FOURIER COEFFICIENTS OF CERTAIN EISENSTEIN SERIES¹

BY MARTIN L. KAREL

Communicated by Alberto Calderón, February 28, 1972

Let K be a field of characteristic $\neq 2, 3$ and let \mathfrak{I}_K be the exceptional Jordan algebra of dimension 27 consisting of hermitian 3×3 matrices with entries in the Cayley-Dickson algebra \mathfrak{C}_K . The product $X \circ Y$ in \mathfrak{I} is $\frac{1}{2}(XY + YX)$, where XY is the matrix product. In [3], there are defined a norm (det) and a trace (tr) on 3. Let (,,) be the symmetric trilinear form on $\Im \times \Im \times \Im$ such that $(A, A, A) = \det(A)$, and define a bilinear map $\mathfrak{J} \times \mathfrak{J} \to \mathfrak{J}$, which takes (A, B) to $A \times B$, by requiring that $(A \times B, C)$ = 3(A, B, C) for each $C \in \mathfrak{J}$, where $(X, Y) = \operatorname{tr}(X \circ Y)$. Then $A \times A$ plays the role of the matrix adjoint of A, and the notions just introduced can be used to define the rank of each element $A \in \mathfrak{J}$. We denote this by $\operatorname{rk}(A)$. In particular, $\operatorname{rk}(A) = 3$ if and only if $\det(A) \neq 0$. Let $\mathfrak{t}_i = \{A \in \mathfrak{J}_R : \operatorname{rk}(A) = j\}$. The tube domain associated to \Im is

$$\mathfrak{T} = \{ Z = X + iY \in \mathfrak{J}_C : Y \in \mathfrak{f}_3^+ \},\,$$

where $\mathfrak{t}_i^+ = \{ Y \in \mathfrak{t}_i : Y = X^2 \text{ for some } X \in \mathfrak{J}_R \}.$

The group of holomorphic automorphisms of $\mathfrak T$ is isogenous to a certain algebraic Q-group which is of type E_7 . Baily [1] has defined an arithmetic subgroup Γ of G_0 which is a unicuspidal subgroup of G and a maximal discrete subgroup of G_R . Let $J(Z, \gamma)$ be the functional determinant of γ at $Z, Z \in \mathfrak{T}$. Let Γ_0 be the subgroup of Γ which stabilizes a certain zero-dimensional rational boundary component \mathfrak{T}_0^{∞} of \mathfrak{T} , as in [1, §7]. We let

$$E_{g}(Z) = \sum_{\gamma_{e} \Gamma/\Gamma_{0}} J(Z, \gamma)^{g/18},$$

where $g \equiv 0 \pmod{36}$ and g > 19. Then the Eisenstein series E_g is an automorphic form of weight g/18 with respect to the group Γ and the factor of automorphy J. It has an absolutely convergent Fourier expansion

$$E_g(Z) = \sum_{T \in \Lambda^+} a_g(T) e^{2\pi i (T,Z)},$$

AMS 1970 subject classifications. Primary 10D20; Secondary 20G30.

Key words and phrases. Fourier coefficients, Eisenstein series, algebraic Q-group of Type E_7 , exceptional Jordan algebra, arithmetic subgroup.

This paper describes a portion of the author's doctoral thesis written under the direction

of Professor Walter L. Baily, Jr. at the University of Chicago.

where Λ^+ is the intersection of a certain lattice in \mathfrak{I}_R with the set of squares in \mathfrak{I}_R . The main result of [1] is that $a_q(T) \in Q$ for each $T \in \Lambda^+$.

