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Introduction. Following Solovay [2], let 'ZF' denote the axiomatic 
set theory of Zermelo-Fraenkel and let 'ZF + DC' denote the system 
obtained by adjoining a weakened form of the axiom of choice, DC, 
(see p. 52 of [2] for a formal statement of DC). From DC a 'countable' 
form of the axiom of choice is obtainable. More precisely, if {Bn:n e N} is 
a countable collection of nonempty sets then it follows from DC that 
there exists a function ƒ with domain N such that f(n) e Bn for each n. 

The system ZF -h DC is important because all the positive results of 
elementary measure theory and most of the basic results of elementary 
functional analysis, except for the Hahn-Banach theorem and other such 
consequences of the axiom of choice, are provable in ZF + DC. In 
particular, the Baire category theorem for complete metric spaces and 
the closed graph theorem for operators between Fréchet spaces are 
provable in ZF + DC. 

Solovay shows [2] that the proposition, Each subset of the real numbers 
is Lebesgue measurable, cannot be disproved in ZF + DC. He does this 
by constructing a model for ZF + DC in which the proposition becomes 
a true statement. 

We shall see that the proposition, Each linear operator on a Hilbert 
space is a bounded linear operator, is consistent with the axioms of 
ZF + DC. Other results of this type are obtained. For example, Whenever 
X and Y are separable Fréchet groups and h:X -• Y is a homomorphism 
then h is continuous, cannot be proved or disproved in ZF + DC. 

Fortunately all the hard work in model theory has been done by Solovay. 
All that we use here is straightforward functional analysis. 

All operators on a Hilbert space are bounded. We recall that a subset S 
of a topological space T is said to have the Baire property if there exists 
an open set U such that (U\S) u (S\ U) is meagre. Let BP be the 
proposition: Each subset of a complete separable metric space has the Baire 
property. In [2, §4], Solovay outlines an argument which shows that 
when BP is interpreted in his model for ZF + DC then it becomes a true 
statement. Hence BP is consistent with the axioms of ZF + DC provided 
Solovay's model exists. We adjoin BP as an axiom and denote the 
extended system by 'ZF + DC + BP'. 
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In this paper certain propositions will be shown to be theorems of 
ZF + DC + BP. It is easy to show, by a Hamel base argument, that for 
each such proposition its negation is a theorem in ZFC (ZF with the 
axiom of choice adjoined). So these propositions can neither be proved 
nor disproved in ZF + DC, provided Solovay's model exists. 

Let I be the axiom: There exists an inaccessible cardinal. Solovay uses 
the hypothesis that there exists a (transitive) model for ZFC + I when 
constructing his model. 

From now onward we work in ZF + DC + BP. All our theorems 
are derived in this system. 

LEMMA 1. Let X and Y be separable metric spaces and let X be complete. 
Letf'.X -> Y be any function mapping X into Y. Then there exists a meagre 
set N c X such that the restriction of f to X \ N is continuous. 

Choose s > 0. Let {yr:r = 1, 2, . . .} be a countable dense subset of Y. 
For each r, let Sr be the open sphere centred on yr with radius 8/2. Then 

Let At = S, and, for n £ 1, let AH+1 = ({J^1 Sr) - ((J» Sr). So 
Y = (Jj° An9 where each An is contained in an open sphere of radius e/2 
and At n Aj = 0 for i ^ j . 

LztBn = f-^A^forn = 1,2, ThenX = \J^ BH3ndBin Bj = 
0 for i ^ j . 

For any n, Bn has the Baire property and so there is an open set Un 

and a meagre set M„, where Mn = (Bn\ Un) u (Un\ Bn), such that 
Unn(X\ Mn) = Bnn(X\ Mn). Let M be the meagre set (J^° Mn. Then 
Unn(X\M) = Bnn{X\ M) for each n. Thus Bn n (X \ M) is an open 
subset of X \ M in the relative topology of X \ M. 

Let / be the set of all natural numbers n for which Bn n (X\ M) is 
not empty. By DC there exists a function Ç with domain J such that 
Ç(n) e Bn n (X\ M) for each «. Let h be the function defined on X\M 
by Zz(x) = f(Ç(n)) whenever x e Bnn (X\M). 

