 #266.
- 3. G. Leger and E. Luks, Cohomology theorems for Borel-like solvable Lie algebras in arbitrary characteristic, Canad. J. Math. 24 (1972), 1019-1026.
- 4. A. Nijenhuis and R. Richardson, Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29. MR 33 #4190.
- 5. O. Ore, *Theory of graphs*, Amer. Math. Soc. Colloq. Publ., vol. 38, Amer. Math. Soc. Providence, R. I., 1962. MR 27 #740.

Department of Mathematics, Tufts University, Medford, Massachusetts 02155

DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY, LEWISBURG, PENNSYLVANIA 17837