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Introduction. Following Solovay [2], let ‘ZF’ denote the axiomatic
set theory of Zermelo-Fraenkel and let ‘ZF + DC’ denote the system
obtained by adjoining a weakened form of the axiom of choice, DC,
(see p. 52 of [2] for a formal statement of DC). From DC a ‘countable’
form of the axiom of choice is obtainable. More precisely, if {B,:n € N} is
a countable collection of nonempty sets then it follows from DC that
there exists a function f with domain N such that f(n) € B, for each n.

The system ZF + DC is important because all the positive results of
elementary measure theory and most of the basic results of elementary
functional analysis, except for the Hahn-Banach theorem and other such
consequences of the axiom of choice, are provable in ZF + DC. In
particular, the Baire category theorem for complete metric spaces and
the closed graph theorem for operators between Fréchet spaces are
provable in ZF + DC.

Solovay shows [2] that the proposition, Each subset of the real numbers
is Lebesgue measurable, cannot be disproved in ZF + DC. He does this
by constructing a model for ZF + DC in which the proposition becomes
a true statement.

We shall see that the proposition, Each linear operator on a Hilbert
space is a bounded linear operator, is consistent with the axioms of
ZF + DC. Other results of this type are obtained. For example, Whenever
X and Y are separable Fréchet groups and h:X — Y is a homomorphism
then h is continuous, cannot be proved or disproved in ZF + DC.

Fortunately all the hard work in model theory has been done by Solovay.
All that we use here is straightforward functional analysis.

All operators on a Hilbert space are bounded. We recall that a subset S
of a topological space T is said to have the Baire property if there exists
an open set U such that (U\ S) u (S\ U) is meagre. Let BP be the
proposition: Each subset of a complete separable metric space has the Baire
property. In [2, §4], Solovay outlines an argument which shows that
when BP is interpreted in his model for ZF + DC then it becomes a true
statement. Hence BP is consistent with the axioms of ZF + DC provided
Solovay’s model exists. We adjoin BP as an axiom and denote the
extended system by ‘ZF + DC + BP’.

AMS (MOS) subject classifications (1970). Primary 47A99, 02K05; Secondary 46B99,
46C10.

Copyright € American Mathematical Society 1974

1247



1248 J. D. MAITLAND WRIGHT [ November

In this paper certain propositions will be shown to be theorems of
ZF + DC + BP. It is easy to show, by a Hamel base argument, that for
each such proposition its negation is a theorem in ZFC (ZF with the
axiom of choice adjoined). So these propositions can neither be proved
nor disproved in ZF + DC, provided Solovay’s model exists.

Let I be the axiom: There exists an inaccessible cardinal. Solovay uses
the hypothesis that there exists a (transitive) model for ZFC + I when
constructing his model.

From now onward we work in ZF + DC + BP. All our theorems
are derived in this system.

LEMMA 1. Let X and Y be separable metric spaces and let X be complete.
Let f: X — Y be any function mapping X into Y. Then there exists a meagre
set N = X such that the restriction of f to X \ N is continuous.

Choose ¢ > 0. Let {y,:r = 1,2, ...} be a countable dense subset of Y.
For each r, let S, be the open sphere centred on y, with radius ¢/2. Then
Y=[)®S,.

LCtU;II = Sl and, for n 21, let An+1 = (Ur11+1 Sr) _ (U: Sr) So
Y = U‘f A,, where each A, is contained in an open sphere of radius g/2
and 4, N A; = Ffori # j.

Let B, = f~'[4,]forn = 1,2,....ThenX = (J? B,and B; " B; =
G fori # j.

For any n, B, has the Baire property and so there is an open set U,
and a meagre set M,, where M, = (B,\ U, v (U,\ B,), such that
U,Nn(X\M,) = B, n(X\ M,). Let M be the meagre set U‘f M,. Then
U,n(X\M)= B,n (X\ M) for each n. Thus B, n (X \ M) is an open
subset of X \ M in the relative topology of X \ M.