Let (Zj) (j = 1, 2, . . .) be any sequence in X \ M which converges to a 
point z in X \ M. Then, for some ne J, Bn n(X\M) is an open neigh­
bourhood of z in the relative topology of X \ M. So there exists a natural 
number k such that z} e Bn n (X \ M) whenever y ^ k. Thus A(z7) = h(z) 
whenever j ^ k. So h:(X\ M) -> 7 is continuous. Whenever X G I \ M 
then x e Bn n (X \ M) for some ne J and thus 

^ ( x ) , / ( x ) ) = rf(/(^)),/W)<£. 

By putting s = \jm (m = 1, 2, . . .) we can find a sequence of functions 
(hm) (m = 1 ,2 , . . . ) and a sequence of meagre sets (Nm) (m = 1, 2, . . .) 
such that hm is a continuous map of X \ Nm into Y and d(hm(x), f(xj) < \jm 
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for each x e X \ Nm. Let N be the meagre set (J^° Nm. Then (hm) (m = 
1 ,2 , . . . ) converges uniformly to ƒ on X \ TV. So ƒ is continuous on X \ N. 

THEOREM 2. Let X and Y be separable metrizable topological groups 
and let X be complete. Let H:X -> Y be any group homomorphism. Then 
H is continuous. 

Let (xn) (n = 1, 2, . . .) be a sequence in X converging to a point x. 
By Lemma 1, there is a meagre set M such that H is continuous when 
restricted to X \ M. 

By the Baire category theorem, which is valid in ZF + DC, there 
exists z e X such that z is not in the meagre set x~xM u (J^° (x~xM). 
Thus xz e X\M and xnz e X\M for each n. Hence H(xz) = lim H(xnz). 
Since H is a homomorphism, H(z) = lim H(xn). 

The elegant argument used in Theorem 2 is due to Banach, see Theorem 
4, Chapter 1 [1]. I wish to thank Professor A. Wilansky for drawing my 
attention to this reference. 

In the following we do not require Fréchet spaces to be locally convex. 

THEOREM 3. Let X be any Fréchet space and let Y be a separable 
metrizable topological vector space. Let T:X -> Y be a linear map. Then 
T is continuous. 

Let (xn) (n = 1, 2, . . .) be any sequence in X which converges to zero. 
Let X0 be the closed linear span of {xn:n = 1 ,2 , . . .} so that X0 is a 
separable Fréchet space. Then, by the preceding theorem, the restriction 
of T to X0 is continuous. Thus Txn -> 0 as n -> oo. So T is continuous. 

COROLLARY 4. Each linear functional on a Fréchet space is continuous. 

THEOREM 5. Let X and Y be Fréchet spaces and let T:X -» Y be a 
linear map. If there exist enough functionals on Y to separate the points of 
Y then T is continuous. 

Let (xn) (n = 1, 2, . . .) be a sequence in X converging to x and suppose 
(Txn) (n = 1, 2, . . .) converges to y. For any functional <j> on Y, </> is 
continuous on 7 and </>Tis continuous on X. Thus 

d>(y) = l im <t>{Txn) = l im <j>T{xn) = cj>T(x). 

So Tx = y. It now follows by the closed graph theorem that T is 
continuous. 

It must be emphasised that discontinuous linear operators, defined 
on incomplete spaces, arise naturally in ZF + DC. For example, there 
is an abundance of unbounded operators defined on dense subspaces of a 
Hubert space. But, for linear operators defined on the whole of a Hilbert 
space the following theorem holds in ZF + DC + BP. 
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THEOREM 6. Let H be a Hilbert space and let T:H -> H be a linear 
operator defined on the whole of H. Then T is bounded. 

Let H be any Hilbert space. Then, for each nonzero x in H, the linear 
functional ƒ, defined by f(y) = <>>, x>, does not vanish at x. So H has a 
separating family of linear functionals. 

This implies that, in ZFC, we cannot obtain discontinuous operators 
on (the whole of) a Hilbert space except by invoking an 'uncountable' 
form of the axiom of choice. 
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