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In 1938-1939 P. A. Smith published this theorem about combinatorial 
symmetries of the m-disc having prime period p: If K denotes the fixed 
point set of Zp x Dm -• Dm, then K is a Zp-homology manifold and 
Zp-homology disc (see [4]). 

The main result in this paper states that for odd primes p, there is a 
homogeneity property of the fixed point set K which is not implied by 
P. A. Smith's theorem: There is a characteristic class h%*+K- x e H4*+K_ x 

(K/dK, Z2), which must vanish if K is to be the fixed point set for some 
ZpxD f f l-> Dm, where K denotes both the polyhedron K and its dimen­
sion. By homogeneity it is meant that the class vanishes if K is a PL 
manifold (see Theorem 1.1b). Theorem 1.2 is intended to clarify the 
mechanics that define h%*+K-x\ represent homology classes by singular 
Zp-homology manifolds Pt ; compute an invariant from the mid-dimen­
sional intersection forms of the Pt ; use the universal coefficient theorem 
to get /Î2*+K_I- This is a procedure well known to workers in the field 
(see [3], [6]). 

A key step in determining the properties of this characteristic class, 
relates an exponent 4 invariant of the fixed point set for Zp x M -• M, 
to the Zp-index of M, where Zp x M -• M is a combinatorial symmetry 
on a closed PL manifold M. 

Results are stated only for primes of the form p = 4q + 1 with q = odd. 
Similar results hold for other odd primes, but tables and invariants must 
be slightly modified. 

In part, this is a correction to [1]. There, in a remark, it is said that 
the converse to P. A. Smith's theorem is true for odd primes, provided 
the potential fixed point set admits a "2-parameter cross section." This 
is not true, as Theorems 1.1, 1.3 below show. 

1. Characteristic classes measuring nonhomogeneity. (K, ÔK) denotes 
a Zp-homology manifold pair, a denotes any exponent 4 invariant that 
can be additively associated to quadratic forms over the integers having 
determinant prime to p; e.g., various combinations of Hasse symbol and 
discriminant type invariants ; reduction mod p invariants. 

THEOREM 1.1. There is a characteristic class hl*+K^1eH4*+K_1 

(K/dK, Z4), satisfying 
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(a) hl*+K-x is an intrinsic invariant for K, depending only on the PL 
homeomorphism type ofK and the quadratic form invariant a. 

(b) /*4*+K- i =0ifK is an integral-homology manifold. 
(c) 3Ka which is a Zp-homology disc,for which h4*+Ka_1¥i0. 

The geometric essence of h%+K_ x is this: 

THEOREM 1.2. For I large enough there exists in the interior of K x Dl 

a finite set of polyhedra {Pf}, satisfying 
(a) each Pt has a linear disc bundle for regular neighborhood in K x Dl; 
(b) any characteristic class /*4*+K-I can be computed from the {<x(Pf)}, 

e.g., a{Pi) = 0V|<»li4*+K_1 = 0 . Here a(Pt) is the evaluation of a on the 
mid-dimensional intersection form ofPt. 

If a is taken to be the mod p discriminant of a quadratic form—this 
lies in the group of units of Zp modulo the subgroup of square units— 
then h%*+K- x will be the image of a unique class in H4*+ x_ x(K/dK9 Z2). 
This latter class is denoted by h%*+K_ t. 

THEOREM 1.3. Suppose p = Aq + 1 with q = odd. If K is the fixed point 
set for a combinatorial symmetry Zp x N -» N defined on a PL manifold N, 
then /*4*+K-I = 0. 

2. A PL equivariant index theorem. Zp x M -+ M denotes a combina­
torial symmetry defined on the closed PL manifold M of dimension 4m, 
having odd prime order. K denotes the fixed point set for Zp x M -+ M. 
XK denotes the mid-dimensional intersection form of K; det(K) denotes 
the mod p discriminant of XK ; r(K) denotes the rank of XK mod 2. H2m(M, Q\ 
is the subspaceofH2k(M,<2) killed by the norm r\ = 1 + t + t2 + ... + t*'1, 
where t is a multiplicative generator for Zp. Xn is the restriction to 
H2m{M, Q\ x H2m(M, Q\ of the mid-dimensional rational intersection 
form for M; in(M) is the index of Xn ; i{M) is the index of M. 

THEOREM 2.1. Suppose codimensionM(X) ^ 4; p = 4q + 1 with q = odd. 
Then there are these relations between r(K\ det(X), i(M), in{M): 

(a) ifàim(K) = 0(4); 

r(K) det(K) in{M) mod 8 

1 0 (p - l)i(M) + 4 
1 1 (p - l)i(M) 
0 1 (p - l)i(M) + 4 
0 0 (p - l)i(M) 

(b) if dim(X) = 2(4); i„(M) = (p - l)i(M) mod 8. 
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