GROTHENDIECK AND WHITEHEAD GROUPS OF TORSION FREE ABELIAN GROUPS

BY DAVID M. ARNOLD

Communicated by Joseph Rotman, December 19, 1972

Let \mathscr{A} denote the category of torsion free abelian groups of finite rank and let $K_0(\mathscr{A})$ and $K^0(\mathscr{A})$ be the Grothendieck groups of \mathscr{A} (modulo split exact sequences and exact sequences, respectively).

J. Rotman [5] determined the group and ring structure of $K^0(\mathscr{A})$; in particular, $K^0(\mathscr{A})$ is a free abelian group of uncountable rank. There is a canonical epimorphism $\pi_0: K_0(\mathscr{A}) \to K^0(\mathscr{A})$ so $K_0(\mathscr{A})$ has a free summand.

Let $\mathscr C$ be the full subcategory of $\mathscr A$ consisting of groups with constant p-rank (i.e., there is an integer n such that the Z/pZ-dimension of A/pA is equal to n for all primes p). Define $K_0(\mathscr C)$ to be the Grothendieck group of $\mathscr C$ (modulo split exact sequences) and let $\widetilde K_0(\mathscr C)$ be the kernel of the rank homomorphism from $K_0(\mathscr C)$ to Z, the ring of integers.

PROPOSITION 1. $\tilde{K}_0(\mathscr{C})$ is isomorphic to the kernel of π_0 .

The category \mathscr{C}' is defined by letting the objects of \mathscr{C}' be the objects of \mathscr{C} , and with morphism sets $Q \otimes_Z \operatorname{Hom}_Z(A, B)$ for groups A and B in \mathscr{C}' . There is a canonical epimorphism $\sigma_0: K_0(\mathscr{C}) \to K_0(\mathscr{C}')$. Moreover, $K_0(\mathscr{C}')$ is a free abelian group (of uncountable rank) since \mathscr{C}' has a Krull-Schmidt theorem (e.g., see Walker [6]).

If R is a ring with identity, then $K_0(R)$ is defined to be $K_0(\mathscr{P}_R) = K^0(\mathscr{P}_R)$, \mathscr{P}_R the category of finitely generated projective R-modules.

A corollary to the next theorem is: The torsion subgroup of $K_0(\mathscr{A})$ is nonzero (for $K_0(R) \simeq Z \oplus I(R)$, where I(R) is the ideal class group of R).

Theorem 2. Suppose that R is a Dedekind domain such that R^+ , the additive group of R, is a reduced torsion free abelian group of finite rank. Then $K_0(R)$ is isomorphic to a subgroup of $K_0(\mathcal{A})$.

Let $K_1(\mathscr{A})$ be the Whitehead group of \mathscr{A} (as defined by Bass [3]). Since \mathscr{C} is a cofinal subcategory of \mathscr{A} , we have

Corollary 3. $K_1(\mathscr{C}) \simeq K_1(\mathscr{A})$.

AMS (MOS) subject classifications (1970). Primary 20K15, 18F25; Secondary 13F05, 13D15.

Key words and phrases. Torsion free abelian groups of finite rank, Grothendieck groups, Whitehead groups.

Define $\mathcal{P}(\mathcal{C})$ to be the collection of groups in \mathcal{C} with constant p-rank 1 and with product $A * B = (A \otimes_Z B)/d(A \otimes_Z B)$, where $d(A \otimes_Z B)$ is the divisible subgroup of $A \otimes_Z B$. Let J be the product, over all primes p, of the p-adic integers; U(J) the multiplicative group of units in J; and AU(J) the group of algebraic units of J, i.e., $AU(J) = \{x \in U(J) | f(x) = 0\}$ for some nonzero polynomial f with integral coefficients \}.

THEOREM 4. (a) There are group epimorphisms $d_i: K_i(\mathscr{C}) \to K_i(\mathscr{P}(\mathscr{C}))$ for i = 0, 1.

- (b) $K_1(\mathscr{P}(\mathscr{C})) \simeq AU(J)$.
- (c) $K_1(\mathcal{P}(\mathscr{C}')) \simeq AU(J) \oplus U^+(Q)$, where $U^+(Q)$ is the multiplicative group of positive rational numbers.

Let $H:\mathscr{C}\to\mathscr{P}_J$ be the (Z-adic) completion functor. Then there is a commutative diagram

$$K_{1}(\mathscr{C}) \xrightarrow{K_{1}(H)} K_{1}(J) \simeq U(J)$$

$$\downarrow^{d_{1}} \qquad \qquad \downarrow^{\det_{1}}$$

$$K_{1}(\mathscr{P}(\mathscr{C})) \xrightarrow{K_{1}(H)} K_{1}(\operatorname{Pic}(J)) \simeq U(J)$$

where det_1 is the usual determinant homomorphism. Furthermore, $K_1(H)$ is a monomorphism on $K_1(\mathcal{P}(\mathscr{C}))$.

The structure of $K_0(\mathscr{P}(\mathscr{C}))$ remains an open question. Some partial results are contained in [2]; in particular, $K_0(\mathcal{P}(\mathscr{C}))$ has a summand isomorphic to \prod / \sum , where \prod and \sum are the direct product and sum, respectively, of a countable number of copies of Z.

REFERENCES

- 1. D. M. Arnold and E. L. Lady, Endomorphism rings of direct sums of torsion free abelian groups, (to appear).
- 2. D. M. Arnold, Algebraic K-theory and torsion free abelian groups of finite rank, Symposia Mathematica, Academic Press, New York, (to appear).
- 3. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.
 4. J. Milnor, Introduction to algebraic K-theory, Annals of Math. Studies 72, Princeton Univ. Press, 1971.
- 5. J. Rotman, The Grothendieck group of torsion free abelian groups of finite rank, Proc. London Math. Soc. (3) XIII (1963), 724-732. MR 27 #4857.
 6. E. Walker, Quotient categories and quasi-isomorphism of abelian groups, Proceedings of Colloquium on Abelian Groups, Budapest, 1964, 147-162. MR 31 #2327.

DEPARTMENT OF MATHEMATICAL SCIENCES, NEW MEXICO STATE UNIVERSITY, LAS CRUCES, New Mexico 88003