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Let sé denote the category of torsion free abelian groups of finite rank 
and let K0(sé) and K°{sé) be the Grothendieck groups of sé (modulo 
split exact sequences and exact sequences, respectively). 

J. Rotman [5] determined the group and ring structure of K°(s/) ; in 
particular, K°{sé) is a free abelian group of uncountable rank. There is 
a canonical epimorphism n0 : K0(sé) -» K°(sé) so K0(sé) has a free 
summand. 

Let <$ be the full subcategory of se consisting of groups with constant 
p-rank (i.e., there is an integer n such that the Z/pZ-dimension of A/pA 
is equal to n for all primes p). Define K0(^) to be the Grothendieck group 
of ^ (modulo split exact sequences) and let K0(%>) be the kernel of the 
rank homomorphism from K0{^) to Z, the ring of integers. 

PROPOSITION 1. K0(%>) is isomorphic to the kernel ofn0. 

The category <€' is defined by letting the objects of <€' be the objects 
of ^, and with morphism sets Q ® z Homz(,4, B) for groups A and B 
in ^ ' . There is a canonical epimorphism G0:K0(%>) -> K0(^). Moreover, 
K0(^

f) is a free abelian group (of uncountable rank) since %>' has a Krull-
Schmidt theorem (e.g., see Walker [6]). 

If R is a ring with identity, then K0{R) is defined to be KO(0>R) = K°{0>R\ 
0>R the category of finitely generated projective jR-modules. 

A corollary to the next theorem is : The torsion subgroup of K0(stf) 
is nonzero (for K0(R) ^ Z © I(R\ where I(R) is the ideal class group of 
R). 

THEOREM 2. Suppose that R is a Dedekind domain such that R+, the 
additive group of R, is a reduced torsion free abelian group of finite rank. 
Then K0(R) is isomorphic to a subgroup ofK0(s/). 

Let Kiisf) be the Whitehead group of se (as defined by Bass [3]). 
Since ^ is a cofinal subcategory of se, we have 

COROLLARY 3. K^) ~ Kt(s/). 
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Define ^(#) to be the collection of groups in ^ with constant p-rank 1 
and with product A * B = {A ®z B)/d(A ® z £), where d(A (x)z B) is the 
divisible subgroup of A ® z B. Let J be the product, over all primes p, of 
the p-adic integers; U(J) the multiplicative group of units in J; and 
AU(J) the group of algebraic units of J, i.e., AU(J) = {xe U(J)\f(x)= 0 
for some nonzero polynomial ƒ with integral coefficients}. 

THEOREM 4. (a) There are group epimorphisms di'.Kffi) -* K^itf)) for 
i = 0,1. 

(b) Ki W ) ) * 4l/(J). 
(c) Kii&W)) c* AU{J)® U+(Q), where U+{Q) is the multiplicative 

group of positive rational numbers. 

Let HiW-t&j be the (Z-adic) completion functor. Then there is a 
commutative diagram 

KiW - ^ ^ Ki(J)*l / (J) 

KWW)-^^ X^PicKJ)) ^ l/(J) 

where detx is the usual determinant homomorphism. Furthermore,KX(H) 
is a monomorphism on Kx(0H<£)). 

The structure of K0(^(^)) remains an open question. Some partial 
results are contained in [2]; in particular, X0(^(^)) has a summand 
isomorphic to I~[/Z> where Y[ a n d £ a r e t ' l e direct product and sum, 
respectively, of a countable number of copies of Z. 
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