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0. Introduction. Let G be a compact Lie group acting on a C00 manifold. 
A G invariant stable complex structure on M is a complex structure J on 
T(M) © er (where &r is a trivial bundle) such that for each g in G, dg © id 
commutes with J. We will be concerned with the case where G = U(n) 
and the action is free or regular. We will study the resulting bordism 
theories. 

DEFINITION. Let M be a compact U(ri) manifold. M is called a regular 
U(ri) manifold if 

1. Every isotropy group is conjugate to U(k) for some 0 S k ^ n. 
2. For some r, T(M) © sr has a U(n) invariant complex structure J 

such that the representation of the isotropy group U(n)x at (T(M) © sr)x 

is equivalent to a sum of copies of the standard complex representation 
of U(ri)x plus a trivial complex representation. (Remark. If U(n)x 

= g_1£/(fc)g, then U(ri)x acts in the obvious way on g~xCk c Cn and this 
is the standard representation.) 

We define homotopy and equivalence classes of such structures anal­
ogously to [2]. The resulting bordism theory is denoted by £lU(n)%. We 
denote the bordism theory of free (7(ft)-actions by Q^. The main results 
are summarized in the following theorem. 

THEOREM. Qj* and ÇlU(n)^ are free MU# modules. Any connected regular 
U(n) manifold on which U(n) acts nontrivially is bordant in ClU(n)% to a regular 
U(n) manifold in which every isotropy group is conjugate to 1/(1) or 1/(0). 

Warning. fi£} is not obviously MU^(BU(n)). 

1. Relation between Q£° and QUiri)^. As in [3], [7] we construct a long 
exact sequence -• D*fi -• D*1 - 1 -• E**1"1 -• Z)*'1 -• • • • and a resulting 
exact couple and a spectral sequence. Then E00 is associated to a filtration 
of Î2 [ƒ(«)„,. For k # n, Eltk is the bordism group of pairs (£, M) where E 
is a complex U(ri) vector bundle over the regular U(n) manifold M such 
that every point in M has isotropy group conjugate to U(n — k) and the 
representation of U(n)x on Ex is a sum of copies of the standard complex 
representation of U(n)x. The pair (£, M) is completely determined by the 
U(n — k) x U(k) manifold M0, the points in M with isotropy group 
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U(n — k), and the vector bundle E\Mo = F ® pn-k where p„_k is the 
standard complex representation of U(n — k) and F is a free U(k) complex 
vector bundle over the free U(k) manifold M0 . (F9 M0) completely 
determines (£,M) so Eltk = ®pQ

ik)(BU{p)). The differential d:Elk 

-+Elh+l9 k+l*n9 takes (F,M0) to (H xmi)xUih)U(k + 1),S{F) 
xu(i)xu(k) U(k + 1)) where H is the canonical hyperplane bundle over 
the sphere bundle 5(F). E^n = Q£° and the differential takes (F,M0) in 
£*,„_! to S(F) X ^ D X ^ ^ D Uin). 

2. The theories Q(k). The bordism theory of stably complex free U(k) 
manifolds is the same as the bordism theory gotten from pairs (P9M)9 

where P is a principal U(k) bundle, together with a complex structure on 
the vector bundle vM © Ad(P). Here vM is the stable normal bundle and 
Ad(P) = P x £/(£) Rk2 with U(k) acting on Rk2 via the adjoint representa­
tion. We construct spaces B Adkn by taking the pullback of BU(N) via 

(2.1) B(id x Ad):BO(2n) x BU(k) -> BO(2N) 

where 2N = 2n + k2 or 2n + k2 + 1. M Adkn is the Thorn space of the 
oriented vector bundle pulled up from the universal bundle over BO(2n). 
There are obvious maps S2 A M Ad M -» M A d M + 1 and so we obtain a 
spectrum M Adfc. It is clear that n#(M Adfc) = Qik). If we replace U(k) by 
T\ the maximal torus, in this procedure we get spaces B'AdKn9 M'AdM . 
BAdkn -• B AdM is a U(k)/Tk bundle. The representation id x Ad 
induces a map 

(2.2) cp : BU(n) x £T k - £ 'AdM . 

LEMMA (2.3). <p* is an isomorphism in cohomology in dimensions <2n — 1. 

