A RESTRICTION ON THE PARAMETERS OF A SUBQUADRANGLE

BY STANLEY E. PAYNE

Communicated by Gian-Carlo Rota, January 8, 1973

- 1. **Introduction.** A generalized quadrangle of order (s, t) is a finite incidence plane P with $v_1 = (1 + t)(1 + st)$ lines, $v_2 = (1 + s)(1 + st)$ points, and a symmetric incidence relation I satisfying the following axioms (cf. [1]):
 - I-1. No two lines of P are incident with two points in common.
- I-2. If x is a point of P and L is a line of P such that $x \setminus L$ (i.e., x is not incident with L), then there is a unique pair (x', L') consisting of a point and line, respectively, such that $x \mid L'$, $x' \mid L'$, and $x' \mid L$.
 - I-3. Each line (point) is incident with 1 + s points (1 + t lines).

Throughout this note, P will denote a generalized quadrangle of order (s, t) and Q a subquadrangle of P of order (s', t') with $1 \le s' \le s$, $1 \le t' \le t$. In [4], Thas gives a number of restrictions on s' and t' in terms of s and t. Two of them are as follows in case s' < s and t' < t:

- (1) $s'(t')^2 < st$ and $t'(s')^2 < st$.
- (2) If t = s and $t' = s' \ge 13$, then $s^2 > 3(s')^3$.

It is the purpose of this note to give the following improvement of (1) and (2), which is a "best possible" result in the sense that, for each prime power s', the case $s = (s')^2$ (s = t, s' = t') does arise.

THEOREM. With s, s', t, t' as above, it must be that

(a)
$$s \ge s't'$$
 or $s = s'$ and dually (b) $t \ge s't'$ or $t = t'$.

Thas examines rather thoroughly the case s = s', t > t', and we refer the reader to [4] for several results in this case.

2. **Proof of the Theorem.** Our proof of the Theorem is based on ideas of D. G. Higman and C. Sims, particularly as developed in [2] and [3].

Let G be the graph whose vertices are the points of P and whose edges are the pairs of noncollinear points of P. Let A be the (0,1) adjacency matrix of G defined in terms of some fixed ordering of the vertices of G. Then A is symmetric with characteristic roots -s, t, and s^2t . Partition the vertices of G into two sets Δ_1 and Δ_2 as follows: Δ_1 is the set of points of Q; Δ_2 is the set of points of P not in Q. For convenience put

$$n_1 = |\Delta_1| = (1 + s')(1 + s't'), \qquad n_2 = |\Delta_2| = (1 + s)(1 + st) - n_1.$$

AMS (MOS) subject classifications (1970). Primary 05B25; Secondary 15A42. Key words and phrases. Finite generalized quadrangle, subquadrangle.

For $1 \le i, j \le 2$, let e_{ij} be the number of ordered pairs (x, y) for which $x \in \Delta_i$, $y \in \Delta_i$, and (x, y) is an edge of G. Let \hat{A} be the 2 \times 2 matrix whose (i,j) entry is e_{ij}/n_i . According to the theorem of Sims quoted on p. 144 of [2], the characteristic roots of \hat{A} must lie between -s and s^2t .

A straightforward computation shows that

(3)
$$\hat{A} = \begin{pmatrix} (s')^2 t' & s^2 t - (s')^2 t' \\ \frac{n_1(s^2 t - (s')^2 t')}{n_2} & s^2 t - \frac{n_1(s^2 t - (s')^2 t')}{n_2} \end{pmatrix}.$$

It is easy to see that s^2t is a root of \hat{A} , so that $tr(\hat{A}) - s^2t = (s')^2t' (n_1(s^2t - (s')^2t'))/n_2 = r$ is the other root. The condition that $-s \le r$ is then easily shown to be equivalent to

$$(4) 0 \leq (s - s't')(s - s'). \quad \square$$

COROLLARY. If a generalized quadrangle P of order s (i.e., s = t) has a subquadrangle Q of order s', then $s \ge (s')^2$.

BIBLIOGRAPHY

- 1. W. Feit and G. Higman, The nonexistence of certain generalized polygons, J. Algebra
- 1 (1964), 114-131. MR 30 #1189.

 2. M. D. Hestenes and D. G. Higman, Rank 3 groups and strongly regular graphs, SIAM-AMS Proc., vol. 4, Amer. Math. Soc., Providence, R.I., 1971, pp. 141-159.
- 3. D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs, Atti del convegno di geometria combinatoria e sua applicazioni, Perugia, 1971.
- 4. J. A. Thas, 4-gonal subconfigurations of a given 4-gonal configuration (unpublished manuscript).

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056