Let J be the set of all natural numbers n for which B, n (X \ M) is
not empty. By DC there exists a function ¢ with domain J such that
&n) € B, n (X \ M) for each n. Let & be the function defined on X \ M
by A(x) = f(&(n)) whenever x € B, N (X \ M).

Let (z;) (j = 1,2, ...) be any sequence in X \ M which converges to a
point z in X \ M. Then, for some ne J, B, n (X \ M) is an open neigh-
bourhood of z in the relative topology of X \ M. So there exists a natural
number k such that z; € B, n (X \ M) whenever j = k. Thus h(z;) = h(z)
whenever j = k. So A:(X \ M) - Y is continuous. Whenever x e X \ M
then x € B, n (X \ M) for some n € J and thus

d(h(x), f(x)) = d(f(E(n), f(x)) < e.

By puttinge = 1/m(m = 1,2, ...) we can find a sequence of functions
(h,) mm = 1,2,...) and a sequence of meagre sets (N,) m = 1,2,..))
such that 4,, is a continuous map of X \ N,, into Y and d(A,(x), f(x)) < 1/m
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for each xe X\ N,,. Let N be the meagre set U‘f N,,. Then (h,) (m =
1,2, ...)converges uniformly to fon X \ N. So fis continuous on X \ N.

THEOREM 2. Let X and Y be separable metrizable topological groups
and let X be complete. Let H:X — Y be any group homomorphism. Then
H is continuous.

Let (x,) (n = 1,2,...) be a sequence in X converging to a point x.
By Lemma 1, there is a meagre set M such that H is continuous when
restricted to X \ M.

By the Baire category theorem, which is valid in ZF + DC, there
exists z € X such that z is not in the meagre set x 'M U (J (x, 'M).
Thus xz € X \ M and x,z € X \ M for each n. Hence H(xz) = lim H(x,z).
Since H is a homomorphism, H(z) = lim H(x,).

The elegant argument used in Theorem 2 is due to Banach, see Theorem
4, Chapter 1 [1]. I wish to thank Professor A. Wilansky for drawing my
attention to this reference.

In the following we do not require Fréchet spaces to be locally convex.

THEOREM 3. Let X be any Fréchet space and let Y be a separable
metrizable topological vector space. Let T:X — Y be a linear map. Then
T is continuous.

Let(x,) (n = 1,2,...) be any sequence in X which converges to zero.
Let X, be the closed linear span of {x,:n = 1,2, ...} so that X, is a
separable Fréchet space. Then, by the preceding theorem, the restriction
of Tto X, is continuous. Thus Tx, —» 0 as n — 00. So T is continuous.

COROLLARY 4. Each linear functional on a Fréchet space is continuous.

THEOREM 5. Let X and Y be Fréchet spaces and let T:X — Y be a

linear map. If there exist enough functionals on Y to separate the points of
Y then T is continuous.

Let(x,) (n = 1,2,...) beasequence in X converging to x and suppose
(Tx,) (n =1,2,...) converges to y. For any functional ¢ on Y, ¢ is
continuous on Y and ¢ T is continuous on X. Thus

¢(y) = lim §(Tx,) = lim ¢T(x,) = ¢T(x).
So Tx = y. It now follows by the closed graph theorem that T is
continuous.

It must be emphasised that discontinuous linear operators, defined
on incomplete spaces, arise naturally in ZF + DC. For example, there
is an abundance of unbounded operators defined on dense subspaces of a
Hilbert space. But, for linear operators defined on the whole of a Hilbert
space the following theorem holds in ZF + DC + BP.
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THEOREM 6. Let H be a Hilbert space and let T:H — H be a linear
operator defined on the whole of H. Then T is bounded.

Let H be any Hilbert space. Then, for each nonzero x in H, the linear
functional f, defined by f(y) = {y, x), does not vanish at x. So H has a
separating family of linear functionals.

This implies that, in ZFC, we cannot obtain discontinuous operators
on (the whole of) a Hilbert space except by invoking an ‘uncountable’
form of the axiom of choice.
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