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In this note we state some results on extensions of holomorphic map-
ings into hyperbolic spaces. A theorem involves extending holomorphic 
mappings to a domain of holomorphy. An extension problem of holo­
morphic mappings into a taut complex space was considered by Fujimoto 

[1]. 
Another result is that the space of all meromorphic mappings from a 

complex space X into a hyperbolically imbedded space in Y is relatively 
compact in the space of all meromorphic mappings from X into Y. 

A relatively compact complex space M is said to be hyperbolically 
imbedded in a complex space Y if for all sequences {pn} and {qn} in M 
such that pn-+ peM and gw -> qeM and such that dM(pn,qn) -» 0, we 
have p = q. Here dM denotes the pseudo-distance defined by Kobayashi 
[5]. A relatively compact complex space M in Y is strictly Levi pseudo-
convex if for every point p e dM there are a neighborhood Up of p and 
a biholomorphic map Op of Up onto a subvariety of a domain Dp in some 
Cn and a function cp defined in Up such that cp o ^ " 1 is the restriction to 
®p(Up) of a strictly pluri-subharmonic function <pp defined in Dp and 
%(UpnM) = {xE^(Up):q>p(x) < 0}. 

THEOREM 1. Let X be a complex manifold and A be an analytic subset 
of X of codimension at least 1. Let M be a strictly Levi pseudoconvex 
hyperbolic space in Y. Then a holomorphic mapping f of X — A into M 
can be extended holomorphically to a mapping fofX into M. 

This theorem can be proved using a theorem by Kwack [6] and the 
fact that there exist a neighborhood W of dM and a pluri-subharmonic 
function \j/ defined on Wsuch that Wc\M = {xeM:\j/(x) < 0}. 

THEOREM 2. Let M be one of the following: (i) Misa hyperbolic and strictly 
Levi pseudoconvex subspace of a complex space 7, and (ii) M is a complex 
manifold having a complete Hermitian metric ds^ all of whose holomorphic 
sectional curvatures are nonpositive. Let N be an (unramified) Riemann 
domain over a Stein manifold and f be a holomorphic mapping of N into M. 
Then the existence domain of the mapping f from N into M is a Stein mani­
fold. 
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COROLLARY. Let f, N, M, and Y be as above and H(N) be the envelope 
of holomorphy. Thenf'.N -» M can be extended to a holomorphic mapping 
J from H(N) into M. 

Theorem 2 was proved when M is a taut complex space by Fujimoto 
[1]. The proof of Theorem 2 uses the following lemma and arguments 
used by Fujimoto. 

LEMMA 1. Let pbe a point in CM, n ^ 2. Consider hyper spheres B with the 
center p and S whose boundary contains p. Let D be the intersection of the 
interior of B and the exterior ofS. Then every holomorphic mapping ƒ of D 
into M has a holomorphic extension to a neighborhood of p where M is 
as in Theorem 2. 

This lemma is essentially proved by Griffiths [2] when M is a complex 
manifold having a complete Hermitian metric all of whose holomorphic 
sectional curvatures are nonpositive. 

We can also prove 

THEOREM 3. Let X be a complex space Y with the following property; every 
holomorphic mapping of the punctured disk in C into X extends holomor-
phically to a mapping of the whole disk into X. Then if f:M -* X is a 
holomorphic mapping of an (unramified) Riemann domain M over a Stein 
manifold, the existence domain off is a Stein manifold and f:M -+ X can be 
extended to a holomorphic mapping J:H(M) -• X where H(M) denotes the 
domain of holomorphy of M. 

Next we state a convergence theorem for a sequence of meromorphic 
mappings. (See [7] for definition.) 

THEOREM 4. Let X be a complex space and {ƒ„} be a sequence of mero­
morphic mappings of X into a hyperbolically imbedded space in Y. Then 
there is a subsequence which converges uniformly on compact subsets to a 
meromorphic mapping ƒ :X -> Y. 

If X is a complex manifold without singularities, then it is known that 
any meromorphic mapping ƒ of X into a hyperbolic space is holomorphic 
and in this case Theorem 4 follows from theorems by Kiernan [3]. 

The proof of Theorem 4 uses the following theorem of Bishop [8]. 

THEOREM (BISHOP). The limit of a sequence of purely k-dimensional 
analytic varieties whose 2k-volumes are uniformly bounded is again a purely 
k-dimensional variety. 

We also use the following theorem by Kiernan [4]. 

THEOREM (KIERNAN). M is hyperbolically imbedded in Y if and only if 
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for each Hermitian metric h on Y, there exists a constant c > 0 such that 
f*(ch) ^ ds\for every holomorphic mapping of a unit disk D in C into M. 

Theorem 4 may be proved using a resolution of a complex space as 
used by Kiernan. 
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