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Let K be a field of characteristic 7*2,3 and let 3* be the exceptional 
Jordan algebra of dimension 27 consisting of hermitian 3 x 3 matrices 
with entries in the Cayley-Dickson algebra &K. The product X o Y in 3 
is j{XY + YX\ where XY is the matrix product. In [3], there are defined 
a norm (det) and a trace (tr) on 3. Let ( , , ) be the symmetric trilinear 
form on 3 x 3 x 3 such that {A, A, A) = fe\(A\ and define a bilinear map 
3 x 3 -» 3? which takes {A, B) to Ax J5, by requiring that (A x B9Q 
= 3(A9 B9 Q for each C G 3, where (X, 7) = tr(Z o Y). Then Ax A plays 
the role of the matrix adjoint of A, and the notions just introduced can be 
used to define the rank of each element A e 3- We denote this by rk(A). In 
particular, rk(^) = 3 if and only if det(4) # 0. Let lj = {A e 3* : rk(^) = ; } . 
The tube domain associated to 3 is 

% = {Z = X + iYe%c:Yet+}9 

where!/ = {Yety. Y = X2 for some Xe 3K}. 
The group of holomorphic automorphisms of % is isogenous to a 

certain algebraic ô-group which is of type E7. Baily [1] has defined an 
arithmetic subgroup T of GQ which is a unicuspidal subgroup of G and a 
maximal discrete subgroup of GR. Let J(Z, y) be the functional determinant 
of y at Z, Z G 2. Let T0 be the subgroup of T which stabilizes a certain 
zero-dimensional rational boundary component %$ of %9 as in [1, §7]. 
We let 

Eg(Z)= £ J(Z,7)^18, 
yer/r0 

where # = 0(mod 36) and g > 19. Then the Eisenstein series Ê  is an 
automorphic form of weight #/18 with respect to the group T and the 
factor of automorphy J. It has an absolutely convergent Fourier expan­
sion 

T e A+ 
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where A+ is the intersection of a certain lattice in 3* with the set of 
squares in 3^. The main result of [1] is that ag(T)eQ for each TeA+ . 

For any Te3Q one can define three numerical invariants, the "element­
ary divisors of 77' We call their respective p-adic orders the "p-adic order 
invariants of T" Let det/T) be the product of the first j elementary 
divisors. Then det3(T) = det(T) and if rk(T) = ;, then det/T) # 0. Let Y, 
be the 3 x 3 matrix havings l's in the topmost; positions on the diagonal 
and zeros elsewhere. The nth Bernoulli number Bn is defined by the 
symbolic recursion process Bn -> B\ (1 + B)w+1 - J3n+1 = 0, J80 = 1- In 
particular, B2n+1 = 0 if n ^ 1. The purpose of this note is to announce the 
following result. 

THEOREM. For any Te A+ ntj withj = 0,1,2,3, 

ag{T) = ag(rj)detj(Ty+s-v ft fW~*-% 
p\d*j(T) 

where 

agCCJ) = 2^-^fi\9-f±], 

and where ƒ §. is a monk polynomial with rational integer coefficients and 
with degree D = ordp(det/T)). Furthermore, ƒ Ç. is determined by the p-adic 
order invariants ofT; hence, for fixed g, ag(T) depends only on the elementary 
divisors of T e A+. 

Let || ||p be the ordinary p-adic absolute value. Then 
||det/T)|j^'"3~^ç.(p4j"3"^) is a rational integer. The Fourier coefficients 
ag{T\ for fixed g9 are integral multiples of aJfXj\ where ; = rk(T). Note 
that aJCTj) e g 

COROLLARY. Let ôg be the product of the numerators of the rational 
numbers Bg^^n9 where n = 0,1,2. Then the T-automorphic form 6gEg has 
rational integer Fourier coefficients. 

Suppose that TeA+ nt2 and that the order invariants of Tare r,T' 
where T ^ r'.Then/J(X) = XJUoP4kIm+4~kXm. We have not determined 
/f. so explicitly when rk(T) = 3, but it is easy to compute individual 
examples from our work. For example, when T = pT3, we have 

fp
T(X) = X3 + (p8 + p4 + 1)X2+ (p8 + p4 + l)X + 1 

Similar but essentially less precise results have been obtained in the 
case of the group Spn(Z) acting on the Siegel upper half-space £>„ of rank n 
by Maass [4] when n = 2, by Siegel [5], and by Eichler [2]. Both Maass 
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and Eichler used the theory of Hecke operators, while Siegel relied on the 
analytic theory of quadratic forms. By contrast, our methods are entirely 
elementary. 
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