N o w l e t F = E0(2ll) 0(2N\ P = E0{2n)xUik) x U{n)xU{k)0(2N) 
and V' and V the corresponding complex vector bundles over P'/U(N) 
= B'Adkn and P/U(N) = £ AdM . Let c] denote the Chern classes of Kand 
V'. Using some representation theory and (2.3) we show that 

LEMMA (2.4). <p*(dj) = cj + £ c}.q{th - th) • • • (tiq - tlq\ where cj are 
the Chern classes in H*(BU(n)\ tl9...,tk are the generators for H*(BTk). 

H*(B AdM) = Z{_duc'l9..., ax(t)9..., <xk(t)] 

through dimension 2n — 2. a^t) is the symmetric function of tl9.. .9tk. 

LEMMA (2.5). H*(M Adk) is a free Z module with basis U'KJ S^C') U SJ(G) 

where U' is the "universal" Thorn class for M Adk, I runs through all finite 
sequences of nonnegative integers, and J runs through sequences (jl9... 9jk). 

There is an obvious map BU(m) x B AdKn^> B AdKn+m which gives 
rise to a map 
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(2.6) MU A M Adk -> M Adfc. 

Thus Q(k) becomes an MU^ module (which is evident geometrically) and 
H*(MAdk) becomes an H*(MU) comodule. We exploit this comodule 
structure together with Milnor's results [4] on H*(MU\Zp) to obtain 

THEOREM (2.7). For each prime p, H*(MAdk;Zp) is a free module over 
Ap/(Q0) with basis U' u SÀ(cf) u Sj((j\ where k runs over all finite sequences 
containing no pj — 1, Ap is the mod p Steenrod algebia, and (Q0) is the 
two-sided ideal generated by the Bockstein. 

It follows that the Adams spectral sequence for ^ (MAd/J collapses 
and Q ^ is torsion-free. Let Yw be the Milnor manifolds described in [6] 
which form a basis for MU^. Let 0 ^ i\ ^ • • • ^ ik be integers. Consider 
Yw x CPh x • • • x CPik = Yw x CP1. These elements represent elements 
in MU*{BTk) = n*{MU A BTk). From (2.2) we get maps 

(2.8) nJMU A BTk) - 7i*(M'Ad,) - n^M Adj . 

Let Ad(7w x CP1) represent the image of the elements Yw x CP1 in 
nJ,M Adk). Using an argument similar to [4], [6] for M U# we obtain 

THEOREM (2.9). Q(k) is a free Z module on Ad(Yw x CP1). Thus the stably 
complex U(k) manifolds S2 '1"1 x ••• x S2'*"1 x r* U(k) = S1 xT> U(k) 
form a free MU% basis for Q(k). 

COROLLARY (2.10). The homomorphism <b:MU*{BU{k))-+ Qf taking 
CP1 to S1 xTk U(k) is an isomorphism ofMU^. modules. 

3. Application to QU(n\. There is an obvious pairing Qik) (x) MUit MUJJC) 
-* Q^\X) and the composition 

( 3 1} MU*(BU(k) xX) = MU*(BU(k)) <g> MU*(X) 
v * ' MU* 

MU* 

is a natural transformation which is an isomorphism for X = point, 
hence for all X. The map Q{k\BU{p)) ^ Qik + 1)(BU{p - 1)) of §2 gives 
rise to a map 

(3.2) MU„(BU(k) x BU(p)) -4 MU^(BU(k + 1) x BU(p - 1)). 

THEOREM (3.3). The sequence 

-> MU„(BU(k) x BU(p)) -4 MU+(BU(k + 1) x BU(p - 1)) -• 

is a split exact sequence of MU^. modules. 
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INGREDIENTS OF PROOF. From [3] we know the cohomology sequence 

-> H*(BU(k) x BUip)) -4 H*(BU(k + 1) x BU(p - 1)) -* 

is a split exact, d is 1*71* where BU{k) x BU{1) x £l/(p - 1) *> £l/(fc) 
x JBt/(p) and BU(fc) x £1/(1) x fll/(p) -4B[/(k + 1) x Bl/(p - 1). The 
Thorn homomorphism ti:MU*(BU{k) x BU(p)) -* H„(BU(k) x Bl/(p)) 
commutes with the two d's. Using the collapsing of the Atiyah spectral 
sequence E2 = HJJBU{k) x B[7(p)) ® Ml/#, an argument similar to 
[1, 18.1], the fact that d2 must be zero, and induction, the result follows. 

COROLLARY (3.4). -+ Qik)(BU(p)) A Qik+1\BU{p - 1))-* is exact. 

From this the main theorem follows by arguments identical to [3]. 
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