For any $T \in \mathfrak{J}_Q$ one can define three numerical invariants, the "elementary divisors of T." We call their respective p-adic orders the "p-adic order invariants of T." Let $\det_j(T)$ be the product of the first j elementary divisors. Then $\det_3(T) = \det(T)$ and if $\operatorname{rk}(T) = j$, then $\det_j(T) \neq 0$. Let Υ_j be the 3×3 matrix havings 1's in the topmost j positions on the diagonal and zeros elsewhere. The nth Bernoulli number B_n is defined by the symbolic recursion process $B_n \to B^n$, $(1 + B)^{n+1} - B^{n+1} = 0$, $B_0 = 1$. In particular, $B_{2n+1} = 0$ if $n \geq 1$. The purpose of this note is to announce the following result.

THEOREM. For any $T \in \Lambda^+ \cap \mathfrak{t}_j$ with j = 0, 1, 2, 3,

$$a_{g}(T) = a_{g}(\Upsilon_{j}) \det_{j}(T)^{g+3-4j} \prod_{p \mid \det_{j}(T)} f_{T}^{p}(p^{4j-3-g}),$$

where

$$a_g(\Upsilon_j) = 2^{j(2j-1)} \prod_{n=0}^{j-1} \left\{ \frac{g-4n}{B_{g-4n}} \right\},$$

and where f_T^p is a monic polynomial with rational integer coefficients and with degree $D = \operatorname{ord}_p(\det_f(T))$. Furthermore, f_T^p is determined by the p-adic order invariants of T; hence, for fixed g, $a_g(T)$ depends only on the elementary divisors of $T \in \Lambda^+$.

Let $\| \|_p$ be the ordinary p-adic absolute value. Then $\|\det_j(T)\|_p^{4j-3-g}f_T^p(p^{4j-3-g})$ is a rational integer. The Fourier coefficients $a_g(T)$, for fixed g, are integral multiples of $a_g(\Upsilon_j)$, where $j=\operatorname{rk}(T)$. Note that $a_g(\Upsilon_j) \in \mathbf{Q}$.

COROLLARY. Let δ_g be the product of the numerators of the rational numbers B_{g-4n} , where n=0,1,2. Then the Γ -automorphic form $\delta_g E_g$ has rational integer Fourier coefficients.

Suppose that $T \in \Lambda^+ \cap \mathfrak{k}_2$ and that the order invariants of T are τ, τ' where $\tau \leq \tau'$. Then $f_T^p(X) = \sum_{k=0}^{\tau} p^{4k} \sum_{m=k}^{\tau+\tau'-k} X^m$. We have not determined f_T^p so explicitly when $\mathrm{rk}(T) = 3$, but it is easy to compute individual examples from our work. For example, when $T = p\Upsilon_3$, we have

$$f_T^p(X) = X^3 + (p^8 + p^4 + 1)X^2 + (p^8 + p^4 + 1)X + 1$$

Similar but essentially less precise results have been obtained in the case of the group $Sp_n(\mathbb{Z})$ acting on the Siegel upper half-space \mathfrak{S}_n of rank n by Maass [4] when n=2, by Siegel [5], and by Eichler [2]. Both Maass

and Eichler used the theory of Hecke operators, while Siegel relied on the analytic theory of quadratic forms. By contrast, our methods are entirely elementary.

REFERENCES

- 1. W. L. Baily, Jr., An exceptional arithmetic group and its Eisenstein series, Ann. of Math. (2) 91 (1970), 512-549. MR 42 #4674.
- 2. M. Eichler, Zur Begründung der Theorie der automorphen Funktionen in mehreren Variablen, Aequationes Math. 3 (1969), 93-111. MR 41 #2056.
- 3. H. Freudenthal, Zur ebenen Oktavengeometrie, Nederl. Akad. Wetensch. Proc. Ser. A 56=Indag. Math. 15 (1953), 195-200. MR 15, 56.
- 4. H. Maass, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk. 34 (1964), no. 7, 25 pp. MR 30 #1985.

 5. C. L. Siegel, Über die Fourierschen Koeffizienten der Eisensteinschen Reihen, Mat.-Fys. Medd. Danske Vid. Selsk. 34 (1964), no. 6, 20 pp. MR 30 #1984.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540