UNIQUENESS OF ORIENTATION PRESERVING PL INVOLUTIONS OF 3-SPACE

BY KYUNG WHAN KWUN¹ AND JEFFREY L. TOLLEFSON Communicated by Morton L. Curtis, December 21, 1972

1. **Introduction.** Waldhausen [2] has proven that every PL involution of S^3 with 1-dimensional fixed point set is PL equivalent to the one which rotates S^3 around an unknotted simple closed curve. In this note we show how the corresponding result for R^3 (which has been heretofore unknown) follows from a technique used by the second author in his recent paper [1]. Specifically, we prove

THEOREM 1. Every orientation preserving PL involution of R^3 is PL equivalent to the one which rotates R^3 around the z-axis.

Since such an involution must have 1-dimensional fixed point set, the above theorem is a consequence of the following theorem if one considers the one-point compactification of R^3 .

THEOREM 2. Let h be an involution of a closed 3-manifold M with 1-dimensional fixed point set F. If, for some $x \in F$, there exists a triangulation of $M - \{x\}$ making $h|M - \{x\}$ piecewise linear, then there exists a triangulation of M making h piecewise linear.

Theorem 2 will be proved by literally imitating the reduction method [2, proof of Lemma 2] of Tollefson.

2. Proof of Theorem 2.

LEMMA. Let M, F, x and h be as in Theorem 2. Then, for any neighborhood U of x, there exists in U an invariant 3-cell D containing x in its interior such that $\partial D \cap F \neq \emptyset$ and ∂D is a PL subspace of $M - \{x\}$.

PROOF. We indicate how to modify the proof of Lemma 2 of [1] to produce the desired invariant 3-cell D. We may assume that F is not contained in U. Let Σ be the set of all PL 2-spheres in $M - \{x\}$ that bound 3-cell neighborhoods of x in U and are in h-general position modulo F (in the sense of [1]). The lemma follows from the proof of Lemma 2 of [1] if the phrase "2-spheres not bounding 3-cells" is replaced by "PL 2-spheres in $M - \{x\}$ bounding 3-cell neighborhoods of x in U."

In order to prove Theorem 2, consider a sequence of invariant 3-cells

AMS (MOS) subject classifications (1970). Primary 57A10; Secondary 55A10, 57C15, 57E25.

¹ Supported in part by NSF grants GP-29515X and 30808.

(as in the lemma) D_1, D_2, \ldots such that $D_{i+1} \subset Int(D_i)$ and $\bigcap D_i = x$. Observe that F meets each 2-sphere ∂D_i in two points. By applying the above-mentioned result of Waldhausen to $h|D_i - Int(D_{i+1})$ (for each i), we find that $h|D_1$ is topologically equivalent to the cone of $h|\partial D_1$. Now extend the triangulation of $M - Int(D_1)$ to M by triangulating D_1 as the cone over ∂D_1 . This proves Theorem 2.

REFERENCES

1. J. L. Tollefson, Involutions on $S^1 \times S^2$ and other 3-manifolds, Trans. Amer. Math.

Soc. (to appear).
2. F. Waldhausen, Über Involutionen der 3-Sphäre, Topology 8 (1969), 81-91. MR 38

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS