COMBINATORIAL SYMMETRIES OF THE m-DISC. I

BY LOWELL JONES

Communicated by Michael Atiyah, May 30, 1972

In 1938–1939 P. A. Smith published this theorem about combinatorial symmetries of the m-disc having prime period p: If K denotes the fixed point set of $\mathbb{Z}_p \times D^m \to D^m$, then K is a \mathbb{Z}_p -homology manifold and \mathbb{Z}_p -homology disc (see [4]).

The main result in this paper states that for odd primes p, there is a homogeneity property of the fixed point set K which is not implied by P. A. Smith's theorem: There is a characteristic class $h_{4^*+K-1}^p \in H_{4^*+K-1}(K/\partial K, Z_2)$, which must vanish if K is to be the fixed point set for some $Z_p \times D^m \to D^m$, where K denotes both the polyhedron K and its dimension. By homogeneity it is meant that the class vanishes if K is a PL manifold (see Theorem 1.1b). Theorem 1.2 is intended to clarify the mechanics that define $h_{4^*+K-1}^p$: represent homology classes by singular Z_p -homology manifolds P_i ; compute an invariant from the mid-dimensional intersection forms of the P_i ; use the universal coefficient theorem to get $h_{4^*+K-1}^p$. This is a procedure well known to workers in the field (see [3], [6]).

A key step in determining the properties of this characteristic class, relates an exponent 4 invariant of the fixed point set for $\mathbb{Z}_p \times M \to M$, to the \mathbb{Z}_p -index of M, where $\mathbb{Z}_p \times M \to M$ is a combinatorial symmetry on a closed PL manifold M.

Results are stated only for primes of the form p = 4q + 1 with q = odd. Similar results hold for other odd primes, but tables and invariants must be slightly modified.

In part, this is a correction to [1]. There, in a remark, it is said that the converse to P. A. Smith's theorem is true for odd primes, provided the potential fixed point set admits a "2-parameter cross section." This is not true, as Theorems 1.1, 1.3 below show.

1. Characteristic classes measuring nonhomogeneity. $(K, \partial K)$ denotes a Z_p -homology manifold pair, σ denotes any exponent 4 invariant that can be additively associated to quadratic forms over the integers having determinant prime to p; e.g., various combinations of Hasse symbol and discriminant type invariants; reduction mod p invariants.

THEOREM 1.1. There is a characteristic class $h_{4^*+K-1}^{\sigma} \in H_{4^*+K-1}$ $(K/\partial K, Z_4)$, satisfying

AMS (MOS) subject classifications (1970). Primary 57D20.

- (a) h_{4*+K-1}^{σ} is an intrinsic invariant for K, depending only on the PL homeomorphism type of K and the quadratic form invariant σ .
 - (b) $h_{4*+K-1}^{\sigma} = 0$ if K is an integral-homology manifold.
 - (c) $\exists K_{\sigma}$ which is a Z_p -homology disc, for which $h_{4*+K_{\sigma}-1\neq 0}$.

The geometric essence of h_{4*+K-1}^{σ} is this:

THEOREM 1.2. For l large enough there exists in the interior of $K \times D^l$ a finite set of polyhedra $\{P_i\}$, satisfying

- (a) each P_i has a linear disc bundle for regular neighborhood in $K \times D^l$;
- (b) any characteristic class $h_{4^*+K-1}^{\sigma}$ can be computed from the $\{\sigma(P_i)\}$, e.g., $\sigma(P_i) = 0 \ \forall_i \Leftrightarrow h_{4^*+K-1}^{\sigma} = 0$. Here $\sigma(P_i)$ is the evaluation of σ on the mid-dimensional intersection form of P_i .

If σ is taken to be the mod p discriminant of a quadratic form—this lies in the group of units of Z_p modulo the subgroup of square units—then $h_{4^*+K-1}^{\sigma}$ will be the image of a unique class in $H_{4^*+K-1}(K/\partial K, Z_2)$. This latter class is denoted by $h_{4^*+K-1}^{\rho}$.

THEOREM 1.3. Suppose p = 4q + 1 with q = odd. If K is the fixed point set for a combinatorial symmetry $\mathbb{Z}_p \times N \to N$ defined on a PL manifold N, then $h_{4^*+K-1}^p = 0$.

2. A PL equivariant index theorem. $Z_p \times M \to M$ denotes a combinatorial symmetry defined on the closed PL manifold M of dimension 4m, having odd prime order. K denotes the fixed point set for $Z_p \times M \to M$. λ_K denotes the mid-dimensional intersection form of K; det (K) denotes the mod p discriminant of λ_K ; r(K) denotes the rank of λ_K mod 2. $H_{2m}(M,Q)_\eta$ is the subspace of $H_{2k}(M,Q)$ killed by the norm $\eta \equiv 1+t+t^2+\ldots+t^{p-1}$, where t is a multiplicative generator for Z_p . λ_η is the restriction to $H_{2m}(M,Q)_\eta \times H_{2m}(M,Q)_\eta$ of the mid-dimensional rational intersection form for M; $i_n(M)$ is the index of λ_n ; i(M) is the index of M.

THEOREM 2.1. Suppose codimension_M(K) ≥ 4 ; p = 4q + 1 with q = odd. Then there are these relations between r(K), det(K), i(M), $i_n(M)$:

(a) if $\dim(K) = 0(4)$;

r(K)	det(K)	$i_{\eta}(M) \mod 8$
1	0	(p-1)i(M)+4
1	1	(p-1)i(M)
0	1	(p-1)i(M)+4
0	0	(p-1)i(M)

(b) if $\dim(K) = 2(4)$; $i_{\eta}(M) = (p-1)i(M) \mod 8$.

BIBLIOGRAPHY

- 1. L. E. Jones, The converse to the fixed point theorem of P. A. Smith, Bull. Amer. Math. Soc. 78 (1972), 234–235.
 - , Combinatorial symmetries of the m-disc, Notes at Berkeley (June 1971).
- 3. R. Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, Internat. Sympos. on Algebraic Topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 54-67. MR 21 #866.
 4. P. A. Smith, Transformations of finite period. I, II, Ann. of Math. (2) 39 (1938), 127-164;
- ibid. (2) 40 (1939), 690-711. MR 1, 30.
- 5. D. Sullivan, Geometric topology, Lecture Notes, Princeton University, Princeton, N.J., 1967.
- 6. --, Proc. Conference on Topology of Manifolds, University of Georgia, Athens, Ga., 1969.
 - 7. C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: 2180 Beach Drive, Seaside, Oregon 97138